001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Objects; 024import com.google.common.base.Optional; 025import com.google.common.collect.Iterables; 026import com.google.common.collect.Maps; 027import com.google.errorprone.annotations.CanIgnoreReturnValue; 028import java.util.ArrayDeque; 029import java.util.Collections; 030import java.util.HashSet; 031import java.util.LinkedHashSet; 032import java.util.Map; 033import java.util.Queue; 034import java.util.Set; 035import javax.annotation.Nullable; 036 037/** 038 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 039 * 040 * @author James Sexton 041 * @author Joshua O'Madadhain 042 * @since 20.0 043 */ 044@Beta 045public final class Graphs { 046 047 private Graphs() {} 048 049 // Graph query methods 050 051 /** 052 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 053 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 054 * and ending with the same node. 055 * 056 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 057 */ 058 public static <N> boolean hasCycle(Graph<N> graph) { 059 int numEdges = graph.edges().size(); 060 if (numEdges == 0) { 061 return false; // An edge-free graph is acyclic by definition. 062 } 063 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 064 return true; // Optimization for the undirected case: at least one cycle must exist. 065 } 066 067 Map<Object, NodeVisitState> visitedNodes = 068 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 069 for (N node : graph.nodes()) { 070 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 071 return true; 072 } 073 } 074 return false; 075 } 076 077 /** 078 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 079 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 080 * starting and ending with the same node. 081 * 082 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 083 */ 084 public static boolean hasCycle(Network<?, ?> network) { 085 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 086 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 087 if (!network.isDirected() 088 && network.allowsParallelEdges() 089 && network.edges().size() > network.asGraph().edges().size()) { 090 return true; 091 } 092 return hasCycle(network.asGraph()); 093 } 094 095 /** 096 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 097 * already visited (following only outgoing edges and without reusing edges), we know there's a 098 * cycle in the graph. 099 */ 100 private static <N> boolean subgraphHasCycle( 101 Graph<N> graph, Map<Object, NodeVisitState> visitedNodes, N node, @Nullable N previousNode) { 102 NodeVisitState state = visitedNodes.get(node); 103 if (state == NodeVisitState.COMPLETE) { 104 return false; 105 } 106 if (state == NodeVisitState.PENDING) { 107 return true; 108 } 109 110 visitedNodes.put(node, NodeVisitState.PENDING); 111 for (N nextNode : graph.successors(node)) { 112 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 113 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 114 return true; 115 } 116 } 117 visitedNodes.put(node, NodeVisitState.COMPLETE); 118 return false; 119 } 120 121 /** 122 * Determines whether an edge has already been used during traversal. In the directed case a cycle 123 * is always detected before reusing an edge, so no special logic is required. In the undirected 124 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 125 * from B to A). 126 */ 127 private static boolean canTraverseWithoutReusingEdge( 128 Graph<?> graph, Object nextNode, @Nullable Object previousNode) { 129 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 130 return true; 131 } 132 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 133 // edges, so this traversal would require reusing the undirected AB edge. 134 return false; 135 } 136 137 /** 138 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 139 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 140 * Object) reachable} from node A. 141 * 142 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 143 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 144 * be updated after modifications to {@code graph}. 145 */ 146 // TODO(b/31438252): Consider potential optimizations for this algorithm. 