001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.collect.CollectPreconditions.checkNonnegative; 021 022import com.google.common.annotations.GwtCompatible; 023import com.google.common.annotations.VisibleForTesting; 024import com.google.common.base.Function; 025import com.google.errorprone.annotations.CanIgnoreReturnValue; 026import java.util.ArrayList; 027import java.util.Arrays; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.Comparator; 031import java.util.HashSet; 032import java.util.Iterator; 033import java.util.List; 034import java.util.Map; 035import java.util.NoSuchElementException; 036import java.util.SortedMap; 037import java.util.SortedSet; 038import java.util.TreeSet; 039import java.util.concurrent.ConcurrentMap; 040import java.util.concurrent.atomic.AtomicInteger; 041import javax.annotation.Nullable; 042 043/** 044 * A comparator, with additional methods to support common operations. This is an "enriched" version 045 * of {@code Comparator} for pre-Java-8 users, in the same sense that {@link FluentIterable} is an 046 * enriched {@link Iterable} for pre-Java-8 users. 047 * 048 * <h3>Three types of methods</h3> 049 * 050 * Like other fluent types, there are three types of methods present: methods for <i>acquiring</i>, 051 * <i>chaining</i>, and <i>using</i>. 052 * 053 * <h4>Acquiring</h4> 054 * 055 * <p>The common ways to get an instance of {@code Ordering} are: 056 * 057 * <ul> 058 * <li>Subclass it and implement {@link #compare} instead of implementing {@link Comparator} 059 * directly 060 * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link #from(Comparator)} 061 * <li>Use the natural ordering, {@link Ordering#natural} 062 * </ul> 063 * 064 * <h4>Chaining</h4> 065 * 066 * <p>Then you can use the <i>chaining</i> methods to get an altered version of that {@code 067 * Ordering}, including: 068 * 069 * <ul> 070 * <li>{@link #reverse} 071 * <li>{@link #compound(Comparator)} 072 * <li>{@link #onResultOf(Function)} 073 * <li>{@link #nullsFirst} / {@link #nullsLast} 074 * </ul> 075 * 076 * <h4>Using</h4> 077 * 078 * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator} is required, or use 079 * any of its special operations, such as: 080 * 081 * <ul> 082 * <li>{@link #immutableSortedCopy} 083 * <li>{@link #isOrdered} / {@link #isStrictlyOrdered} 084 * <li>{@link #min} / {@link #max} 085 * </ul> 086 * 087 * <h3>Understanding complex orderings</h3> 088 * 089 * <p>Complex chained orderings like the following example can be challenging to understand. 090 * 091 * <pre>{@code 092 * Ordering<Foo> ordering = 093 * Ordering.natural() 094 * .nullsFirst() 095 * .onResultOf(getBarFunction) 096 * .nullsLast(); 097 * }</pre> 098 * 099 * Note that each chaining method returns a new ordering instance which is backed by the previous 100 * instance, but has the chance to act on values <i>before</i> handing off to that backing instance. 101 * As a result, it usually helps to read chained ordering expressions <i>backwards</i>. For example, 102 * when {@code compare} is called on the above ordering: 103 * 104 * <ol> 105 * <li>First, if only one {@code Foo} is null, that null value is treated as <i>greater</i> 106 * <li>Next, non-null {@code Foo} values are passed to {@code getBarFunction} (we will be comparing 107 * {@code Bar} values from now on) 108 * <li>Next, if only one {@code Bar} is null, that null value is treated as <i>lesser</i> 109 * <li>Finally, natural ordering is used (i.e. the result of {@code Bar.compareTo(Bar)} is returned) 110 * </ol> 111 * 112 * <p>Alas, {@link #reverse} is a little different. As you read backwards through a chain and 113 * encounter a call to {@code reverse}, continue working backwards until a result is determined, and 114 * then reverse that result. 115 * 116 * <h3>Additional notes</h3> 117 * 118 * <p>Except as noted, the orderings returned by the factory methods of this class are serializable 119 * if and only if the provided instances that back them are. For example, if {@code ordering} and 120 * {@code function} can themselves be serialized, then {@code ordering.onResultOf(function)} can as 121 * well. 122 * 123 * <h3>For Java 8 users</h3> 124 * 125 * <p>If you are using Java 8, this class is now obsolete <i>(pending a few August 2016 126 * updates)</i>. Most of its functionality is now provided by {@link java.util.stream.Stream Stream} 127 * and by {@link Comparator} itself, and the rest can now be found as static methods in our new 128 * {@link Comparators} class. See each method below for further instructions. Whenever possible, you 129 * should change any references of type {@code Ordering} to be of type {@code Comparator} instead. 130 * However, at this time we have no plan to <i>deprecate</i> this class. 131 * 132 * <p>Many replacements involve adopting {@code Stream}, and these changes can sometimes make your 133 * code verbose. Whenever following this advice, you should check whether {@code Stream} could be 134 * adopted more comprehensively in your code; the end result may be quite a bit simpler. 