001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022import static com.google.common.math.LongMath.binomial;
023
024import com.google.common.annotations.Beta;
025import com.google.common.annotations.GwtCompatible;
026import com.google.common.base.Function;
027import com.google.common.base.Predicate;
028import com.google.common.base.Predicates;
029import com.google.common.math.IntMath;
030import com.google.common.primitives.Ints;
031import java.util.AbstractCollection;
032import java.util.ArrayList;
033import java.util.Arrays;
034import java.util.Collection;
035import java.util.Collections;
036import java.util.Comparator;
037import java.util.Iterator;
038import java.util.List;
039import java.util.Spliterator;
040import java.util.function.Consumer;
041import javax.annotation.Nullable;
042
043/**
044 * Provides static methods for working with {@code Collection} instances.
045 *
046 * <p><b>Java 8 users:</b> several common uses for this class are now more comprehensively addressed
047 * by the new {@link java.util.stream.Stream} library. Read the method documentation below for
048 * comparisons. These methods are not being deprecated, but we gently encourage you to migrate to
049 * streams.
050 *
051 * @author Chris Povirk
052 * @author Mike Bostock
053 * @author Jared Levy
054 * @since 2.0
055 */
056@GwtCompatible
057public final class Collections2 {
058  private Collections2() {}
059
060  /**
061   * Returns the elements of {@code unfiltered} that satisfy a predicate. The
062   * returned collection is a live view of {@code unfiltered}; changes to one
063   * affect the other.
064   *
065   * <p>The resulting collection's iterator does not support {@code remove()},
066   * but all other collection methods are supported. When given an element that
067   * doesn't satisfy the predicate, the collection's {@code add()} and {@code
068   * addAll()} methods throw an {@link IllegalArgumentException}. When methods
069   * such as {@code removeAll()} and {@code clear()} are called on the filtered
070   * collection, only elements that satisfy the filter will be removed from the
071   * underlying collection.
072   *
073   * <p>The returned collection isn't threadsafe or serializable, even if
074   * {@code unfiltered} is.
075   *
076   * <p>Many of the filtered collection's methods, such as {@code size()},
077   * iterate across every element in the underlying collection and determine
078   * which elements satisfy the filter. When a live view is <i>not</i> needed,
079   * it may be faster to copy {@code Iterables.filter(unfiltered, predicate)}
080   * and use the copy.
081   *
082   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
083   * as documented at {@link Predicate#apply}. Do not provide a predicate such
084   * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
085   * with equals. (See {@link Iterables#filter(Iterable, Class)} for related
086   * functionality.)
087   *
088   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#filter Stream.filter}.
089   */
090  // TODO(kevinb): how can we omit that Iterables link when building gwt
091  // javadoc?
092  public static <E> Collection<E> filter(Collection<E> unfiltered, Predicate<? super E> predicate) {
093    if (unfiltered instanceof FilteredCollection) {
094      // Support clear(), removeAll(), and retainAll() when filtering a filtered
095      // collection.
096      return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
097    }
098
099    return new FilteredCollection<E>(checkNotNull(unfiltered), checkNotNull(predicate));
100  }
101
102  /**
103   * Delegates to {@link Collection#contains}. Returns {@code false} if the
104   * {@code contains} method throws a {@code ClassCastException} or
105   * {@code NullPointerException}.
106   */
107  static boolean safeContains(Collection<?> collection, @Nullable Object object) {
108    checkNotNull(collection);
109    try {
110      return collection.contains(object);
111    } catch (ClassCastException e) {
112      return false;
113    } catch (NullPointerException e) {
114      return false;
115    }
116  }
117
118  /**
119   * Delegates to {@link Collection#remove}. Returns {@code false} if the
120   * {@code remove} method throws a {@code ClassCastException} or
121   * {@code NullPointerException}.
