001/*
002 * Copyright (C) 2014 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.graph;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH;
021
022import com.google.common.annotations.Beta;
023import com.google.common.base.Objects;
024import com.google.common.base.Optional;
025import com.google.common.collect.Iterables;
026import com.google.common.collect.Maps;
027import com.google.errorprone.annotations.CanIgnoreReturnValue;
028import java.util.ArrayDeque;
029import java.util.Collections;
030import java.util.HashSet;
031import java.util.LinkedHashSet;
032import java.util.Map;
033import java.util.Queue;
034import java.util.Set;
035import javax.annotation.Nullable;
036
037/**
038 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances.
039 *
040 * @author James Sexton
041 * @author Joshua O'Madadhain
042 * @since 20.0
043 */
044@Beta
045public final class Graphs {
046
047  private Graphs() {}
048
049  // Graph query methods
050
051  /**
052   * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset
053   * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting
054   * and ending with the same node.
055   *
056   * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1).
057   */
058  public static <N> boolean hasCycle(Graph<N> graph) {
059    int numEdges = graph.edges().size();
060    if (numEdges == 0) {
061      return false; // An edge-free graph is acyclic by definition.
062    }
063    if (!graph.isDirected() && numEdges >= graph.nodes().size()) {
064      return true; // Optimization for the undirected case: at least one cycle must exist.
065    }
066
067    Map<Object, NodeVisitState> visitedNodes =
068        Maps.newHashMapWithExpectedSize(graph.nodes().size());
069    for (N node : graph.nodes()) {
070      if (subgraphHasCycle(graph, visitedNodes, node, null)) {
071        return true;
072      }
073    }
074    return false;
075  }
076
077  /**
078   * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty
079   * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges)
080   * starting and ending with the same node.
081   *
082   * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1).
083   */
084  public static boolean hasCycle(Network<?, ?> network) {
085    // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph.
086    // However, in an undirected graph, any parallel edge induces a cycle in the graph.
087    if (!network.isDirected()
088        && network.allowsParallelEdges()
089        && network.edges().size() > network.asGraph().edges().size()) {
090      return true;
091    }
092    return hasCycle(network.asGraph());
093  }
094
095  /**
096   * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've
097   * already visited (following only outgoing edges and without reusing edges), we know there's a
098   * cycle in the graph.
099   */
100  private static <N> boolean subgraphHasCycle(
101      Graph<N> graph, Map<Object, NodeVisitState> visitedNodes, N node, @Nullable N previousNode) {
102    NodeVisitState state = visitedNodes.get(node);
103    if (state == NodeVisitState.COMPLETE) {
104      return false;
105    }
106    if (state == NodeVisitState.PENDING) {
107      return true;
108    }
109
110    visitedNodes.put(node, NodeVisitState.PENDING);
111    for (N nextNode : graph.successors(node)) {
112      if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode)
113          && subgraphHasCycle(graph, visitedNodes, nextNode, node)) {
114        return true;
115      }
116    }
117    visitedNodes.put(node, NodeVisitState.COMPLETE);
118    return false;
119  }
120
121  /**
122   * Determines whether an edge has already been used during traversal. In the directed case a cycle
123   * is always detected before reusing an edge, so no special logic is required. In the undirected
124   * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going
125   * from B to A).
126   */
127  private static boolean canTraverseWithoutReusingEdge(
128      Graph<?> graph, Object nextNode, @Nullable Object previousNode) {
129    if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) {
130      return true;
131    }
132    // This falls into the undirected A->B->A case. The Graph interface does not support parallel
133    // edges, so this traversal would require reusing the undirected AB edge.
134    return false;
135  }
136
137  /**
138   * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another
139   * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph,
140   * Object) reachable} from node A.
141   *
142   * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view
143   * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not
144   * be updated after modifications to {@code graph}.
145   */
146  // TODO(b/31438252): Consider potential optimizations for this algorithm.
147  public static <N> Graph<N> transitiveClosure(Graph<N> graph) {
148    MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build();
149    // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure
150    // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it.
151
152    if (graph.isDirected()) {
153      // Note: works for both directed and undirected graphs, but we only use in the directed case.
154      for (N node : graph.nodes()) {
155        for (N reachableNode : reachableNodes(graph, node)) {
156          transitiveClosure.putEdge(node, reachableNode);
157        }
158      }
159    } else {
160      // An optimization for the undirected case: for every node B reachable from node A,
161      // node A and node B have the same reachability set.