135 * 136 * <h3>See also</h3> 137 * 138 * <p>See the Guava User Guide article on <a href= 139 * "https://github.com/google/guava/wiki/OrderingExplained">{@code Ordering}</a>. 140 * 141 * @author Jesse Wilson 142 * @author Kevin Bourrillion 143 * @since 2.0 144 */ 145@GwtCompatible 146public abstract class Ordering<T> implements Comparator<T> { 147 // Natural order 148 149 /** 150 * Returns a serializable ordering that uses the natural order of the values. The ordering throws 151 * a {@link NullPointerException} when passed a null parameter. 152 * 153 * <p>The type specification is {@code <C extends Comparable>}, instead of the technically correct 154 * {@code <C extends Comparable<? super C>>}, to support legacy types from before Java 5. 155 * 156 * <p><b>Java 8 users:</b> use {@link Comparator#naturalOrder} instead. 157 */ 158 @GwtCompatible(serializable = true) 159 @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this?? 160 public static <C extends Comparable> Ordering<C> natural() { 161 return (Ordering<C>) NaturalOrdering.INSTANCE; 162 } 163 164 // Static factories 165 166 /** 167 * Returns an ordering based on an <i>existing</i> comparator instance. Note that it is 168 * unnecessary to create a <i>new</i> anonymous inner class implementing {@code Comparator} just 169 * to pass it in here. Instead, simply subclass {@code Ordering} and implement its {@code compare} 170 * method directly. 171 * 172 * <p><b>Java 8 users:</b> this class is now obsolete as explained in the class documentation, so 173 * there is no need to use this method. 174 * 175 * @param comparator the comparator that defines the order 176 * @return comparator itself if it is already an {@code Ordering}; otherwise an ordering that 177 * wraps that comparator 178 */ 179 @GwtCompatible(serializable = true) 180 public static <T> Ordering<T> from(Comparator<T> comparator) { 181 return (comparator instanceof Ordering) 182 ? (Ordering<T>) comparator 183 : new ComparatorOrdering<T>(comparator); 184 } 185 186 /** 187 * Simply returns its argument. 188 * 189 * @deprecated no need to use this 190 */ 191 @GwtCompatible(serializable = true) 192 @Deprecated 193 public static <T> Ordering<T> from(Ordering<T> ordering) { 194 return checkNotNull(ordering); 195 } 196 197 /** 198 * Returns an ordering that compares objects according to the order in which they appear in the 199 * given list. Only objects present in the list (according to {@link Object#equals}) may be 200 * compared. This comparator imposes a "partial ordering" over the type {@code T}. Subsequent 201 * changes to the {@code valuesInOrder} list will have no effect on the returned comparator. Null 202 * values in the list are not supported. 203 * 204 * <p>The returned comparator throws a {@link ClassCastException} when it receives an input 205 * parameter that isn't among the provided values. 206 * 207 * <p>The generated comparator is serializable if all the provided values are serializable. 208 * 209 * @param valuesInOrder the values that the returned comparator will be able to compare, in the 210 * order the comparator should induce 211 * @return the comparator described above 212 * @throws NullPointerException if any of the provided values is null 213 * @throws IllegalArgumentException if {@code valuesInOrder} contains any duplicate values 214 * (according to {@link Object#equals}) 215 */ 216 // TODO(kevinb): provide replacement 217 @GwtCompatible(serializable = true) 218 public static <T> Ordering<T> explicit(List<T> valuesInOrder) { 219 return new ExplicitOrdering<T>(valuesInOrder); 220 } 221 222 /** 223 * Returns an ordering that compares objects according to the order in which they are given to 224 * this method. Only objects present in the argument list (according to {@link Object#equals}) may 225 * be compared. This comparator imposes a "partial ordering" over the type {@code T}. Null values 226 * in the argument list are not supported. 227 * 228 * <p>The returned comparator throws a {@link ClassCastException} when it receives an input 229 * parameter that isn't among the provided values. 230 * 231 * <p>The generated comparator is serializable if all the provided values are serializable. 232 * 233 * @param leastValue the value which the returned comparator should consider the "least" of all 234 * values 235 * @param remainingValuesInOrder the rest of the values that the returned comparator will be able 236 * to compare, in the order the comparator should follow 237 * @return the comparator described above 238 * @throws NullPointerException if any of the provided values is null 239 * @throws IllegalArgumentException if any duplicate values (according to {@link 240 * Object#equals(Object)}) are present among the method arguments 241 */ 242 // TODO(kevinb): provide replacement 243 @GwtCompatible(serializable = true) 244 public static <T> Ordering<T> explicit(T leastValue, T... remainingValuesInOrder) { 245 return explicit(Lists.asList(leastValue, remainingValuesInOrder)); 246 } 247 248 // Ordering<Object> singletons 249 250 /** 251 * Returns an ordering which treats all values as equal, indicating "no ordering." Passing this 252 * ordering to any <i>stable</i> sort algorithm results in no change to the order of elements. 