001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021 022import com.google.common.annotations.Beta; 023import com.google.common.annotations.GwtCompatible; 024import com.google.common.annotations.GwtIncompatible; 025import com.google.common.base.Predicate; 026import com.google.common.base.Predicates; 027import com.google.common.collect.Collections2.FilteredCollection; 028import com.google.common.math.IntMath; 029import com.google.errorprone.annotations.CanIgnoreReturnValue; 030import java.io.Serializable; 031import java.util.AbstractSet; 032import java.util.Arrays; 033import java.util.Collection; 034import java.util.Collections; 035import java.util.Comparator; 036import java.util.EnumSet; 037import java.util.HashSet; 038import java.util.Iterator; 039import java.util.LinkedHashSet; 040import java.util.List; 041import java.util.Map; 042import java.util.NavigableSet; 043import java.util.NoSuchElementException; 044import java.util.Set; 045import java.util.SortedSet; 046import java.util.TreeSet; 047import java.util.concurrent.ConcurrentHashMap; 048import java.util.concurrent.CopyOnWriteArraySet; 049import java.util.stream.Collector; 050import java.util.stream.Stream; 051import javax.annotation.Nullable; 052 053/** 054 * Static utility methods pertaining to {@link Set} instances. Also see this 055 * class's counterparts {@link Lists}, {@link Maps} and {@link Queues}. 056 * 057 * <p>See the Guava User Guide article on <a href= 058 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> 059 * {@code Sets}</a>. 060 * 061 * @author Kevin Bourrillion 062 * @author Jared Levy 063 * @author Chris Povirk 064 * @since 2.0 065 */ 066@GwtCompatible(emulated = true) 067public final class Sets { 068 private Sets() {} 069 070 /** 071 * {@link AbstractSet} substitute without the potentially-quadratic 072 * {@code removeAll} implementation. 073 */ 074 abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> { 075 @Override 076 public boolean removeAll(Collection<?> c) { 077 return removeAllImpl(this, c); 078 } 079 080 @Override 081 public boolean retainAll(Collection<?> c) { 082 return super.retainAll(checkNotNull(c)); // GWT compatibility 083 } 084 } 085 086 /** 087 * Returns an immutable set instance containing the given enum elements. 088 * Internally, the returned set will be backed by an {@link EnumSet}. 089 * 090 * <p>The iteration order of the returned set follows the enum's iteration 091 * order, not the order in which the elements are provided to the method. 092 * 093 * @param anElement one of the elements the set should contain 094 * @param otherElements the rest of the elements the set should contain 095 * @return an immutable set containing those elements, minus duplicates 096 */ 097 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 098 @GwtCompatible(serializable = true) 099 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 100 E anElement, E... otherElements) { 101 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 102 } 103 104 /** 105 * Returns an immutable set instance containing the given enum elements. 106 * Internally, the returned set will be backed by an {@link EnumSet}. 107 * 108 * <p>The iteration order of the returned set follows the enum's iteration 109 * order, not the order in which the elements appear in the given collection. 110 * 111 * @param elements the elements, all of the same {@code enum} type, that the 112 * set should contain 113 * @return an immutable set containing those elements, minus duplicates 114 */ 115 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 116 @GwtCompatible(serializable = true) 117 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 118 if (elements instanceof ImmutableEnumSet) { 119 return (ImmutableEnumSet<E>) elements; 120 } else if (elements instanceof Collection) { 121 Collection<E> collection = (Collection<E>) elements; 122 if (collection.isEmpty()) { 123 return ImmutableSet.of(); 124 } else { 125 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 126 } 127 } else { 128 Iterator<E> itr = elements.iterator(); 129 if (itr.hasNext()) { 130 EnumSet<E> enumSet = EnumSet.of(itr.next()); 131 Iterators.addAll(enumSet, itr); 132 return ImmutableEnumSet.asImmutable(enumSet); 133 } else { 134 return ImmutableSet.of(); 135 } 136 } 137 } 138 139 private static final class Accumulator<E extends Enum<E>> { 140 static final Collector<Enum<?>, ?, ImmutableSet<? extends Enum<?>>> 141 TO_IMMUTABLE_ENUM_SET = 142 (Collector) 143 Collector.<Enum, Accumulator, ImmutableSet<?>>of( 144 Accumulator::new, 145 Accumulator::add, 146 Accumulator::combine, 147 Accumulator::toImmutableSet, 148 Collector.Characteristics.UNORDERED); 149 150 private EnumSet<E> set; 151 152 void add(E e) { 153 if (set == null) { 154 set = EnumSet.of(e); 155 } else { 156 set.add(e); 157 } 158 } 159 160 Accumulator<E> combine(Accumulator<E> other) { 161 if (this.set == null) { 162 return other; 163 } else if (other.set == null) { 164 return this; 165 } else { 166 this.set.addAll(other.set); 167 return this; 168 } 169 } 170 171 ImmutableSet<E> toImmutableSet() { 172 return (set == null) ? ImmutableSet.<E>of() : ImmutableEnumSet.asImmutable(set); 173 } 174 } 175 176 /** 177 * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet} 178 * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the 179 * resulting set will iterate over elements in their enum definition order, not encounter order. 180 * 181 * @since 21.0 182 */ 183 @Beta 184 public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() { 185 return (Collector) Accumulator.TO_IMMUTABLE_ENUM_SET; 186 } 187 188 /** 189 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 190 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 191 * accepts non-{@code Collection} iterables and empty iterables. 192 */ 193 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 194 Iterable<E> iterable, Class<E> elementType) { 195 EnumSet<E> set = EnumSet.noneOf(elementType); 196 Iterables.addAll(set, iterable); 197 return set; 198 } 199 200 // HashSet 201 202 /** 203 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 204 * 205 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If 206 * {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly 207 * consider using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to 208 * get deterministic iteration behavior. 209 * 210 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 211 * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new 212 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 213 */ 214 public static <E> HashSet<E> newHashSet() { 215 return new HashSet<E>(); 216 } 217 218 /** 219 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 220 * 221 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 222 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 223 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 224 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 225 * deterministic iteration behavior. 226 * 227 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 228 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 229 * This method is not actually very useful and will likely be deprecated in the future. 230 */ 231 public static <E> HashSet<E> newHashSet(E... elements) { 232 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 233 Collections.addAll(set, elements); 234 return set; 235 } 236 237 /** 238 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 239 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 240 * is what most users want and expect it to do. 241 * 242 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 243 * 244 * @param expectedSize the number of elements you expect to add to the returned set 245 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 246 * without resizing 247 * @throws IllegalArgumentException if {@code expectedSize} is negative 248 */ 249 public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) { 250 return new HashSet<E>(Maps.capacity(expectedSize)); 251 } 252 253 /** 254 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 255 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 256 * Iterables#addAll}. 