122   */
123  static boolean safeRemove(Collection<?> collection, @Nullable Object object) {
124    checkNotNull(collection);
125    try {
126      return collection.remove(object);
127    } catch (ClassCastException e) {
128      return false;
129    } catch (NullPointerException e) {
130      return false;
131    }
132  }
133
134  static class FilteredCollection<E> extends AbstractCollection<E> {
135    final Collection<E> unfiltered;
136    final Predicate<? super E> predicate;
137
138    FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) {
139      this.unfiltered = unfiltered;
140      this.predicate = predicate;
141    }
142
143    FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
144      return new FilteredCollection<E>(unfiltered, Predicates.<E>and(predicate, newPredicate));
145      // .<E> above needed to compile in JDK 5
146    }
147
148    @Override
149    public boolean add(E element) {
150      checkArgument(predicate.apply(element));
151      return unfiltered.add(element);
152    }
153
154    @Override
155    public boolean addAll(Collection<? extends E> collection) {
156      for (E element : collection) {
157        checkArgument(predicate.apply(element));
158      }
159      return unfiltered.addAll(collection);
160    }
161
162    @Override
163    public void clear() {
164      Iterables.removeIf(unfiltered, predicate);
165    }
166
167    @Override
168    public boolean contains(@Nullable Object element) {
169      if (safeContains(unfiltered, element)) {
170        @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E
171        E e = (E) element;
172        return predicate.apply(e);
173      }
174      return false;
175    }
176
177    @Override
178    public boolean containsAll(Collection<?> collection) {
179      return containsAllImpl(this, collection);
180    }
181
182    @Override
183    public boolean isEmpty() {
184      return !Iterables.any(unfiltered, predicate);
185    }
186
187    @Override
188    public Iterator<E> iterator() {
189      return Iterators.filter(unfiltered.iterator(), predicate);
190    }
191
192    @Override
193    public Spliterator<E> spliterator() {
194      return CollectSpliterators.filter(unfiltered.spliterator(), predicate);
195    }
196
197    @Override
198    public void forEach(Consumer<? super E> action) {
199      checkNotNull(action);
200      unfiltered.forEach(
201          (E e) -> {
202            if (predicate.test(e)) {
203              action.accept(e);
204            }
205          });
206    }
207
208    @Override
209    public boolean remove(Object element) {
210      return contains(element) && unfiltered.remove(element);
211    }
212
213    @Override
214    public boolean removeAll(final Collection<?> collection) {
215      return removeIf(collection::contains);
216    }
217
218    @Override
219    public boolean retainAll(final Collection<?> collection) {
220      return removeIf(element -> !collection.contains(element));
221    }
222
223    @Override
224    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
225      checkNotNull(filter);
226      return unfiltered.removeIf(element -> predicate.apply(element) && filter.test(element));
227    }
228
229    @Override
230    public int size() {
231      return Iterators.size(iterator());
232    }
233
234    @Override
235    public Object[] toArray() {
236      // creating an ArrayList so filtering happens once
237      return Lists.newArrayList(iterator()).toArray();
238    }
239
240    @Override
241    public <T> T[] toArray(T[] array) {
242      return Lists.newArrayList(iterator()).toArray(array);
243    }
244  }
245
246  /**
247   * Returns a collection that applies {@code function} to each element of
248   * {@code fromCollection}. The returned collection is a live view of {@code
249   * fromCollection}; changes to one affect the other.
250   *
251   * <p>The returned collection's {@code add()} and {@code addAll()} methods
252   * throw an {@link UnsupportedOperationException}. All other collection
253   * methods are supported, as long as {@code fromCollection} supports them.
254   *
255   * <p>The returned collection isn't threadsafe or serializable, even if
256   * {@code fromCollection} is.
257   *
258   * <p>When a live view is <i>not</i> needed, it may be faster to copy the
259   * transformed collection and use the copy.
260   *
261   * <p>If the input {@code Collection} is known to be a {@code List}, consider
262   * {@link Lists#transform}. If only an {@code Iterable} is available, use
263   * {@link Iterables#transform}.
264   *
265   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#map Stream.map}.