253 * Note especially that {@link #sortedCopy} and {@link #immutableSortedCopy} are stable, and in 254 * the returned instance these are implemented by simply copying the source list. 255 * 256 * <p>Example: 257 * 258 * <pre>{@code 259 * Ordering.allEqual().nullsLast().sortedCopy( 260 * asList(t, null, e, s, null, t, null)) 261 * }</pre> 262 * 263 * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns {@code [t, e, s, t, 264 * null, null, null]} regardless of the true comparison order of those three values (which might 265 * not even implement {@link Comparable} at all). 266 * 267 * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with equals</i> (as 268 * defined {@linkplain Comparator here}). Avoid its use in APIs, such as {@link 269 * TreeSet#TreeSet(Comparator)}, where such consistency is expected. 270 * 271 * <p>The returned comparator is serializable. 272 * 273 * <p><b>Java 8 users:</b> Use the lambda expression {@code (a, b) -> 0} instead (in certain cases 274 * you may need to cast that to {@code Comparator<YourType>}). 275 * 276 * @since 13.0 277 */ 278 @GwtCompatible(serializable = true) 279 @SuppressWarnings("unchecked") 280 public static Ordering<Object> allEqual() { 281 return AllEqualOrdering.INSTANCE; 282 } 283 284 /** 285 * Returns an ordering that compares objects by the natural ordering of their string 286 * representations as returned by {@code toString()}. It does not support null values. 287 * 288 * <p>The comparator is serializable. 289 * 290 * <p><b>Java 8 users:</b> Use {@code Comparator.comparing(Object::toString)} instead. 291 */ 292 @GwtCompatible(serializable = true) 293 public static Ordering<Object> usingToString() { 294 return UsingToStringOrdering.INSTANCE; 295 } 296 297 /** 298 * Returns an arbitrary ordering over all objects, for which {@code compare(a, b) == 0} implies 299 * {@code a == b} (identity equality). There is no meaning whatsoever to the order imposed, but it 300 * is constant for the life of the VM. 301 * 302 * <p>Because the ordering is identity-based, it is not "consistent with {@link 303 * Object#equals(Object)}" as defined by {@link Comparator}. Use caution when building a {@link 304 * SortedSet} or {@link SortedMap} from it, as the resulting collection will not behave exactly 305 * according to spec. 306 * 307 * <p>This ordering is not serializable, as its implementation relies on {@link 308 * System#identityHashCode(Object)}, so its behavior cannot be preserved across serialization. 309 * 310 * @since 2.0 311 */ 312 // TODO(kevinb): copy to Comparators, etc. 313 public static Ordering<Object> arbitrary() { 314 return ArbitraryOrderingHolder.ARBITRARY_ORDERING; 315 } 316 317 private static class ArbitraryOrderingHolder { 318 static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering(); 319 } 320 321 @VisibleForTesting 322 static class ArbitraryOrdering extends Ordering<Object> { 323 324 private final AtomicInteger counter = new AtomicInteger(0); 325 private final ConcurrentMap<Object, Integer> uids = 326 Platform.tryWeakKeys(new MapMaker()).makeMap(); 327 328 private Integer getUid(Object obj) { 329 Integer uid = uids.get(obj); 330 if (uid == null) { 331 // One or more integer values could be skipped in the event of a race 332 // to generate a UID for the same object from multiple threads, but 333 // that shouldn't be a problem. 334 uid = counter.getAndIncrement(); 335 Integer alreadySet = uids.putIfAbsent(obj, uid); 336 if (alreadySet != null) { 337 uid = alreadySet; 338 } 339 } 340 return uid; 341 } 342 343 @Override 344 public int compare(Object left, Object right) { 345 if (left == right) { 346 return 0; 347 } else if (left == null) { 348 return -1; 349 } else if (right == null) { 350 return 1; 351 } 352 int leftCode = identityHashCode(left); 353 int rightCode = identityHashCode(right); 354 if (leftCode != rightCode) { 355 return leftCode < rightCode ? -1 : 1; 356 } 357 358 // identityHashCode collision (rare, but not as rare as you'd think) 359 int result = getUid(left).compareTo(getUid(right)); 360 if (result == 0) { 361 throw new AssertionError(); // extremely, extremely unlikely. 362 } 363 return result; 364 } 365 366 @Override 367 public String toString() { 368 return "Ordering.arbitrary()"; 369 } 370 371 /* 372 * We need to be able to mock identityHashCode() calls for tests, because it 373 * can take 1-10 seconds to find colliding objects. Mocking frameworks that 374 * can do magic to mock static method calls still can't do so for a system 375 * class, so we need the indirection. In production, Hotspot should still 376 * recognize that the call is 1-morphic and should still be willing to 377 * inline it if necessary. 