257 * 258 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 259 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 260 * FluentIterable} and call {@code elements.toSet()}.) 261 * 262 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 263 * instead. 264 * 265 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 266 * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of 267 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 268 * 269 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 270 */ 271 public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) { 272 return (elements instanceof Collection) 273 ? new HashSet<E>(Collections2.cast(elements)) 274 : newHashSet(elements.iterator()); 275 } 276 277 /** 278 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 279 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 280 * 281 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 282 * ImmutableSet#copyOf(Iterator)} instead. 283 * 284 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 285 * instead. 286 * 287 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 288 */ 289 public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) { 290 HashSet<E> set = newHashSet(); 291 Iterators.addAll(set, elements); 292 return set; 293 } 294 295 /** 296 * Creates a thread-safe set backed by a hash map. The set is backed by a 297 * {@link ConcurrentHashMap} instance, and thus carries the same concurrency 298 * guarantees. 299 * 300 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be 301 * used as an element. The set is serializable. 302 * 303 * @return a new, empty thread-safe {@code Set} 304 * @since 15.0 305 */ 306 public static <E> Set<E> newConcurrentHashSet() { 307 return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>()); 308 } 309 310 /** 311 * Creates a thread-safe set backed by a hash map and containing the given 312 * elements. The set is backed by a {@link ConcurrentHashMap} instance, and 313 * thus carries the same concurrency guarantees. 314 * 315 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be 316 * used as an element. The set is serializable. 317 * 318 * @param elements the elements that the set should contain 319 * @return a new thread-safe set containing those elements (minus duplicates) 320 * @throws NullPointerException if {@code elements} or any of its contents is 321 * null 322 * @since 15.0 323 */ 324 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 325 Set<E> set = newConcurrentHashSet(); 326 Iterables.addAll(set, elements); 327 return set; 328 } 329 330 // LinkedHashSet 331 332 /** 333 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 334 * 335 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 336 * 337 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 338 * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of 339 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 340 * 341 * @return a new, empty {@code LinkedHashSet} 342 */ 343 public static <E> LinkedHashSet<E> newLinkedHashSet() { 344 return new LinkedHashSet<E>(); 345 } 346 347 /** 348 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 349 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 350 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 351 * that the method isn't inadvertently <i>oversizing</i> the returned set. 352 * 353 * @param expectedSize the number of elements you expect to add to the returned set 354 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 355 * elements without resizing 356 * @throws IllegalArgumentException if {@code expectedSize} is negative 357 * @since 11.0 358 */ 359 public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) { 360 return new LinkedHashSet<E>(Maps.capacity(expectedSize)); 361 } 362 363 /** 364 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 365 * 366 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 367 * ImmutableSet#copyOf(Iterable)} instead. 368 * 369 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 370 * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage 371 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 372 * 373 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 374 * 375 * @param elements the elements that the set should contain, in order 376 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 377 */ 378 public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) { 379 if (elements instanceof Collection) { 380 return new LinkedHashSet<E>(Collections2.cast(elements)); 381 } 382 LinkedHashSet<E> set = newLinkedHashSet(); 383 Iterables.addAll(set, elements); 384 return set; 385 } 386 387 // TreeSet 388 389 /** 390 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 391 * its elements. 392 * 393 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 394 * 395 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 396 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 397 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 398 * 399 * @return a new, empty {@code TreeSet} 400 */ 401 public static <E extends Comparable> TreeSet<E> newTreeSet() { 402 return new TreeSet<E>(); 403 } 404 405 /** 406 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 407 * natural ordering. 408 * 409 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 410 * instead. 411 * 412 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 413 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 414 * TreeSet} with that comparator. 415 * 416 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 417 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 418 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 419 * 420 * <p>This method is just a small convenience for creating an empty set and then calling {@link 421 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 422 * 423 * @param elements the elements that the set should contain 424 * @return a new {@code TreeSet} containing those elements (minus duplicates) 425 */ 426 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 427 TreeSet<E> set = newTreeSet(); 428 Iterables.addAll(set, elements); 429 return set; 430 } 431 432 /** 433 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 434 * 435 * <p><b>Note:</b> if mutability is not required, use {@code 436 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 437 * 438 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 439 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 440 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code 441 * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this 442 * factory rejects null. Clean your code accordingly. 443 * 444 * @param comparator the comparator to use to sort the set 445 * @return a new, empty {@code TreeSet} 446 * @throws NullPointerException if {@code comparator} is null 447 */ 448 public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) { 449 return new TreeSet<E>(checkNotNull(comparator)); 450 } 451 452 /** 453 * Creates an empty {@code Set} that uses identity to determine equality. It 454 * compares object references, instead of calling {@code equals}, to 455 * determine whether a provided object matches an element in the set. For 456 * example, {@code contains} returns {@code false} when passed an object that 457 * equals a set member, but isn't the same instance. This behavior is similar 458 * to the way {@code IdentityHashMap} handles key lookups. 459 * 460 * @since 8.0 461 */ 462 public static <E> Set<E> newIdentityHashSet() { 463 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 464 } 465 466 /** 467 * Creates an empty {@code CopyOnWriteArraySet} instance. 468 * 469 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use 470 * {@link Collections#emptySet} instead. 471 * 472 * @return a new, empty {@code CopyOnWriteArraySet} 473 * @since 12.0 474 */ 475 @GwtIncompatible // CopyOnWriteArraySet 476 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 477 return new CopyOnWriteArraySet<E>(); 478 } 479 480 /** 481 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 482 * 483 * @param elements the elements that the set should contain, in order 484 * @return a new {@code CopyOnWriteArraySet} containing those elements 485 * @since 12.0 486 */ 487 @GwtIncompatible // CopyOnWriteArraySet 488 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) { 489 // We copy elements to an ArrayList first, rather than incurring the 490 // quadratic cost of adding them to the COWAS directly. 