147 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 148 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 149 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 150 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 151 152 if (graph.isDirected()) { 153 // Note: works for both directed and undirected graphs, but we only use in the directed case. 154 for (N node : graph.nodes()) { 155 for (N reachableNode : reachableNodes(graph, node)) { 156 transitiveClosure.putEdge(node, reachableNode); 157 } 158 } 159 } else { 160 // An optimization for the undirected case: for every node B reachable from node A, 161 // node A and node B have the same reachability set. 162 Set<N> visitedNodes = new HashSet<N>(); 163 for (N node : graph.nodes()) { 164 if (!visitedNodes.contains(node)) { 165 Set<N> reachableNodes = reachableNodes(graph, node); 166 visitedNodes.addAll(reachableNodes); 167 int pairwiseMatch = 1; // start at 1 to include self-loops 168 for (N nodeU : reachableNodes) { 169 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 170 transitiveClosure.putEdge(nodeU, nodeV); 171 } 172 } 173 } 174 } 175 } 176 177 return transitiveClosure; 178 } 179 180 /** 181 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 182 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 183 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 184 * 185 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 186 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 187 * not be updated after modifications to {@code graph}. 188 * 189 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 190 */ 191 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 192 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 193 Set<N> visitedNodes = new LinkedHashSet<N>(); 194 Queue<N> queuedNodes = new ArrayDeque<N>(); 195 visitedNodes.add(node); 196 queuedNodes.add(node); 197 // Perform a breadth-first traversal rooted at the input node. 198 while (!queuedNodes.isEmpty()) { 199 N currentNode = queuedNodes.remove(); 200 for (N successor : graph.successors(currentNode)) { 201 if (visitedNodes.add(successor)) { 202 queuedNodes.add(successor); 203 } 204 } 205 } 206 return Collections.unmodifiableSet(visitedNodes); 207 } 208 209 /** 210 * @deprecated Use {@link Graph#equals(Object)} instead. This method will be removed in late 2017. 211 */ 212 // TODO(user): Delete this method. 213 @Deprecated 214 public static boolean equivalent(@Nullable Graph<?> graphA, @Nullable Graph<?> graphB) { 215 return Objects.equal(graphA, graphB); 216 } 217 218 /** 219 * @deprecated Use {@link ValueGraph#equals(Object)} instead. This method will be removed in late 220 * 2017. 221 */ 222 // TODO(user): Delete this method. 223 @Deprecated 224 public static boolean equivalent( 225 @Nullable ValueGraph<?, ?> graphA, @Nullable ValueGraph<?, ?> graphB) { 226 return Objects.equal(graphA, graphB); 227 } 228 229 /** 230 * @deprecated Use {@link Network#equals(Object)} instead. This method will be removed in late 231 * 2017. 232 */ 233 // TODO(user): Delete this method. 234 @Deprecated 235 public static boolean equivalent( 236 @Nullable Network<?, ?> networkA, @Nullable Network<?, ?> networkB) { 237 return Objects.equal(networkA, networkB); 238 } 239 240 // Graph mutation methods 241 242 // Graph view methods 243 244 /** 245 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 246 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 247 */ 248 public static <N> Graph<N> transpose(Graph<N> graph) { 249 if (!graph.isDirected()) { 250 return graph; // the transpose of an undirected graph is an identical graph 251 } 252 253 if (graph instanceof TransposedGraph) { 254 return ((TransposedGraph<N>) graph).graph; 255 } 256 257 return new TransposedGraph<N>(graph); 258 } 259 260 private static class TransposedGraph<N> extends AbstractGraph<N> { 261 private final Graph<N> graph; 262 263 TransposedGraph(Graph<N> graph) { 264 this.graph = graph; 265 } 266 267 @Override 268 public Set<N> nodes() { 269 return graph.nodes(); 270 } 271 272 /** 273 * Defer to {@link AbstractGraph#edges()} (based on {@link #successors(Object)}) for full 274 * edges() implementation. 275 */ 276 @Override 277 protected long edgeCount() { 278 return graph.edges().size(); 279 } 280 281 @Override 282 public boolean isDirected() { 283 return graph.isDirected(); 284 } 285 286 @Override 287 public boolean allowsSelfLoops() { 288 return graph.allowsSelfLoops(); 289 } 290 291 @Override 292 public ElementOrder<N> nodeOrder() { 293 return graph.nodeOrder(); 294 } 295 296 @Override 297 public Set<N> adjacentNodes(N node) { 298 return graph.adjacentNodes(node); 299 } 300 301 @Override 302 public Set<N> predecessors(N node) { 303 return graph.successors(node); // transpose 304 } 305 306 @Override 307 public Set<N> successors(N node) { 308 return graph.predecessors(node); // transpose 309 } 310 } 311 312 /** 313 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 314 