378 */ 379 int identityHashCode(Object object) { 380 return System.identityHashCode(object); 381 } 382 } 383 384 // Constructor 385 386 /** 387 * Constructs a new instance of this class (only invokable by the subclass 388 * constructor, typically implicit). 389 */ 390 protected Ordering() {} 391 392 // Instance-based factories (and any static equivalents) 393 394 /** 395 * Returns the reverse of this ordering; the {@code Ordering} equivalent to {@link 396 * Collections#reverseOrder(Comparator)}. 397 * 398 * <p><b>Java 8 users:</b> Use {@code thisComparator.reversed()} instead. 399 */ 400 // type parameter <S> lets us avoid the extra <String> in statements like: 401 // Ordering<String> o = Ordering.<String>natural().reverse(); 402 @GwtCompatible(serializable = true) 403 public <S extends T> Ordering<S> reverse() { 404 return new ReverseOrdering<S>(this); 405 } 406 407 /** 408 * Returns an ordering that treats {@code null} as less than all other values and uses {@code 409 * this} to compare non-null values. 410 * 411 * <p><b>Java 8 users:</b> Use {@code Comparator.nullsFirst(thisComparator)} instead. 412 */ 413 // type parameter <S> lets us avoid the extra <String> in statements like: 414 // Ordering<String> o = Ordering.<String>natural().nullsFirst(); 415 @GwtCompatible(serializable = true) 416 public <S extends T> Ordering<S> nullsFirst() { 417 return new NullsFirstOrdering<S>(this); 418 } 419 420 /** 421 * Returns an ordering that treats {@code null} as greater than all other values and uses this 422 * ordering to compare non-null values. 423 * 424 * <p><b>Java 8 users:</b> Use {@code Comparator.nullsLast(thisComparator)} instead. 425 */ 426 // type parameter <S> lets us avoid the extra <String> in statements like: 427 // Ordering<String> o = Ordering.<String>natural().nullsLast(); 428 @GwtCompatible(serializable = true) 429 public <S extends T> Ordering<S> nullsLast() { 430 return new NullsLastOrdering<S>(this); 431 } 432 433 /** 434 * Returns a new ordering on {@code F} which orders elements by first applying a function to them, 435 * then comparing those results using {@code this}. For example, to compare objects by their 436 * string forms, in a case-insensitive manner, use: 437 * 438 * <pre>{@code 439 * Ordering.from(String.CASE_INSENSITIVE_ORDER) 440 * .onResultOf(Functions.toStringFunction()) 441 * }</pre> 442 * 443 * <p><b>Java 8 users:</b> Use {@code Comparator.comparing(function, thisComparator)} instead (you 444 * can omit the comparator if it is the natural order). 445 */ 446 @GwtCompatible(serializable = true) 447 public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) { 448 return new ByFunctionOrdering<F, T>(function, this); 449 } 450 451 <T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() { 452 return onResultOf(Maps.<T2>keyFunction()); 453 } 454 455 /** 456 * Returns an ordering which first uses the ordering {@code this}, but which in the event of a 457 * "tie", then delegates to {@code secondaryComparator}. For example, to sort a bug list first by 458 * status and second by priority, you might use {@code byStatus.compound(byPriority)}. For a 459 * compound ordering with three or more components, simply chain multiple calls to this method. 460 * 461 * <p>An ordering produced by this method, or a chain of calls to this method, is equivalent to 462 * one created using {@link Ordering#compound(Iterable)} on the same component comparators. 463 * 464 * <p><b>Java 8 users:</b> Use {@code thisComparator.thenComparing(secondaryComparator)} instead. 465 * Depending on what {@code secondaryComparator} is, one of the other overloads of {@code 466 * thenComparing} may be even more useful. 467 */ 468 @GwtCompatible(serializable = true) 469 public <U extends T> Ordering<U> compound(Comparator<? super U> secondaryComparator) { 470 return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator)); 471 } 472 473 /** 474 * Returns an ordering which tries each given comparator in order until a non-zero result is 475 * found, returning that result, and returning zero only if all comparators return zero. The 476 * returned ordering is based on the state of the {@code comparators} iterable at the time it was 477 * provided to this method. 478 * 479 * <p>The returned ordering is equivalent to that produced using {@code 480 * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}. 481 * 482 * <p><b>Warning:</b> Supplying an argument with undefined iteration order, such as a {@link 483 * HashSet}, will produce non-deterministic results. 484 * 485 * <p><b>Java 8 users:</b> Use a chain of calls to {@link Comparator#thenComparing(Comparator)}, 486 * or {@code comparatorCollection.stream().reduce(Comparator::thenComparing).get()} (if the 487 * collection might be empty, also provide a default comparator as the {@code identity} parameter 488 * to {@code reduce}). 