491 Collection<? extends E> elementsCollection = 492 (elements instanceof Collection) 493 ? Collections2.cast(elements) 494 : Lists.newArrayList(elements); 495 return new CopyOnWriteArraySet<E>(elementsCollection); 496 } 497 498 /** 499 * Creates an {@code EnumSet} consisting of all enum values that are not in 500 * the specified collection. If the collection is an {@link EnumSet}, this 501 * method has the same behavior as {@link EnumSet#complementOf}. Otherwise, 502 * the specified collection must contain at least one element, in order to 503 * determine the element type. If the collection could be empty, use 504 * {@link #complementOf(Collection, Class)} instead of this method. 505 * 506 * @param collection the collection whose complement should be stored in the 507 * enum set 508 * @return a new, modifiable {@code EnumSet} containing all values of the enum 509 * that aren't present in the given collection 510 * @throws IllegalArgumentException if {@code collection} is not an 511 * {@code EnumSet} instance and contains no elements 512 */ 513 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 514 if (collection instanceof EnumSet) { 515 return EnumSet.complementOf((EnumSet<E>) collection); 516 } 517 checkArgument( 518 !collection.isEmpty(), "collection is empty; use the other version of this method"); 519 Class<E> type = collection.iterator().next().getDeclaringClass(); 520 return makeComplementByHand(collection, type); 521 } 522 523 /** 524 * Creates an {@code EnumSet} consisting of all enum values that are not in 525 * the specified collection. This is equivalent to 526 * {@link EnumSet#complementOf}, but can act on any input collection, as long 527 * as the elements are of enum type. 528 * 529 * @param collection the collection whose complement should be stored in the 530 * {@code EnumSet} 531 * @param type the type of the elements in the set 532 * @return a new, modifiable {@code EnumSet} initially containing all the 533 * values of the enum not present in the given collection 534 */ 535 public static <E extends Enum<E>> EnumSet<E> complementOf( 536 Collection<E> collection, Class<E> type) { 537 checkNotNull(collection); 538 return (collection instanceof EnumSet) 539 ? EnumSet.complementOf((EnumSet<E>) collection) 540 : makeComplementByHand(collection, type); 541 } 542 543 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 544 Collection<E> collection, Class<E> type) { 545 EnumSet<E> result = EnumSet.allOf(type); 546 result.removeAll(collection); 547 return result; 548 } 549 550 /** 551 * Returns a set backed by the specified map. The resulting set displays 552 * the same ordering, concurrency, and performance characteristics as the 553 * backing map. In essence, this factory method provides a {@link Set} 554 * implementation corresponding to any {@link Map} implementation. There is no 555 * need to use this method on a {@link Map} implementation that already has a 556 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} 557 * or {@link java.util.TreeMap}). 558 * 559 * <p>Each method invocation on the set returned by this method results in 560 * exactly one method invocation on the backing map or its {@code keySet} 561 * view, with one exception. The {@code addAll} method is implemented as a 562 * sequence of {@code put} invocations on the backing map. 563 * 564 * <p>The specified map must be empty at the time this method is invoked, 565 * and should not be accessed directly after this method returns. These 566 * conditions are ensured if the map is created empty, passed directly 567 * to this method, and no reference to the map is retained, as illustrated 568 * in the following code fragment: <pre> {@code 569 * 570 * Set<Object> identityHashSet = Sets.newSetFromMap( 571 * new IdentityHashMap<Object, Boolean>());}</pre> 572 * 573 * <p>The returned set is serializable if the backing map is. 574 * 575 * @param map the backing map 576 * @return the set backed by the map 577 * @throws IllegalArgumentException if {@code map} is not empty 578 * @deprecated Use {@link Collections#newSetFromMap} instead. This method 579 * will be removed in December 2017. 580 */ 581 @Deprecated 582 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { 583 return Collections.newSetFromMap(map); 584 } 585 586 /** 587 * An unmodifiable view of a set which may be backed by other sets; this view 588 * will change as the backing sets do. Contains methods to copy the data into 589 * a new set which will then remain stable. There is usually no reason to 590 * retain a reference of type {@code SetView}; typically, you either use it 591 * as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 592 * {@link #copyInto} and forget the {@code SetView} itself. 593 * 594 * @since 2.0 595 */ 596 public abstract static class SetView<E> extends AbstractSet<E> { 597 private SetView() {} // no subclasses but our own 598 599 /** 600 * Returns an immutable copy of the current contents of this set view. 601 * Does not support null elements. 602 * 603 * <p><b>Warning:</b> this may have unexpected results if a backing set of 604 * this view uses a nonstandard notion of equivalence, for example if it is 605 * a {@link TreeSet} using a comparator that is inconsistent with {@link 606 * Object#equals(Object)}. 607 */ 608 public ImmutableSet<E> immutableCopy() { 609 return ImmutableSet.copyOf(this); 610 } 611 612 /** 613 * Copies the current contents of this set view into an existing set. This 614 * method has equivalent behavior to {@code set.addAll(this)}, assuming that 615 * all the sets involved are based on the same notion of equivalence. 616 * 617 * @return a reference to {@code set}, for convenience 618 */ 619 // Note: S should logically extend Set<? super E> but can't due to either 620 // some javac bug or some weirdness in the spec, not sure which. 621 @CanIgnoreReturnValue 622 public <S extends Set<E>> S copyInto(S set) { 623 set.addAll(this); 624 return set; 625 } 626 627 /** 628 * Guaranteed to throw an exception and leave the collection unmodified. 629 * 630 * @throws UnsupportedOperationException always 631 * @deprecated Unsupported operation. 632 */ 633 @CanIgnoreReturnValue 634 @Deprecated 635 @Override 636 public final boolean add(E e) { 637 throw new UnsupportedOperationException(); 638 } 639 640 /** 641 * Guaranteed to throw an exception and leave the collection unmodified. 642 * 643 * @throws UnsupportedOperationException always 644 * @deprecated Unsupported operation. 645 */ 646 @CanIgnoreReturnValue 647 @Deprecated 648 @Override 649 public final boolean remove(Object object) { 650 throw new UnsupportedOperationException(); 651 } 652 653 /** 654 * Guaranteed to throw an exception and leave the collection unmodified. 655 * 656 * @throws UnsupportedOperationException always 657 * @deprecated Unsupported operation. 658 */ 659 @CanIgnoreReturnValue 660 @Deprecated 661 @Override 662 public final boolean addAll(Collection<? extends E> newElements) { 663 throw new UnsupportedOperationException(); 664 } 665 666 /** 667 * Guaranteed to throw an exception and leave the collection unmodified. 668 * 669 * @throws UnsupportedOperationException always 670 * @deprecated Unsupported operation. 671 */ 672 @CanIgnoreReturnValue 673 @Deprecated 674 @Override 675 public final boolean removeAll(Collection<?> oldElements) { 676 throw new UnsupportedOperationException(); 677 } 678 679 /** 680 * Guaranteed to throw an exception and leave the collection unmodified. 681 * 682 * @throws UnsupportedOperationException always 683 * @deprecated Unsupported operation. 684 */ 685 @CanIgnoreReturnValue 686 @Deprecated 687 @Override 688 public final boolean removeIf(java.util.function.Predicate<? super E> filter) { 689 throw new UnsupportedOperationException(); 690 } 691 692 /** 693 * Guaranteed to throw an exception and leave the collection unmodified. 