266   */
267  public static <F, T> Collection<T> transform(
268      Collection<F> fromCollection, Function<? super F, T> function) {
269    return new TransformedCollection<F, T>(fromCollection, function);
270  }
271
272  static class TransformedCollection<F, T> extends AbstractCollection<T> {
273    final Collection<F> fromCollection;
274    final Function<? super F, ? extends T> function;
275
276    TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) {
277      this.fromCollection = checkNotNull(fromCollection);
278      this.function = checkNotNull(function);
279    }
280
281    @Override
282    public void clear() {
283      fromCollection.clear();
284    }
285
286    @Override
287    public boolean isEmpty() {
288      return fromCollection.isEmpty();
289    }
290
291    @Override
292    public Iterator<T> iterator() {
293      return Iterators.transform(fromCollection.iterator(), function);
294    }
295
296    @Override
297    public Spliterator<T> spliterator() {
298      return CollectSpliterators.map(fromCollection.spliterator(), function);
299    }
300
301    @Override
302    public void forEach(Consumer<? super T> action) {
303      checkNotNull(action);
304      fromCollection.forEach((F f) -> action.accept(function.apply(f)));
305    }
306
307    @Override
308    public boolean removeIf(java.util.function.Predicate<? super T> filter) {
309      checkNotNull(filter);
310      return fromCollection.removeIf(element -> filter.test(function.apply(element)));
311    }
312
313    @Override
314    public int size() {
315      return fromCollection.size();
316    }
317  }
318
319  /**
320   * Returns {@code true} if the collection {@code self} contains all of the
321   * elements in the collection {@code c}.
322   *
323   * <p>This method iterates over the specified collection {@code c}, checking
324   * each element returned by the iterator in turn to see if it is contained in
325   * the specified collection {@code self}. If all elements are so contained,
326   * {@code true} is returned, otherwise {@code false}.
327   *
328   * @param self a collection which might contain all elements in {@code c}
329   * @param c a collection whose elements might be contained by {@code self}
330   */
331  static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
332    return Iterables.all(c, Predicates.in(self));
333  }
334
335  /**
336   * An implementation of {@link Collection#toString()}.
337   */
338  static String toStringImpl(final Collection<?> collection) {
339    StringBuilder sb = newStringBuilderForCollection(collection.size()).append('[');
340    boolean first = true;
341    for (Object o : collection) {
342      if (!first) {
343        sb.append(", ");
344      }
345      first = false;
346      if (o == collection) {
347        sb.append("(this Collection)");
348      } else {
349        sb.append(o);
350      }
351    }
352    return sb.append(']').toString();
353  }
354
355  /**
356   * Returns best-effort-sized StringBuilder based on the given collection size.
357   */
358  static StringBuilder newStringBuilderForCollection(int size) {
359    checkNonnegative(size, "size");
360    return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO));
361  }
362
363  /**
364   * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
365   */
366  static <T> Collection<T> cast(Iterable<T> iterable) {
367    return (Collection<T>) iterable;
368  }
369
370  /**
371   * Returns a {@link Collection} of all the permutations of the specified
372   * {@link Iterable}.
373   *
374   * <p><i>Notes:</i> This is an implementation of the algorithm for
375   * Lexicographical Permutations Generation, described in Knuth's "The Art of
376   * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
377   * iteration order follows the lexicographical order. This means that
378   * the first permutation will be in ascending order, and the last will be in
379   * descending order.
380   *
381   * <p>Duplicate elements are considered equal. For example, the list [1, 1]
382   * will have only one permutation, instead of two. This is why the elements
383   * have to implement {@link Comparable}.
384   *
385   * <p>An empty iterable has only one permutation, which is an empty list.
386   *
387   * <p>This method is equivalent to
388   * {@code Collections2.orderedPermutations(list, Ordering.natural())}.
389   *
390   * @param elements the original iterable whose elements have to be permuted.
391   * @return an immutable {@link Collection} containing all the different
392   *     permutations of the original iterable.
393   * @throws NullPointerException if the specified iterable is null or has any
394   *     null elements.
395   * @since 12.0
396   */
397  @Beta
398  public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations(
399      Iterable<E> elements) {
400    return orderedPermutations(elements, Ordering.natural());
401  }
402
403  /**
404   * Returns a {@link Collection} of all the permutations of the specified
405   * {@link Iterable} using the specified {@link Comparator} for establishing
406   * the lexicographical ordering.