489 * 490 * @param comparators the comparators to try in order 491 */ 492 @GwtCompatible(serializable = true) 493 public static <T> Ordering<T> compound(Iterable<? extends Comparator<? super T>> comparators) { 494 return new CompoundOrdering<T>(comparators); 495 } 496 497 /** 498 * Returns a new ordering which sorts iterables by comparing corresponding elements pairwise until 499 * a nonzero result is found; imposes "dictionary order". If the end of one iterable is reached, 500 * but not the other, the shorter iterable is considered to be less than the longer one. For 501 * example, a lexicographical natural ordering over integers considers {@code [] < [1] < [1, 1] < 502 * [1, 2] < [2]}. 503 * 504 * <p>Note that {@code ordering.lexicographical().reverse()} is not equivalent to {@code 505 * ordering.reverse().lexicographical()} (consider how each would order {@code [1]} and {@code [1, 506 * 1]}). 507 * 508 * <p><b>Java 8 users:</b> Use {@link Comparators#lexicographical(Comparator)} instead. 509 * 510 * @since 2.0 511 */ 512 @GwtCompatible(serializable = true) 513 // type parameter <S> lets us avoid the extra <String> in statements like: 514 // Ordering<Iterable<String>> o = 515 // Ordering.<String>natural().lexicographical(); 516 public <S extends T> Ordering<Iterable<S>> lexicographical() { 517 /* 518 * Note that technically the returned ordering should be capable of 519 * handling not just {@code Iterable<S>} instances, but also any {@code 520 * Iterable<? extends S>}. However, the need for this comes up so rarely 521 * that it doesn't justify making everyone else deal with the very ugly 522 * wildcard. 523 */ 524 return new LexicographicalOrdering<S>(this); 525 } 526 527 // Regular instance methods 528 529 // Override to add @Nullable 530 @CanIgnoreReturnValue // TODO(kak): Consider removing this 531 @Override 532 public abstract int compare(@Nullable T left, @Nullable T right); 533 534 /** 535 * Returns the least of the specified values according to this ordering. If there are multiple 536 * least values, the first of those is returned. The iterator will be left exhausted: its {@code 537 * hasNext()} method will return {@code false}. 538 * 539 * <p><b>Java 8 users:</b> Continue to use this method for now. After the next release of Guava, 540 * use {@code Streams.stream(iterator).min(thisComparator).get()} instead (but note that it does 541 * not guarantee which tied minimum element is returned). 542 * 543 * @param iterator the iterator whose minimum element is to be determined 544 * @throws NoSuchElementException if {@code iterator} is empty 545 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 546 * ordering. 547 * @since 11.0 548 */ 549 @CanIgnoreReturnValue // TODO(kak): Consider removing this 550 public <E extends T> E min(Iterator<E> iterator) { 551 // let this throw NoSuchElementException as necessary 552 E minSoFar = iterator.next(); 553 554 while (iterator.hasNext()) { 555 minSoFar = min(minSoFar, iterator.next()); 556 } 557 558 return minSoFar; 559 } 560 561 /** 562 * Returns the least of the specified values according to this ordering. If there are multiple 563 * least values, the first of those is returned. 564 * 565 * <p><b>Java 8 users:</b> If {@code iterable} is a {@link Collection}, use {@code 566 * Collections.min(collection, thisComparator)} instead. Otherwise, continue to use this method 567 * for now. After the next release of Guava, use {@code 568 * Streams.stream(iterable).min(thisComparator).get()} instead. Note that these alternatives do 569 * not guarantee which tied minimum element is returned) 570 * 571 * @param iterable the iterable whose minimum element is to be determined 572 * @throws NoSuchElementException if {@code iterable} is empty 573 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 574 * ordering. 575 */ 576 @CanIgnoreReturnValue // TODO(kak): Consider removing this 577 public <E extends T> E min(Iterable<E> iterable) { 578 return min(iterable.iterator()); 579 } 580 581 /** 582 * Returns the lesser of the two values according to this ordering. If the values compare as 0, 583 * the first is returned. 584 * 585 * <p><b>Implementation note:</b> this method is invoked by the default implementations of the 586 * other {@code min} overloads, so overriding it will affect their behavior. 587 * 588 * <p><b>Java 8 users:</b> Use {@code Collections.min(Arrays.asList(a, b), thisComparator)} 589 * instead (but note that it does not guarantee which tied minimum element is returned). 590 * 591 * @param a value to compare, returned if less than or equal to b. 592 * @param b value to compare. 593 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 594 * ordering. 595 */ 596 @CanIgnoreReturnValue // TODO(kak): Consider removing this 597 public <E extends T> E min(@Nullable E a, @Nullable E b) { 598 return (compare(a, b) <= 0) ? a : b; 599 } 600 601 /** 602 * Returns the least of the specified values according to this ordering. If there are multiple 603 * least values, the first of those is returned. 