694 * 695 * @throws UnsupportedOperationException always 696 * @deprecated Unsupported operation. 697 */ 698 @CanIgnoreReturnValue 699 @Deprecated 700 @Override 701 public final boolean retainAll(Collection<?> elementsToKeep) { 702 throw new UnsupportedOperationException(); 703 } 704 705 /** 706 * Guaranteed to throw an exception and leave the collection unmodified. 707 * 708 * @throws UnsupportedOperationException always 709 * @deprecated Unsupported operation. 710 */ 711 @Deprecated 712 @Override 713 public final void clear() { 714 throw new UnsupportedOperationException(); 715 } 716 717 /** 718 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 719 * 720 * @since 20.0 (present with return type {@link Iterator} since 2.0) 721 */ 722 @Override 723 public abstract UnmodifiableIterator<E> iterator(); 724 } 725 726 /** 727 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned 728 * set contains all elements that are contained in either backing set. 729 * Iterating over the returned set iterates first over all the elements of 730 * {@code set1}, then over each element of {@code set2}, in order, that is not 731 * contained in {@code set1}. 732 * 733 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on 734 * different equivalence relations (as {@link HashSet}, {@link TreeSet}, and 735 * the {@link Map#keySet} of an {@code IdentityHashMap} all are). 736 */ 737 public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) { 738 checkNotNull(set1, "set1"); 739 checkNotNull(set2, "set2"); 740 741 final Set<? extends E> set2minus1 = difference(set2, set1); 742 743 return new SetView<E>() { 744 @Override 745 public int size() { 746 return IntMath.saturatedAdd(set1.size(), set2minus1.size()); 747 } 748 749 @Override 750 public boolean isEmpty() { 751 return set1.isEmpty() && set2.isEmpty(); 752 } 753 754 @Override 755 public UnmodifiableIterator<E> iterator() { 756 return Iterators.unmodifiableIterator( 757 Iterators.concat(set1.iterator(), set2minus1.iterator())); 758 } 759 760 @Override 761 public Stream<E> stream() { 762 return Stream.concat(set1.stream(), set2minus1.stream()); 763 } 764 765 @Override 766 public Stream<E> parallelStream() { 767 return Stream.concat(set1.parallelStream(), set2minus1.parallelStream()); 768 } 769 770 @Override 771 public boolean contains(Object object) { 772 return set1.contains(object) || set2.contains(object); 773 } 774 775 @Override 776 public <S extends Set<E>> S copyInto(S set) { 777 set.addAll(set1); 778 set.addAll(set2); 779 return set; 780 } 781 782 @Override 783 public ImmutableSet<E> immutableCopy() { 784 return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build(); 785 } 786 }; 787 } 788 789 /** 790 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The 791 * returned set contains all elements that are contained by both backing sets. 792 * The iteration order of the returned set matches that of {@code set1}. 793 * 794 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 795 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 796 * and the keySet of an {@code IdentityHashMap} all are). 797 * 798 * <p><b>Note:</b> The returned view performs slightly better when {@code 799 * set1} is the smaller of the two sets. If you have reason to believe one of 800 * your sets will generally be smaller than the other, pass it first. 801 * Unfortunately, since this method sets the generic type of the returned set 802 * based on the type of the first set passed, this could in rare cases force 803 * you to make a cast, for example: <pre> {@code 804 * 805 * Set<Object> aFewBadObjects = ... 806 * Set<String> manyBadStrings = ... 807 * 808 * // impossible for a non-String to be in the intersection 809 * SuppressWarnings("unchecked") 810 * Set<String> badStrings = (Set) Sets.intersection( 811 * aFewBadObjects, manyBadStrings);}</pre> 812 * 813 * <p>This is unfortunate, but should come up only very rarely. 814 */ 815 public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) { 816 checkNotNull(set1, "set1"); 817 checkNotNull(set2, "set2"); 818 819 final Predicate<Object> inSet2 = Predicates.in(set2); 820 return new SetView<E>() { 821 @Override 822 public UnmodifiableIterator<E> iterator() { 823 return Iterators.filter(set1.iterator(), inSet2); 824 } 825 826 @Override 827 public Stream<E> stream() { 828 return set1.stream().filter(inSet2); 829 } 830 831 @Override 832 public Stream<E> parallelStream() { 833 return set1.parallelStream().filter(inSet2); 834 } 835 836 @Override 837 public int size() { 838 return Iterators.size(iterator()); 839 } 840 841 @Override 842 public boolean isEmpty() { 843 return !iterator().hasNext(); 844 } 845 846 @Override 847 public boolean contains(Object object) { 848 return set1.contains(object) && set2.contains(object); 849 } 850 851 @Override 852 public boolean containsAll(Collection<?> collection) { 853 return set1.containsAll(collection) && set2.containsAll(collection); 854 } 855 }; 856 } 857 858 /** 859 * Returns an unmodifiable <b>view</b> of the difference of two sets. The 860 * returned set contains all elements that are contained by {@code set1} and 861 * not contained by {@code set2}. {@code set2} may also contain elements not 862 * present in {@code set1}; these are simply ignored. The iteration order of 863 * the returned set matches that of {@code set1}. 864 * 865 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 866 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 867 * and the keySet of an {@code IdentityHashMap} all are). 868 */ 869 public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) { 870 checkNotNull(set1, "set1"); 871 checkNotNull(set2, "set2"); 872 873 final Predicate<Object> notInSet2 = Predicates.not(Predicates.in(set2)); 874 return new SetView<E>() { 875 @Override 876 public UnmodifiableIterator<E> iterator() { 877 return Iterators.filter(set1.iterator(), notInSet2); 878 } 879 880 @Override 881 public Stream<E> stream() { 882 return set1.stream().filter(notInSet2); 883 } 884 885 @Override 886 public Stream<E> parallelStream() { 887 return set1.parallelStream().filter(notInSet2); 888 } 889 890 @Override 891 public int size() { 892 return Iterators.size(iterator()); 893 } 894 895 @Override 896 public boolean isEmpty() { 897 return set2.containsAll(set1); 898 } 899 900 @Override 901 public boolean contains(Object element) { 902 return set1.contains(element) && !set2.contains(element); 903 } 904 }; 905 } 906 907 /** 908 * Returns an unmodifiable <b>view</b> of the symmetric difference of two 909 * sets. The returned set contains all elements that are contained in either 910 * {@code set1} or {@code set2} but not in both. The iteration order of the 911 * returned set is undefined. 912 * 913 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 914 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 915 * and the keySet of an {@code IdentityHashMap} all are). 916 * 917 * @since 3.0 918 */ 919 public static <E> SetView<E> symmetricDifference( 920 final Set<? extends E> set1, final Set<? extends E> set2) { 921 checkNotNull(set1, "set1"); 922 checkNotNull(set2, "set2"); 923 924 return new SetView<E>() { 925 @Override 926 public UnmodifiableIterator<E> iterator() { 927 final Iterator<? extends E> itr1 = set1.iterator(); 928 final Iterator<? extends E> itr2 = set2.iterator(); 929 return new AbstractIterator<E>() { 930 @Override 931 public E computeNext() { 932 while (itr1.hasNext()) { 933 E elem1 = itr1.next(); 934 if (!set2.contains(elem1)) { 935 return elem1; 936 } 937 } 938 while (itr2.hasNext()) { 939 E elem2 = itr2.next(); 940 if (!set1.contains(elem2)) { 941 return elem2; 942 } 943 } 944 return endOfData(); 945 } 946 }; 947 } 948 949 @Override 950 public int size() { 951 return Iterators.size(iterator()); 952 } 953 954 @Override 955 public boolean isEmpty() { 956 return set1.equals(set2); 957 } 958 959 @Override 960 public boolean contains(Object element) { 961 return set1.contains(element) ^ set2.contains(element); 962 } 963 }; 964 } 965 966 /** 967 * Returns the elements of {@code unfiltered} that satisfy a predicate. The 968 * returned set is a live view of {@code unfiltered}; changes to one affect 969 * the other. 