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 315 */ 316 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 317 if (!graph.isDirected()) { 318 return graph; // the transpose of an undirected graph is an identical graph 319 } 320 321 if (graph instanceof TransposedValueGraph) { 322 return ((TransposedValueGraph<N, V>) graph).graph; 323 } 324 325 return new TransposedValueGraph<N, V>(graph); 326 } 327 328 private static class TransposedValueGraph<N, V> extends AbstractValueGraph<N, V> { 329 private final ValueGraph<N, V> graph; 330 331 TransposedValueGraph(ValueGraph<N, V> graph) { 332 this.graph = graph; 333 } 334 335 @Override 336 public Set<N> nodes() { 337 return graph.nodes(); 338 } 339 340 /** 341 * Defer to {@link AbstractGraph#edges()} (based on {@link #successors(Object)}) for full 342 * edges() implementation. 343 */ 344 @Override 345 protected long edgeCount() { 346 return graph.edges().size(); 347 } 348 349 @Override 350 public boolean isDirected() { 351 return graph.isDirected(); 352 } 353 354 @Override 355 public boolean allowsSelfLoops() { 356 return graph.allowsSelfLoops(); 357 } 358 359 @Override 360 public ElementOrder<N> nodeOrder() { 361 return graph.nodeOrder(); 362 } 363 364 @Override 365 public Set<N> adjacentNodes(N node) { 366 return graph.adjacentNodes(node); 367 } 368 369 @Override 370 public Set<N> predecessors(N node) { 371 return graph.successors(node); // transpose 372 } 373 374 @Override 375 public Set<N> successors(N node) { 376 return graph.predecessors(node); // transpose 377 } 378 379 @Override 380 public V edgeValue(N nodeU, N nodeV) { 381 return graph.edgeValue(nodeV, nodeU); // transpose 382 } 383 384 @Override 385 public V edgeValueOrDefault(N nodeU, N nodeV, @Nullable V defaultValue) { 386 return graph.edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 387 } 388 } 389 390 /** 391 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 392 * properties remain intact, and further updates to {@code network} will be reflected in the view. 393 */ 394 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 395 if (!network.isDirected()) { 396 return network; // the transpose of an undirected network is an identical network 397 } 398 399 if (network instanceof TransposedNetwork) { 400 return ((TransposedNetwork<N, E>) network).network; 401 } 402 403 return new TransposedNetwork<N, E>(network); 404 } 405 406 private static class TransposedNetwork<N, E> extends AbstractNetwork<N, E> { 407 private final Network<N, E> network; 408 409 TransposedNetwork(Network<N, E> network) { 410 this.network = network; 411 } 412 413 @Override 414 public Set<N> nodes() { 415 return network.nodes(); 416 } 417 418 @Override 419 public Set<E> edges() { 420 return network.edges(); 421 } 422 423 @Override 424 public boolean isDirected() { 425 return network.isDirected(); 426 } 427 428 @Override 429 public boolean allowsParallelEdges() { 430 return network.allowsParallelEdges(); 431 } 432 433 @Override 434 public boolean allowsSelfLoops() { 435 return network.allowsSelfLoops(); 436 } 437 438 @Override 439 public ElementOrder<N> nodeOrder() { 440 return network.nodeOrder(); 441 } 442 443 @Override 444 public ElementOrder<E> edgeOrder() { 445 return network.edgeOrder(); 446 } 447 448 @Override 449 public Set<N> adjacentNodes(N node) { 450 return network.adjacentNodes(node); 451 } 452 453 @Override 454 public Set<N> predecessors(N node) { 455 return network.successors(node); // transpose 456 } 457 458 @Override 459 public Set<N> successors(N node) { 460 return network.predecessors(node); // transpose 461 } 462 463 @Override 464 public Set<E> incidentEdges(N node) { 465 return network.incidentEdges(node); 466 } 467 468 @Override 469 public Set<E> inEdges(N node) { 470 return network.outEdges(node); // transpose 471 } 472 473 @Override 474 public Set<E> outEdges(N node) { 475 return network.inEdges(node); // transpose 476 } 477 478 @Override 479 public EndpointPair<N> incidentNodes(E edge) { 480 EndpointPair<N> endpointPair = network.incidentNodes(edge); 481 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 482 } 483 484 @Override 485 public Set<E> adjacentEdges(E edge) { 486 return network.adjacentEdges(edge); 487 } 488 489 @Override 490 public Set<E> edgesConnecting(N nodeU, N nodeV) { 491 return network.edgesConnecting(nodeV, nodeU); // transpose 492 } 493 494 @Override 495 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 496 return network.edgeConnecting(nodeV, nodeU); // transpose 497 } 498 } 499 500 // Graph copy methods 501 502 /** 503 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 504 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 505 * from {@code graph} for which both nodes are contained by {@code nodes}. 