604 * 605 * <p><b>Java 8 users:</b> Use {@code Collections.min(Arrays.asList(a, b, c...), thisComparator)} 606 * instead (but note that it does not guarantee which tied minimum element is returned). 607 * 608 * @param a value to compare, returned if less than or equal to the rest. 609 * @param b value to compare 610 * @param c value to compare 611 * @param rest values to compare 612 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 613 * ordering. 614 */ 615 @CanIgnoreReturnValue // TODO(kak): Consider removing this 616 public <E extends T> E min(@Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 617 E minSoFar = min(min(a, b), c); 618 619 for (E r : rest) { 620 minSoFar = min(minSoFar, r); 621 } 622 623 return minSoFar; 624 } 625 626 /** 627 * Returns the greatest of the specified values according to this ordering. If there are multiple 628 * greatest values, the first of those is returned. The iterator will be left exhausted: its 629 * {@code hasNext()} method will return {@code false}. 630 * 631 * <p><b>Java 8 users:</b> Continue to use this method for now. After the next release of Guava, 632 * use {@code Streams.stream(iterator).max(thisComparator).get()} instead (but note that it does 633 * not guarantee which tied maximum element is returned). 634 * 635 * @param iterator the iterator whose maximum element is to be determined 636 * @throws NoSuchElementException if {@code iterator} is empty 637 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 638 * ordering. 639 * @since 11.0 640 */ 641 @CanIgnoreReturnValue // TODO(kak): Consider removing this 642 public <E extends T> E max(Iterator<E> iterator) { 643 // let this throw NoSuchElementException as necessary 644 E maxSoFar = iterator.next(); 645 646 while (iterator.hasNext()) { 647 maxSoFar = max(maxSoFar, iterator.next()); 648 } 649 650 return maxSoFar; 651 } 652 653 /** 654 * Returns the greatest of the specified values according to this ordering. If 655 * there are multiple greatest values, the first of those is returned. 656 * 657 * <p><b>Java 8 users:</b> If {@code iterable} is a {@link Collection}, use {@code 658 * Collections.max(collection, thisComparator)} instead. Otherwise, continue to use this method 659 * for now. After the next release of Guava, use {@code 660 * Streams.stream(iterable).max(thisComparator).get()} instead. Note that these alternatives do 661 * not guarantee which tied maximum element is returned) 662 * 663 * @param iterable the iterable whose maximum element is to be determined 664 * @throws NoSuchElementException if {@code iterable} is empty 665 * @throws ClassCastException if the parameters are not <i>mutually 666 * comparable</i> under this ordering. 667 */ 668 @CanIgnoreReturnValue // TODO(kak): Consider removing this 669 public <E extends T> E max(Iterable<E> iterable) { 670 return max(iterable.iterator()); 671 } 672 673 /** 674 * Returns the greater of the two values according to this ordering. If the values compare as 0, 675 * the first is returned. 676 * 677 * <p><b>Implementation note:</b> this method is invoked by the default implementations of the 678 * other {@code max} overloads, so overriding it will affect their behavior. 679 * 680 * <p><b>Java 8 users:</b> Use {@code Collections.max(Arrays.asList(a, b), thisComparator)} 681 * instead (but note that it does not guarantee which tied maximum element is returned). 682 * 683 * @param a value to compare, returned if greater than or equal to b. 684 * @param b value to compare. 685 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 686 * ordering. 687 */ 688 @CanIgnoreReturnValue // TODO(kak): Consider removing this 689 public <E extends T> E max(@Nullable E a, @Nullable E b) { 690 return (compare(a, b) >= 0) ? a : b; 691 } 692 693 /** 694 * Returns the greatest of the specified values according to this ordering. If there are multiple 695 * greatest values, the first of those is returned. 696 * 697 * <p><b>Java 8 users:</b> Use {@code Collections.max(Arrays.asList(a, b, c...), thisComparator)} 698 * instead (but note that it does not guarantee which tied maximum element is returned). 699 * 700 * @param a value to compare, returned if greater than or equal to the rest. 701 * @param b value to compare 702 * @param c value to compare 703 * @param rest values to compare 704 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 705 * ordering. 706 */ 707 @CanIgnoreReturnValue // TODO(kak): Consider removing this 708 public <E extends T> E max(@Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 709 E maxSoFar = max(max(a, b), c); 710 711 for (E r : rest) { 712 maxSoFar = max(maxSoFar, r); 713 } 714 715 return maxSoFar; 716 } 717 718 /** 719 * Returns the {@code k} least elements of the given iterable according to this ordering, in order 720 * from least to greatest. If there are fewer than {@code k} elements present, all will be 721 * included. 