970 * 971 * <p>The resulting set's iterator does not support {@code remove()}, but all 972 * other set methods are supported. When given an element that doesn't satisfy 973 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 974 * an {@link IllegalArgumentException}. When methods such as {@code 975 * removeAll()} and {@code clear()} are called on the filtered set, only 976 * elements that satisfy the filter will be removed from the underlying set. 977 * 978 * <p>The returned set isn't threadsafe or serializable, even if 979 * {@code unfiltered} is. 980 * 981 * <p>Many of the filtered set's methods, such as {@code size()}, iterate 982 * across every element in the underlying set and determine which elements 983 * satisfy the filter. When a live view is <i>not</i> needed, it may be faster 984 * to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy. 985 * 986 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 987 * as documented at {@link Predicate#apply}. Do not provide a predicate such 988 * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent 989 * with equals. (See {@link Iterables#filter(Iterable, Class)} for related 990 * functionality.) 991 * 992 * <p><b>Java 8 users:</b> many use cases for this method are better 993 * addressed by {@link java.util.stream.Stream#filter}. This method is not 994 * being deprecated, but we gently encourage you to migrate to streams. 995 */ 996 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 997 public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) { 998 if (unfiltered instanceof SortedSet) { 999 return filter((SortedSet<E>) unfiltered, predicate); 1000 } 1001 if (unfiltered instanceof FilteredSet) { 1002 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1003 // collection. 1004 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1005 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1006 return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate); 1007 } 1008 1009 return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1010 } 1011 1012 private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> { 1013 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 1014 super(unfiltered, predicate); 1015 } 1016 1017 @Override 1018 public boolean equals(@Nullable Object object) { 1019 return equalsImpl(this, object); 1020 } 1021 1022 @Override 1023 public int hashCode() { 1024 return hashCodeImpl(this); 1025 } 1026 } 1027 1028 /** 1029 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that 1030 * satisfy a predicate. The returned set is a live view of {@code unfiltered}; 1031 * changes to one affect the other. 1032 * 1033 * <p>The resulting set's iterator does not support {@code remove()}, but all 1034 * other set methods are supported. When given an element that doesn't satisfy 1035 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 1036 * an {@link IllegalArgumentException}. When methods such as 1037 * {@code removeAll()} and {@code clear()} are called on the filtered set, 1038 * only elements that satisfy the filter will be removed from the underlying 1039 * set. 1040 * 1041 * <p>The returned set isn't threadsafe or serializable, even if 1042 * {@code unfiltered} is. 1043 * 1044 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across 1045 * every element in the underlying set and determine which elements satisfy 1046 * the filter. When a live view is <i>not</i> needed, it may be faster to copy 1047 * {@code Iterables.filter(unfiltered, predicate)} and use the copy. 1048 * 1049 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 1050 * as documented at {@link Predicate#apply}. Do not provide a predicate such as 1051 * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with 1052 * equals. (See {@link Iterables#filter(Iterable, Class)} for related 1053 * functionality.) 1054 * 1055 * @since 11.0 1056 */ 1057 public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1058 if (unfiltered instanceof FilteredSet) { 1059 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1060 // collection. 1061 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1062 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1063 return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1064 } 1065 1066 return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1067 } 1068 1069 private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> { 1070 1071 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1072 super(unfiltered, predicate); 1073 } 1074 1075 @Override 1076 public Comparator<? super E> comparator() { 1077 return ((SortedSet<E>) unfiltered).comparator(); 1078 } 1079 1080 @Override 1081 public SortedSet<E> subSet(E fromElement, E toElement) { 1082 return new FilteredSortedSet<E>( 1083 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1084 } 1085 1086 @Override 1087 public SortedSet<E> headSet(E toElement) { 1088 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1089 } 1090 1091 @Override 1092 public SortedSet<E> tailSet(E fromElement) { 1093 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1094 } 1095 1096 @Override 1097 public E first() { 1098 return iterator().next(); 1099 } 1100 1101 @Override 1102 public E last() { 1103 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1104 while (true) { 1105 E element = sortedUnfiltered.last(); 1106 if (predicate.apply(element)) { 1107 return element; 1108 } 1109 sortedUnfiltered = sortedUnfiltered.headSet(element); 1110 } 1111 } 1112 } 1113 1114 /** 1115 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that 1116 * satisfy a predicate. The returned set is a live view of {@code unfiltered}; 1117 * changes to one affect the other. 1118 * 1119 * <p>The resulting set's iterator does not support {@code remove()}, but all 1120 * other set methods are supported. When given an element that doesn't satisfy 1121 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 1122 * an {@link IllegalArgumentException}. When methods such as 1123 * {@code removeAll()} and {@code clear()} are called on the filtered set, 1124 * only elements that satisfy the filter will be removed from the underlying 1125 * set. 1126 * 1127 * <p>The returned set isn't threadsafe or serializable, even if 1128 * {@code unfiltered} is. 1129 * 1130 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across 1131 * every element in the underlying set and determine which elements satisfy 1132 * the filter. When a live view is <i>not</i> needed, it may be faster to copy 1133 * {@code Iterables.filter(unfiltered, predicate)} and use the copy. 1134 * 1135 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 1136 * as documented at {@link Predicate#apply}. Do not provide a predicate such as 1137 * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with 1138 * equals. (See {@link Iterables#filter(Iterable, Class)} for related 1139 * functionality.) 1140 * 1141 * @since 14.0 1142 */ 1143 @GwtIncompatible // NavigableSet 1144 @SuppressWarnings("unchecked") 1145 public static <E> NavigableSet<E> filter( 1146 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1147 if (unfiltered instanceof FilteredSet) { 1148 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1149 // collection. 