407   *
408   * <p>Examples: <pre>   {@code
409   *
410   *   for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
411   *     println(perm);
412   *   }
413   *   // -> ["a", "b", "c"]
414   *   // -> ["a", "c", "b"]
415   *   // -> ["b", "a", "c"]
416   *   // -> ["b", "c", "a"]
417   *   // -> ["c", "a", "b"]
418   *   // -> ["c", "b", "a"]
419   *
420   *   for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
421   *     println(perm);
422   *   }
423   *   // -> [1, 1, 2, 2]
424   *   // -> [1, 2, 1, 2]
425   *   // -> [1, 2, 2, 1]
426   *   // -> [2, 1, 1, 2]
427   *   // -> [2, 1, 2, 1]
428   *   // -> [2, 2, 1, 1]}</pre>
429   *
430   * <p><i>Notes:</i> This is an implementation of the algorithm for
431   * Lexicographical Permutations Generation, described in Knuth's "The Art of
432   * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
433   * iteration order follows the lexicographical order. This means that
434   * the first permutation will be in ascending order, and the last will be in
435   * descending order.
436   *
437   * <p>Elements that compare equal are considered equal and no new permutations
438   * are created by swapping them.
439   *
440   * <p>An empty iterable has only one permutation, which is an empty list.
441   *
442   * @param elements the original iterable whose elements have to be permuted.
443   * @param comparator a comparator for the iterable's elements.
444   * @return an immutable {@link Collection} containing all the different
445   *     permutations of the original iterable.
446   * @throws NullPointerException If the specified iterable is null, has any
447   *     null elements, or if the specified comparator is null.
448   * @since 12.0
449   */
450  @Beta
451  public static <E> Collection<List<E>> orderedPermutations(
452      Iterable<E> elements, Comparator<? super E> comparator) {
453    return new OrderedPermutationCollection<E>(elements, comparator);
454  }
455
456  private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> {
457    final ImmutableList<E> inputList;
458    final Comparator<? super E> comparator;
459    final int size;
460
461    OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) {
462      this.inputList = Ordering.from(comparator).immutableSortedCopy(input);
463      this.comparator = comparator;
464      this.size = calculateSize(inputList, comparator);
465    }
466
467    /**
468     * The number of permutations with repeated elements is calculated as
469     * follows:
470     * <ul>
471     * <li>For an empty list, it is 1 (base case).</li>
472     * <li>When r numbers are added to a list of n-r elements, the number of
473     * permutations is increased by a factor of (n choose r).</li>
474     * </ul>
475     */
476    private static <E> int calculateSize(
477        List<E> sortedInputList, Comparator<? super E> comparator) {
478      long permutations = 1;
479      int n = 1;
480      int r = 1;
481      while (n < sortedInputList.size()) {
482        int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n));
483        if (comparison < 0) {
484          // We move to the next non-repeated element.
485          permutations *= binomial(n, r);
486          r = 0;
487          if (!isPositiveInt(permutations)) {
488            return Integer.MAX_VALUE;
489          }
490        }
491        n++;
492        r++;
493      }
494      permutations *= binomial(n, r);
495      if (!isPositiveInt(permutations)) {
496        return Integer.MAX_VALUE;
497      }
498      return (int) permutations;
499    }
500
501    @Override
502    public int size() {
503      return size;
504    }
505
506    @Override
507    public boolean isEmpty() {
508      return false;
509    }
510
511    @Override
512    public Iterator<List<E>> iterator() {
513      return new OrderedPermutationIterator<E>(inputList, comparator);
514    }
515
516    @Override
517    public boolean contains(@Nullable Object obj) {
518      if (obj instanceof List) {
519        List<?> list = (List<?>) obj;
520        return isPermutation(inputList, list);
521      }
522      return false;
523    }
524
525    @Override
526    public String toString() {
527      return "orderedPermutationCollection(" + inputList + ")";
528    }
529  }
530
531  private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> {
532
533    List<E> nextPermutation;
534    final Comparator<? super E> comparator;
535
536    OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) {
537      this.nextPermutation = Lists.newArrayList(list);
538      this.comparator = comparator;
539    }
540
541    @Override
542    protected List<E> computeNext() {
543      if (nextPermutation == null) {
544        return endOfData();
545      }
546      ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
547      calculateNextPermutation();
548      return next;
549    }
550
551    void calculateNextPermutation() {
552      int j = findNextJ();
553      if (j == -1) {
554        nextPermutation = null;
555        return;
556      }
557
558      int l = findNextL(j);
559      Collections.swap(nextPermutation, j, l);
560      int n = nextPermutation.size();
561      Collections.reverse(nextPermutation.subList(j + 1, n));
562    }
563
564    int findNextJ() {
565      for (int k = nextPermutation.size() - 2; k >= 0; k--) {
566        if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) {
567          return k;
568        }
569      }
570      return -1;
571    }
572
573    int findNextL(int j) {
574      E ak = nextPermutation.get(j);
575      for (int l = nextPermutation.size() - 1; l > j; l--) {
576        if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
577          return l;
578        }
579      }
580      throw new AssertionError("this statement should be unreachable");
581    }
582  }
583
584  /**
585   * Returns a {@link Collection} of all the permutations of the specified
586   * {@link Collection}.