722 * 723 * <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple 724 * elements are equivalent, it is undefined which will come first. 725 * 726 * <p><b>Java 8 users:</b> Use {@code Streams.stream(iterable).collect(Comparators.least(k, 727 * thisComparator))} instead. 728 * 729 * @return an immutable {@code RandomAccess} list of the {@code k} least elements in ascending 730 * order 731 * @throws IllegalArgumentException if {@code k} is negative 732 * @since 8.0 733 */ 734 public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) { 735 if (iterable instanceof Collection) { 736 Collection<E> collection = (Collection<E>) iterable; 737 if (collection.size() <= 2L * k) { 738 // In this case, just dumping the collection to an array and sorting is 739 // faster than using the implementation for Iterator, which is 740 // specialized for k much smaller than n. 741 742 @SuppressWarnings("unchecked") // c only contains E's and doesn't escape 743 E[] array = (E[]) collection.toArray(); 744 Arrays.sort(array, this); 745 if (array.length > k) { 746 array = Arrays.copyOf(array, k); 747 } 748 return Collections.unmodifiableList(Arrays.asList(array)); 749 } 750 } 751 return leastOf(iterable.iterator(), k); 752 } 753 754 /** 755 * Returns the {@code k} least elements from the given iterator according to this ordering, in 756 * order from least to greatest. If there are fewer than {@code k} elements present, all will be 757 * included. 758 * 759 * <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple 760 * elements are equivalent, it is undefined which will come first. 761 * 762 * <p><b>Java 8 users:</b> Continue to use this method for now. After the next release of Guava, 763 * use {@code Streams.stream(iterator).collect(Comparators.least(k, thisComparator))} instead. 764 * 765 * @return an immutable {@code RandomAccess} list of the {@code k} least elements in ascending 766 * order 767 * @throws IllegalArgumentException if {@code k} is negative 768 * @since 14.0 769 */ 770 public <E extends T> List<E> leastOf(Iterator<E> iterator, int k) { 771 checkNotNull(iterator); 772 checkNonnegative(k, "k"); 773 774 if (k == 0 || !iterator.hasNext()) { 775 return ImmutableList.of(); 776 } else if (k >= Integer.MAX_VALUE / 2) { 777 // k is really large; just do a straightforward sorted-copy-and-sublist 778 ArrayList<E> list = Lists.newArrayList(iterator); 779 Collections.sort(list, this); 780 if (list.size() > k) { 781 list.subList(k, list.size()).clear(); 782 } 783 list.trimToSize(); 784 return Collections.unmodifiableList(list); 785 } else { 786 TopKSelector<E> selector = TopKSelector.least(k, this); 787 selector.offerAll(iterator); 788 return selector.topK(); 789 } 790 } 791 792 /** 793 * Returns the {@code k} greatest elements of the given iterable according to this ordering, in 794 * order from greatest to least. If there are fewer than {@code k} elements present, all will be 795 * included. 796 * 797 * <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple 798 * elements are equivalent, it is undefined which will come first. 799 * 800 * <p><b>Java 8 users:</b> Use {@code Streams.stream(iterable).collect(Comparators.greatest(k, 801 * thisComparator))} instead. 802 * 803 * @return an immutable {@code RandomAccess} list of the {@code k} greatest elements in 804 * <i>descending order</i> 805 * @throws IllegalArgumentException if {@code k} is negative 806 * @since 8.0 807 */ 808 public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) { 809 // TODO(kevinb): see if delegation is hurting performance noticeably 810 // TODO(kevinb): if we change this implementation, add full unit tests. 811 return reverse().leastOf(iterable, k); 812 } 813 814 /** 815 * Returns the {@code k} greatest elements from the given iterator according to this ordering, in 816 * order from greatest to least. If there are fewer than {@code k} elements present, all will be 817 * included. 818 * 819 * <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple 820 * elements are equivalent, it is undefined which will come first. 821 * 822 * <p><b>Java 8 users:</b> Continue to use this method for now. After the next release of Guava, 823 * use {@code Streams.stream(iterator).collect(Comparators.greatest(k, thisComparator))} instead. 824 * 825 * @return an immutable {@code RandomAccess} list of the {@code k} greatest elements in 826 * <i>descending order</i> 827 * @throws IllegalArgumentException if {@code k} is negative 828 * @since 14.0 829 */ 830 public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) { 831 return reverse().leastOf(iterator, k); 832 } 833 834 /** 835 * Returns a <b>mutable</b> list containing {@code elements} sorted by this ordering; use this 836 * only when the resulting list may need further modification, or may contain {@code null}. The 837 * input is not modified. The returned list is serializable and has random access. 