506 * 507 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 508 */ 509 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 510 MutableGraph<N> subgraph = GraphBuilder.from(graph).build(); 511 for (N node : nodes) { 512 subgraph.addNode(node); 513 } 514 for (N node : subgraph.nodes()) { 515 for (N successorNode : graph.successors(node)) { 516 if (subgraph.nodes().contains(successorNode)) { 517 subgraph.putEdge(node, successorNode); 518 } 519 } 520 } 521 return subgraph; 522 } 523 524 /** 525 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 526 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 527 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 528 * nodes}. 529 * 530 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 531 */ 532 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 533 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 534 MutableValueGraph<N, V> subgraph = ValueGraphBuilder.from(graph).build(); 535 for (N node : nodes) { 536 subgraph.addNode(node); 537 } 538 for (N node : subgraph.nodes()) { 539 for (N successorNode : graph.successors(node)) { 540 if (subgraph.nodes().contains(successorNode)) { 541 subgraph.putEdgeValue(node, successorNode, graph.edgeValue(node, successorNode)); 542 } 543 } 544 } 545 return subgraph; 546 } 547 548 /** 549 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 550 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 551 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 552 * both contained by {@code nodes}. 553 * 554 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 555 */ 556 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 557 Network<N, E> network, Iterable<? extends N> nodes) { 558 MutableNetwork<N, E> subgraph = NetworkBuilder.from(network).build(); 559 for (N node : nodes) { 560 subgraph.addNode(node); 561 } 562 for (N node : subgraph.nodes()) { 563 for (E edge : network.outEdges(node)) { 564 N successorNode = network.incidentNodes(edge).adjacentNode(node); 565 if (subgraph.nodes().contains(successorNode)) { 566 subgraph.addEdge(node, successorNode, edge); 567 } 568 } 569 } 570 return subgraph; 571 } 572 573 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 574 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 575 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 576 for (N node : graph.nodes()) { 577 copy.addNode(node); 578 } 579 for (EndpointPair<N> edge : graph.edges()) { 580 copy.putEdge(edge.nodeU(), edge.nodeV()); 581 } 582 return copy; 583 } 584 585 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 586 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 587 MutableValueGraph<N, V> copy = 588 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 589 for (N node : graph.nodes()) { 590 copy.addNode(node); 591 } 592 for (EndpointPair<N> edge : graph.edges()) { 593 copy.putEdgeValue(edge.nodeU(), edge.nodeV(), graph.edgeValue(edge.nodeU(), edge.nodeV())); 594 } 595 return copy; 596 } 597 598 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 599 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 600 MutableNetwork<N, E> copy = 601 NetworkBuilder.from(network) 602 .expectedNodeCount(network.nodes().size()) 603 .expectedEdgeCount(network.edges().size()) 604 .build(); 605 for (N node : network.nodes()) { 606 copy.addNode(node); 607 } 608 for (E edge : network.edges()) { 609 EndpointPair<N> endpointPair = network.incidentNodes(edge); 610 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 611 } 612 return copy; 613 } 614 615 @CanIgnoreReturnValue 616 static int checkNonNegative(int value) { 617 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 618 return value; 619 } 620 621 @CanIgnoreReturnValue 622 static int checkPositive(int value) { 623 checkArgument(value > 0, "Not true that %s is positive.", value); 624 return value; 625 } 626 627 @CanIgnoreReturnValue 628 static long checkNonNegative(long value) { 629 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 630 return value; 631 } 632 633 @CanIgnoreReturnValue 634 static long checkPositive(long value) { 635 checkArgument(value > 0, "Not true that %s is positive.", value); 636 return value; 637 } 638 639 /** 640 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 641 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 642 * been already explored. Any node that has not been explored will not have a state at all. 643 */ 644 private enum NodeVisitState { 645 PENDING, 646 COMPLETE 647 } 648}