1150 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1151 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1152 return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1153 } 1154 1155 return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1156 } 1157 1158 @GwtIncompatible // NavigableSet 1159 private static class FilteredNavigableSet<E> extends FilteredSortedSet<E> 1160 implements NavigableSet<E> { 1161 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1162 super(unfiltered, predicate); 1163 } 1164 1165 NavigableSet<E> unfiltered() { 1166 return (NavigableSet<E>) unfiltered; 1167 } 1168 1169 @Override 1170 @Nullable 1171 public E lower(E e) { 1172 return Iterators.getNext(headSet(e, false).descendingIterator(), null); 1173 } 1174 1175 @Override 1176 @Nullable 1177 public E floor(E e) { 1178 return Iterators.getNext(headSet(e, true).descendingIterator(), null); 1179 } 1180 1181 @Override 1182 public E ceiling(E e) { 1183 return Iterables.getFirst(tailSet(e, true), null); 1184 } 1185 1186 @Override 1187 public E higher(E e) { 1188 return Iterables.getFirst(tailSet(e, false), null); 1189 } 1190 1191 @Override 1192 public E pollFirst() { 1193 return Iterables.removeFirstMatching(unfiltered(), predicate); 1194 } 1195 1196 @Override 1197 public E pollLast() { 1198 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1199 } 1200 1201 @Override 1202 public NavigableSet<E> descendingSet() { 1203 return Sets.filter(unfiltered().descendingSet(), predicate); 1204 } 1205 1206 @Override 1207 public Iterator<E> descendingIterator() { 1208 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1209 } 1210 1211 @Override 1212 public E last() { 1213 return descendingIterator().next(); 1214 } 1215 1216 @Override 1217 public NavigableSet<E> subSet( 1218 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1219 return filter( 1220 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1221 } 1222 1223 @Override 1224 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1225 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1226 } 1227 1228 @Override 1229 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1230 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1231 } 1232 } 1233 1234 /** 1235 * Returns every possible list that can be formed by choosing one element 1236 * from each of the given sets in order; the "n-ary 1237 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1238 * product</a>" of the sets. For example: <pre> {@code 1239 * 1240 * Sets.cartesianProduct(ImmutableList.of( 1241 * ImmutableSet.of(1, 2), 1242 * ImmutableSet.of("A", "B", "C")))}</pre> 1243 * 1244 * <p>returns a set containing six lists: 1245 * 1246 * <ul> 1247 * <li>{@code ImmutableList.of(1, "A")} 1248 * <li>{@code ImmutableList.of(1, "B")} 1249 * <li>{@code ImmutableList.of(1, "C")} 1250 * <li>{@code ImmutableList.of(2, "A")} 1251 * <li>{@code ImmutableList.of(2, "B")} 1252 * <li>{@code ImmutableList.of(2, "C")} 1253 * </ul> 1254 * 1255 * <p>The result is guaranteed to be in the "traditional", lexicographical 1256 * order for Cartesian products that you would get from nesting for loops: 1257 * <pre> {@code 1258 * 1259 * for (B b0 : sets.get(0)) { 1260 * for (B b1 : sets.get(1)) { 1261 * ... 1262 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1263 * // operate on tuple 1264 * } 1265 * }}</pre> 1266 * 1267 * <p>Note that if any input set is empty, the Cartesian product will also be 1268 * empty. If no sets at all are provided (an empty list), the resulting 1269 * Cartesian product has one element, an empty list (counter-intuitive, but 1270 * mathematically consistent). 1271 * 1272 * <p><i>Performance notes:</i> while the cartesian product of sets of size 1273 * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory 1274 * consumption is much smaller. When the cartesian set is constructed, the 1275 * input sets are merely copied. Only as the resulting set is iterated are the 1276 * individual lists created, and these are not retained after iteration. 1277 * 1278 * @param sets the sets to choose elements from, in the order that 1279 * the elements chosen from those sets should appear in the resulting 1280 * lists 1281 * @param <B> any common base class shared by all axes (often just {@link 1282 * Object}) 1283 * @return the Cartesian product, as an immutable set containing immutable 1284 * lists 1285 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, 1286 * or any element of a provided set is null 1287 * @since 2.0 1288 */ 1289 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1290 return CartesianSet.create(sets); 1291 } 1292 1293 /** 1294 * Returns every possible list that can be formed by choosing one element 1295 * from each of the given sets in order; the "n-ary 1296 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1297 * product</a>" of the sets. For example: <pre> {@code 1298 * 1299 * Sets.cartesianProduct( 1300 * ImmutableSet.of(1, 2), 1301 * ImmutableSet.of("A", "B", "C"))}</pre> 1302 * 1303 * <p>returns a set containing six lists: 1304 * 1305 * <ul> 1306 * <li>{@code ImmutableList.of(1, "A")} 1307 * <li>{@code ImmutableList.of(1, "B")} 1308 * <li>{@code ImmutableList.of(1, "C")} 1309 * <li>{@code ImmutableList.of(2, "A")} 1310 * <li>{@code ImmutableList.of(2, "B")} 1311 * <li>{@code ImmutableList.of(2, "C")} 1312 * </ul> 1313 * 1314 * <p>The result is guaranteed to be in the "traditional", lexicographical 1315 * order for Cartesian products that you would get from nesting for loops: 1316 * <pre> {@code 1317 * 1318 * for (B b0 : sets.get(0)) { 1319 * for (B b1 : sets.get(1)) { 1320 * ... 1321 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1322 * // operate on tuple 1323 * } 1324 * }}</pre> 1325 * 1326 * <p>Note that if any input set is empty, the Cartesian product will also be 1327 * empty. If no sets at all are provided (an empty list), the resulting 1328 * Cartesian product has one element, an empty list (counter-intuitive, but 1329 * mathematically consistent). 1330 * 1331 * <p><i>Performance notes:</i> while the cartesian product of sets of size 1332 * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory 1333 * consumption is much smaller. When the cartesian set is constructed, the 1334 * input sets are merely copied. Only as the resulting set is iterated are the 1335 * individual lists created, and these are not retained after iteration. 1336 * 1337 * @param sets the sets to choose elements from, in the order that 1338 * the elements chosen from those sets should appear in the resulting 1339 * lists 1340 * @param <B> any common base class shared by all axes (often just {@link 1341 * Object}) 1342 * @return the Cartesian product, as an immutable set containing immutable 1343 * lists 1344 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, 1345 * or any element of a provided set is null 1346 * @since 2.0 1347 */ 1348 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1349 return cartesianProduct(Arrays.asList(sets)); 1350 } 1351 1352 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1353 implements Set<List<E>> { 1354 private final transient ImmutableList<ImmutableSet<E>> axes; 1355 private final transient CartesianList<E> delegate; 1356 1357 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1358 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = 1359 new ImmutableList.Builder<ImmutableSet<E>>(sets.size()); 1360 for (Set<? extends E> set : sets) { 1361 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1362 if (copy.isEmpty()) { 1363 return ImmutableSet.of(); 1364 } 1365 axesBuilder.add(copy); 1366 } 1367 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1368 ImmutableList<List<E>> listAxes = 1369 new ImmutableList<List<E>>() { 1370 @Override 1371 public int size() { 1372 return axes.size(); 1373 } 1374 1375 @Override 1376 public List<E> get(int index) { 1377 return axes.get(index).asList(); 1378 } 1379 1380 @Override 1381 boolean isPartialView() { 1382 return true; 1383 } 1384 }; 1385 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1386 } 1387 1388 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1389 this.axes = axes; 1390 this.delegate = delegate; 1391 } 1392 1393 @Override 1394 protected Collection<List<E>> delegate() { 1395 return delegate; 1396 } 1397 1398 @Override 1399 public boolean equals(@Nullable Object object) { 1400 // Warning: this is broken if size() == 0, so it is critical that we 1401 // substitute an empty ImmutableSet to the user in place of this 1402 if (object instanceof CartesianSet) { 1403 CartesianSet<?> that = (CartesianSet<?>) object; 1404 return this.axes.equals(that.axes); 1405 } 1406 return super.equals(object); 1407 } 1408 1409 @Override 1410 public int hashCode() { 1411 // Warning: this is broken if size() == 0, so it is critical that we 1412 // substitute an empty ImmutableSet to the user in place of this 1413 1414 // It's a weird formula, but tests prove it works. 