838 * 839 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard elements that are 840 * duplicates according to the comparator. The sort performed is <i>stable</i>, meaning that such 841 * elements will appear in the returned list in the same order they appeared in {@code elements}. 842 * 843 * <p><b>Performance note:</b> According to our 844 * benchmarking 845 * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in both time and space) 846 * than this method, and this method in turn generally performs better than copying the list and 847 * calling {@link Collections#sort(List)}. 848 */ 849 // TODO(kevinb): rerun benchmarks including new options 850 @CanIgnoreReturnValue // TODO(kak): Consider removing this 851 public <E extends T> List<E> sortedCopy(Iterable<E> elements) { 852 @SuppressWarnings("unchecked") // does not escape, and contains only E's 853 E[] array = (E[]) Iterables.toArray(elements); 854 Arrays.sort(array, this); 855 return Lists.newArrayList(Arrays.asList(array)); 856 } 857 858 /** 859 * Returns an <b>immutable</b> list containing {@code elements} sorted by this ordering. The input 860 * is not modified. 861 * 862 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard elements that are 863 * duplicates according to the comparator. The sort performed is <i>stable</i>, meaning that such 864 * elements will appear in the returned list in the same order they appeared in {@code elements}. 865 * 866 * <p><b>Performance note:</b> According to our 867 * benchmarking 868 * on Open JDK 7, this method is the most efficient way to make a sorted copy of a collection. 869 * 870 * @throws NullPointerException if any element of {@code elements} is {@code null} 871 * @since 3.0 872 */ 873 // TODO(kevinb): rerun benchmarks including new options 874 @CanIgnoreReturnValue // TODO(kak): Consider removing this before internal migration 875 public <E extends T> ImmutableList<E> immutableSortedCopy(Iterable<E> elements) { 876 return ImmutableList.sortedCopyOf(this, elements); 877 } 878 879 /** 880 * Returns {@code true} if each element in {@code iterable} after the first is greater than or 881 * equal to the element that preceded it, according to this ordering. Note that this is always 882 * true when the iterable has fewer than two elements. 883 * 884 * <p><b>Java 8 users:</b> Use the equivalent {@link Comparators#isInOrder(Iterable, Comparator)} 885 * instead, since the rest of {@code Ordering} is mostly obsolete (as explained in the class 886 * documentation). 887 */ 888 public boolean isOrdered(Iterable<? extends T> iterable) { 889 Iterator<? extends T> it = iterable.iterator(); 890 if (it.hasNext()) { 891 T prev = it.next(); 892 while (it.hasNext()) { 893 T next = it.next(); 894 if (compare(prev, next) > 0) { 895 return false; 896 } 897 prev = next; 898 } 899 } 900 return true; 901 } 902 903 /** 904 * Returns {@code true} if each element in {@code iterable} after the first is <i>strictly</i> 905 * greater than the element that preceded it, according to this ordering. Note that this is always 906 * true when the iterable has fewer than two elements. 907 * 908 * <p><b>Java 8 users:</b> Use the equivalent {@link Comparators#isInStrictOrder(Iterable, 909 * Comparator)} instead, since the rest of {@code Ordering} is mostly obsolete (as explained in 910 * the class documentation). 911 */ 912 public boolean isStrictlyOrdered(Iterable<? extends T> iterable) { 913 Iterator<? extends T> it = iterable.iterator(); 914 if (it.hasNext()) { 915 T prev = it.next(); 916 while (it.hasNext()) { 917 T next = it.next(); 918 if (compare(prev, next) >= 0) { 919 return false; 920 } 921 prev = next; 922 } 923 } 924 return true; 925 } 926 927 /** 928 * {@link Collections#binarySearch(List, Object, Comparator) Searches} 929 * {@code sortedList} for {@code key} using the binary search algorithm. The 930 * list must be sorted using this ordering. 931 * 932 * @param sortedList the list to be searched 933 * @param key the key to be searched for 934 * @deprecated Use {@link Collections#binarySearch(List, Object, Comparator)} directly. This 935 * method is scheduled for deletion in June 2018. 936 */ 937 @Deprecated 938 public int binarySearch(List<? extends T> sortedList, @Nullable T key) { 939 return Collections.binarySearch(sortedList, key, this); 940 } 941 942 /** 943 * Exception thrown by a {@link Ordering#explicit(List)} or {@link 944 * Ordering#explicit(Object, Object[])} comparator when comparing a value 945 * outside the set of values it can compare. Extending {@link 946 * ClassCastException} may seem odd, but it is required. 947 */ 948 @VisibleForTesting 949 static class IncomparableValueException extends ClassCastException { 950 final Object value; 951 952 IncomparableValueException(Object value) { 953 super("Cannot compare value: " + value); 954 this.value = value; 955 } 956 957 private static final long serialVersionUID = 0; 958 } 959 960 // Never make these public 961 static final int LEFT_IS_GREATER = 1; 962 static final int RIGHT_IS_GREATER = -1; 963}