587   *
588   * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm
589   * for permutations generation, described in Knuth's "The Art of Computer
590   * Programming", Volume 4, Chapter 7, Section 7.2.1.2.
591   *
592   * <p>If the input list contains equal elements, some of the generated
593   * permutations will be equal.
594   *
595   * <p>An empty collection has only one permutation, which is an empty list.
596   *
597   * @param elements the original collection whose elements have to be permuted.
598   * @return an immutable {@link Collection} containing all the different
599   *     permutations of the original collection.
600   * @throws NullPointerException if the specified collection is null or has any
601   *     null elements.
602   * @since 12.0
603   */
604  @Beta
605  public static <E> Collection<List<E>> permutations(Collection<E> elements) {
606    return new PermutationCollection<E>(ImmutableList.copyOf(elements));
607  }
608
609  private static final class PermutationCollection<E> extends AbstractCollection<List<E>> {
610    final ImmutableList<E> inputList;
611
612    PermutationCollection(ImmutableList<E> input) {
613      this.inputList = input;
614    }
615
616    @Override
617    public int size() {
618      return IntMath.factorial(inputList.size());
619    }
620
621    @Override
622    public boolean isEmpty() {
623      return false;
624    }
625
626    @Override
627    public Iterator<List<E>> iterator() {
628      return new PermutationIterator<E>(inputList);
629    }
630
631    @Override
632    public boolean contains(@Nullable Object obj) {
633      if (obj instanceof List) {
634        List<?> list = (List<?>) obj;
635        return isPermutation(inputList, list);
636      }
637      return false;
638    }
639
640    @Override
641    public String toString() {
642      return "permutations(" + inputList + ")";
643    }
644  }
645
646  private static class PermutationIterator<E> extends AbstractIterator<List<E>> {
647    final List<E> list;
648    final int[] c;
649    final int[] o;
650    int j;
651
652    PermutationIterator(List<E> list) {
653      this.list = new ArrayList<E>(list);
654      int n = list.size();
655      c = new int[n];
656      o = new int[n];
657      Arrays.fill(c, 0);
658      Arrays.fill(o, 1);
659      j = Integer.MAX_VALUE;
660    }
661
662    @Override
663    protected List<E> computeNext() {
664      if (j <= 0) {
665        return endOfData();
666      }
667      ImmutableList<E> next = ImmutableList.copyOf(list);
668      calculateNextPermutation();
669      return next;
670    }
671
672    void calculateNextPermutation() {
673      j = list.size() - 1;
674      int s = 0;
675
676      // Handle the special case of an empty list. Skip the calculation of the
677      // next permutation.
678      if (j == -1) {
679        return;
680      }
681
682      while (true) {
683        int q = c[j] + o[j];
684        if (q < 0) {
685          switchDirection();
686          continue;
687        }
688        if (q == j + 1) {
689          if (j == 0) {
690            break;
691          }
692          s++;
693          switchDirection();
694          continue;
695        }
696
697        Collections.swap(list, j - c[j] + s, j - q + s);
698        c[j] = q;
699        break;
700      }
701    }
702
703    void switchDirection() {
704      o[j] = -o[j];
705      j--;
706    }
707  }
708
709  /**
710   * Returns {@code true} if the second list is a permutation of the first.
711   */
712  private static boolean isPermutation(List<?> first, List<?> second) {
713    if (first.size() != second.size()) {
714      return false;
715    }
716    Multiset<?> firstMultiset = HashMultiset.create(first);
717    Multiset<?> secondMultiset = HashMultiset.create(second);
718    return firstMultiset.equals(secondMultiset);
719  }
720
721  private static boolean isPositiveInt(long n) {
722    return n >= 0 && n <= Integer.MAX_VALUE;
723  }
724}