1415 int adjust = size() - 1; 1416 for (int i = 0; i < axes.size(); i++) { 1417 adjust *= 31; 1418 adjust = ~~adjust; 1419 // in GWT, we have to deal with integer overflow carefully 1420 } 1421 int hash = 1; 1422 for (Set<E> axis : axes) { 1423 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1424 1425 hash = ~~hash; 1426 } 1427 hash += adjust; 1428 return ~~hash; 1429 } 1430 } 1431 1432 /** 1433 * Returns the set of all possible subsets of {@code set}. For example, 1434 * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, 1435 * {1}, {2}, {1, 2}}}. 1436 * 1437 * <p>Elements appear in these subsets in the same iteration order as they 1438 * appeared in the input set. The order in which these subsets appear in the 1439 * outer set is undefined. Note that the power set of the empty set is not the 1440 * empty set, but a one-element set containing the empty set. 1441 * 1442 * <p>The returned set and its constituent sets use {@code equals} to decide 1443 * whether two elements are identical, even if the input set uses a different 1444 * concept of equivalence. 1445 * 1446 * <p><i>Performance notes:</i> while the power set of a set with size {@code 1447 * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the 1448 * power set is constructed, the input set is merely copied. Only as the 1449 * power set is iterated are the individual subsets created, and these subsets 1450 * themselves occupy only a small constant amount of memory. 1451 * 1452 * @param set the set of elements to construct a power set from 1453 * @return the power set, as an immutable set of immutable sets 1454 * @throws IllegalArgumentException if {@code set} has more than 30 unique 1455 * elements (causing the power set size to exceed the {@code int} range) 1456 * @throws NullPointerException if {@code set} is or contains {@code null} 1457 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at 1458 * Wikipedia</a> 1459 * @since 4.0 1460 */ 1461 @GwtCompatible(serializable = false) 1462 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1463 return new PowerSet<E>(set); 1464 } 1465 1466 private static final class SubSet<E> extends AbstractSet<E> { 1467 private final ImmutableMap<E, Integer> inputSet; 1468 private final int mask; 1469 1470 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1471 this.inputSet = inputSet; 1472 this.mask = mask; 1473 } 1474 1475 @Override 1476 public Iterator<E> iterator() { 1477 return new UnmodifiableIterator<E>() { 1478 final ImmutableList<E> elements = inputSet.keySet().asList(); 1479 int remainingSetBits = mask; 1480 1481 @Override 1482 public boolean hasNext() { 1483 return remainingSetBits != 0; 1484 } 1485 1486 @Override 1487 public E next() { 1488 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1489 if (index == 32) { 1490 throw new NoSuchElementException(); 1491 } 1492 remainingSetBits &= ~(1 << index); 1493 return elements.get(index); 1494 } 1495 }; 1496 } 1497 1498 @Override 1499 public int size() { 1500 return Integer.bitCount(mask); 1501 } 1502 1503 @Override 1504 public boolean contains(@Nullable Object o) { 1505 Integer index = inputSet.get(o); 1506 return index != null && (mask & (1 << index)) != 0; 1507 } 1508 } 1509 1510 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1511 final ImmutableMap<E, Integer> inputSet; 1512 1513 PowerSet(Set<E> input) { 1514 this.inputSet = Maps.indexMap(input); 1515 checkArgument( 1516 inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size()); 1517 } 1518 1519 @Override 1520 public int size() { 1521 return 1 << inputSet.size(); 1522 } 1523 1524 @Override 1525 public boolean isEmpty() { 1526 return false; 1527 } 1528 1529 @Override 1530 public Iterator<Set<E>> iterator() { 1531 return new AbstractIndexedListIterator<Set<E>>(size()) { 1532 @Override 1533 protected Set<E> get(final int setBits) { 1534 return new SubSet<E>(inputSet, setBits); 1535 } 1536 }; 1537 } 1538 1539 @Override 1540 public boolean contains(@Nullable Object obj) { 1541 if (obj instanceof Set) { 1542 Set<?> set = (Set<?>) obj; 1543 return inputSet.keySet().containsAll(set); 1544 } 1545 return false; 1546 } 1547 1548 @Override 1549 public boolean equals(@Nullable Object obj) { 1550 if (obj instanceof PowerSet) { 1551 PowerSet<?> that = (PowerSet<?>) obj; 1552 return inputSet.equals(that.inputSet); 1553 } 1554 return super.equals(obj); 1555 } 1556 1557 @Override 1558 public int hashCode() { 1559 /* 1560 * The sum of the sums of the hash codes in each subset is just the sum of 1561 * each input element's hash code times the number of sets that element 1562 * appears in. Each element appears in exactly half of the 2^n sets, so: 1563 */ 1564 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1565 } 1566 1567 @Override 1568 public String toString() { 1569 return "powerSet(" + inputSet + ")"; 1570 } 1571 } 1572 1573 /** 1574 * An implementation for {@link Set#hashCode()}. 1575 */ 1576 static int hashCodeImpl(Set<?> s) { 1577 int hashCode = 0; 1578 for (Object o : s) { 1579 hashCode += o != null ? o.hashCode() : 0; 1580 1581 hashCode = ~~hashCode; 1582 // Needed to deal with unusual integer overflow in GWT. 1583 } 1584 return hashCode; 1585 } 1586 1587 /** 1588 * An implementation for {@link Set#equals(Object)}. 1589 */ 1590 static boolean equalsImpl(Set<?> s, @Nullable Object object) { 1591 if (s == object) { 1592 return true; 1593 } 1594 if (object instanceof Set) { 1595 Set<?> o = (Set<?>) object; 1596 1597 try { 1598 return s.size() == o.size() && s.containsAll(o); 1599 } catch (NullPointerException ignored) { 1600 return false; 1601 } catch (ClassCastException ignored) { 1602 return false; 1603 } 1604 } 1605 return false; 1606 } 1607 1608 /** 1609 * Returns an unmodifiable view of the specified navigable set. This method 1610 * allows modules to provide users with "read-only" access to internal 1611 * navigable sets. Query operations on the returned set "read through" to the 1612 * specified set, and attempts to modify the returned set, whether direct or 1613 * via its collection views, result in an 1614 * {@code UnsupportedOperationException}. 1615 * 1616 * <p>The returned navigable set will be serializable if the specified 1617 * navigable set is serializable. 1618 * 1619 * @param set the navigable set for which an unmodifiable view is to be 1620 * returned 1621 * @return an unmodifiable view of the specified navigable set 1622 * @since 12.0 1623 */ 1624 public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) { 1625 if (set instanceof ImmutableSortedSet || set instanceof UnmodifiableNavigableSet) { 1626 return set; 1627 } 1628 return new UnmodifiableNavigableSet<E>(set); 1629 } 1630 1631 static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E> 1632 implements NavigableSet<E>, Serializable { 1633 private final NavigableSet<E> delegate; 1634 1635 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1636 this.delegate = checkNotNull(delegate); 1637 } 1638 1639 @Override 1640 protected SortedSet<E> delegate() { 1641 return Collections.unmodifiableSortedSet(delegate); 1642 } 1643 1644 @Override 1645 public E lower(E e) { 1646 return delegate.lower(e); 1647 } 1648 1649 @Override 1650 public E floor(E e) { 1651 return delegate.floor(e); 1652 } 1653 1654 @Override 1655 public E ceiling(E e) { 1656 return delegate.ceiling(e); 1657 } 1658 1659 @Override 1660 public E higher(E e) { 1661 return delegate.higher(e); 1662 } 1663 1664 @Override 1665 public E pollFirst() { 1666 throw new UnsupportedOperationException(); 1667 } 1668 1669 @Override 1670 public E pollLast() { 1671 throw new UnsupportedOperationException(); 1672 } 1673 1674 private transient UnmodifiableNavigableSet<E> descendingSet; 1675 1676 @Override 1677 public NavigableSet<E> descendingSet() { 1678 UnmodifiableNavigableSet<E> result = descendingSet; 1679 if (result == null) { 1680 result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet()); 1681 result.descendingSet = this; 1682 } 1683 return result; 1684 } 1685 1686 @Override 1687 public Iterator<E> descendingIterator() { 1688 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1689 } 1690 1691 @Override 1692 public NavigableSet<E> subSet( 1693 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1694 return unmodifiableNavigableSet( 1695 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1696 } 1697 1698 @Override 1699 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1700 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1701 } 1702 1703 @Override 1704 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1705 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1706 } 1707 1708 private static final long serialVersionUID = 0; 1709 } 1710 1711 /** 1712 * Returns a synchronized (thread-safe) navigable set backed by the specified 1713 * navigable set. In order to guarantee serial access, it is critical that 1714 * <b>all</b> access to the backing navigable set is accomplished 1715 * through the returned navigable set (or its views). 1716 * 1717 * <p>It is imperative that the user manually synchronize on the returned 1718 * sorted set when iterating over it or any of its {@code descendingSet}, 1719 * {@code subSet}, {@code headSet}, or {@code tailSet} views. <pre> {@code 1720 * 1721 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1722 * ... 1723 * synchronized (set) { 1724 * // Must be in the synchronized block 1725 * Iterator<E> it = set.iterator(); 1726 * while (it.hasNext()) { 1727 * foo(it.next()); 1728 * } 1729 * }}</pre> 1730 * 1731 * <p>or: <pre> {@code 1732 * 1733 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1734 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 1735 * ... 1736 * synchronized (set) { // Note: set, not set2!!! 1737 * // Must be in the synchronized block 1738 * Iterator<E> it = set2.descendingIterator(); 1739 * while (it.hasNext()) 1740 * foo(it.next()); 1741 * } 1742 * }}</pre> 1743 * 1744 * <p>Failure to follow this advice may result in non-deterministic behavior. 1745 * 1746 * <p>The returned navigable set will be serializable if the specified 1747 * navigable set is serializable. 1748 * 1749 * @param navigableSet the navigable set to be "wrapped" in a synchronized 1750 * navigable set. 1751 * @return a synchronized view of the specified navigable set. 1752 * @since 13.0 1753 */ 1754 @GwtIncompatible // NavigableSet 1755 public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) { 1756 return Synchronized.navigableSet(navigableSet); 1757 } 1758 1759 /** 1760 * Remove each element in an iterable from a set. 1761 */ 1762 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 1763 boolean changed = false; 1764 while (iterator.hasNext()) { 1765 changed |= set.remove(iterator.next()); 1766 } 1767 return changed; 1768 } 1769 1770 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 1771 checkNotNull(collection); // for GWT 1772 if (collection instanceof Multiset) { 1773 collection = ((Multiset<?>) collection).elementSet(); 1774 } 1775 /* 1776 * AbstractSet.removeAll(List) has quadratic behavior if the list size 1777 * is just less than the set's size. We augment the test by 1778 * assuming that sets have fast contains() performance, and other 1779 * collections don't. See 1780 * http://code.google.com/p/guava-libraries/issues/detail?id=1013 1781 */ 1782 if (collection instanceof Set && collection.size() > set.size()) { 1783 return Iterators.removeAll(set.iterator(), collection); 1784 } else { 1785 return removeAllImpl(set, collection.iterator()); 1786 } 1787 } 1788 1789 @GwtIncompatible // NavigableSet 1790 static class DescendingSet<E> extends ForwardingNavigableSet<E> { 1791 private final NavigableSet<E> forward; 1792 1793 DescendingSet(NavigableSet<E> forward) { 1794 this.forward = forward; 1795 } 1796 1797 @Override 1798 protected NavigableSet<E> delegate() { 1799 return forward; 1800 } 1801 1802 @Override 1803 public E lower(E e) { 1804 return forward.higher(e); 1805 } 1806 1807 @Override 1808 public E floor(E e) { 1809 return forward.ceiling(e); 1810 } 1811 1812 @Override 1813 public E ceiling(E e) { 1814 return forward.floor(e); 1815 } 1816 1817 @Override 1818 public E higher(E e) { 1819 return forward.lower(e); 1820 } 1821 1822 @Override 1823 public E pollFirst() { 1824 return forward.pollLast(); 1825 } 1826 1827 @Override 1828 public E pollLast() { 1829 return forward.pollFirst(); 1830 } 1831 1832 @Override 1833 public NavigableSet<E> descendingSet() { 1834 return forward; 1835 } 1836 1837 @Override 1838 public Iterator<E> descendingIterator() { 1839 return forward.iterator(); 1840 } 1841 1842 @Override 1843 public NavigableSet<E> subSet( 1844 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1845 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 1846 } 1847 1848 @Override 1849 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1850 return forward.tailSet(toElement, inclusive).descendingSet(); 1851 } 1852 1853 @Override 1854 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1855 return forward.headSet(fromElement, inclusive).descendingSet(); 1856 } 1857 1858 @SuppressWarnings("unchecked") 1859 @Override 1860 public Comparator<? super E> comparator() { 1861 Comparator<? super E> forwardComparator = forward.comparator(); 1862 if (forwardComparator == null) { 1863 return (Comparator) Ordering.natural().reverse(); 1864 } else { 1865 return reverse(forwardComparator); 1866 } 1867 } 1868 1869 // If we inline this, we get a javac error. 1870 private static <T> Ordering<T> reverse(Comparator<T> forward) { 1871 return Ordering.from(forward).reverse(); 1872 } 1873 1874 @Override 1875 public E first() { 1876 return forward.last(); 1877 } 1878 1879 @Override 1880 public SortedSet<E> headSet(E toElement) { 1881 return standardHeadSet(toElement); 1882 } 1883 1884 @Override 1885 public E last() { 1886 return forward.first(); 1887 } 1888 1889 @Override 1890 public SortedSet<E> subSet(E fromElement, E toElement) { 1891 return standardSubSet(fromElement, toElement); 1892 } 1893 1894 @Override 1895 public SortedSet<E> tailSet(E fromElement) { 1896 return standardTailSet(fromElement); 1897 } 1898 1899 @Override 1900 public Iterator<E> iterator() { 1901 return forward.descendingIterator(); 1902 } 1903 1904 @Override 1905 public Object[] toArray() { 1906 return standardToArray(); 1907 } 1908 1909 @Override 1910 public <T> T[] toArray(T[] array) { 1911 return standardToArray(array); 1912 } 1913 1914 @Override 1915 public String toString() { 1916 return standardToString(); 1917 } 1918 } 1919 1920 /** 1921 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 1922 * 1923 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely 1924 * {@link NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, 1925 * {@link NavigableSet#tailSet(Object, boolean) tailSet()}, and 1926 * {@link NavigableSet#headSet(Object, boolean) headSet()}) to actually construct the view. 1927 * Consult these methods for a full description of the returned view's behavior. 1928 * 1929 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 1930 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a 1931 * {@link Comparator}, which can violate the natural ordering. Using this method (or in general 1932 * using {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined 1933 * behavior. 1934 * 1935 * @since 20.0 1936 */ 1937 @Beta 1938 @GwtIncompatible // NavigableSet 1939 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 1940 NavigableSet<K> set, Range<K> range) { 1941 if (set.comparator() != null 1942 && set.comparator() != Ordering.natural() 1943 && range.hasLowerBound() 1944 && range.hasUpperBound()) { 1945 checkArgument( 1946 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 1947 "set is using a custom comparator which is inconsistent with the natural ordering."); 1948 } 1949 if (range.hasLowerBound() && range.hasUpperBound()) { 1950 return set.subSet( 1951 range.lowerEndpoint(), 1952 range.lowerBoundType() == BoundType.CLOSED, 1953 range.upperEndpoint(), 1954 range.upperBoundType() == BoundType.CLOSED); 1955 } else if (range.hasLowerBound()) { 1956 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 1957 } else if (range.hasUpperBound()) { 1958 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 1959 } 1960 return checkNotNull(set); 1961 } 1962}