162      Set<N> visitedNodes = new HashSet<N>();
163      for (N node : graph.nodes()) {
164        if (!visitedNodes.contains(node)) {
165          Set<N> reachableNodes = reachableNodes(graph, node);
166          visitedNodes.addAll(reachableNodes);
167          int pairwiseMatch = 1; // start at 1 to include self-loops
168          for (N nodeU : reachableNodes) {
169            for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) {
170              transitiveClosure.putEdge(nodeU, nodeV);
171            }
172          }
173        }
174      }
175    }
176
177    return transitiveClosure;
178  }
179
180  /**
181   * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable
182   * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A
183   * and ending at node B. Note that a node is always reachable from itself via a zero-length path.
184   *
185   * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view
186   * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will
187   * not be updated after modifications to {@code graph}.
188   *
189   * @throws IllegalArgumentException if {@code node} is not present in {@code graph}
190   */
191  public static <N> Set<N> reachableNodes(Graph<N> graph, N node) {
192    checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node);
193    Set<N> visitedNodes = new LinkedHashSet<N>();
194    Queue<N> queuedNodes = new ArrayDeque<N>();
195    visitedNodes.add(node);
196    queuedNodes.add(node);
197    // Perform a breadth-first traversal rooted at the input node.
198    while (!queuedNodes.isEmpty()) {
199      N currentNode = queuedNodes.remove();
200      for (N successor : graph.successors(currentNode)) {
201        if (visitedNodes.add(successor)) {
202          queuedNodes.add(successor);
203        }
204      }
205    }
206    return Collections.unmodifiableSet(visitedNodes);
207  }
208
209  /**
210   * @deprecated Use {@link Graph#equals(Object)} instead. This method will be removed in late 2017.
211   */
212  // TODO(user): Delete this method.
213  @Deprecated
214  public static boolean equivalent(@Nullable Graph<?> graphA, @Nullable Graph<?> graphB) {
215    return Objects.equal(graphA, graphB);
216  }
217
218  /**
219   * @deprecated Use {@link ValueGraph#equals(Object)} instead. This method will be removed in late
220   * 2017.
221   */
222  // TODO(user): Delete this method.
223  @Deprecated
224  public static boolean equivalent(
225      @Nullable ValueGraph<?, ?> graphA, @Nullable ValueGraph<?, ?> graphB) {
226    return Objects.equal(graphA, graphB);
227  }
228
229  /**
230   * @deprecated Use {@link Network#equals(Object)} instead. This method will be removed in late
231   * 2017.
232   */
233  // TODO(user): Delete this method.
234  @Deprecated
235  public static boolean equivalent(
236      @Nullable Network<?, ?> networkA, @Nullable Network<?, ?> networkB) {
237    return Objects.equal(networkA, networkB);
238  }
239
240  // Graph mutation methods
241
242  // Graph view methods
243
244  /**
245   * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other
246   * properties remain intact, and further updates to {@code graph} will be reflected in the view.
247   */
248  public static <N> Graph<N> transpose(Graph<N> graph) {
249    if (!graph.isDirected()) {
250      return graph; // the transpose of an undirected graph is an identical graph
251    }
252
253    if (graph instanceof TransposedGraph) {
254      return ((TransposedGraph<N>) graph).graph;
255    }
256
257    return new TransposedGraph<N>(graph);
258  }
259
260  private static class TransposedGraph<N> extends AbstractGraph<N> {
261    private final Graph<N> graph;
262
263    TransposedGraph(Graph<N> graph) {
264      this.graph = graph;
265    }
266
267    @Override
268    public Set<N> nodes() {
269      return graph.nodes();
270    }
271
272    /**
273     * Defer to {@link AbstractGraph#edges()} (based on {@link #successors(Object)}) for full
274     * edges() implementation.
275     */
276    @Override
277    protected long edgeCount() {
278      return graph.edges().size();
279    }
280
281    @Override
282    public boolean isDirected() {
283      return graph.isDirected();
284    }
285
286    @Override
287    public boolean allowsSelfLoops() {
288      return graph.allowsSelfLoops();
289    }
290
291    @Override
292    public ElementOrder<N> nodeOrder() {
293      return graph.nodeOrder();
294    }
295
296    @Override
297    public Set<N> adjacentNodes(N node) {
298      return graph.adjacentNodes(node);
299    }
300
301    @Override
302    public Set<N> predecessors(N node) {
303      return graph.successors(node); // transpose
304    }
305
306    @Override
307    public Set<N> successors(N node) {
308      return graph.predecessors(node); // transpose
309    }
310  }
311
312  /**
313   * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other
314   * properties remain intact, and further updates to {@code graph} will be reflected in the view.
315   */
316  public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) {
317    if (!graph.isDirected()) {
318      return graph; // the transpose of an undirected graph is an identical graph
319    }
320
321    if (graph instanceof TransposedValueGraph) {
322      return ((TransposedValueGraph<N, V>) graph).graph;
323    }
324
325    return new TransposedValueGraph<N, V>(graph);
326  }
327
328  private static class TransposedValueGraph<N, V> extends AbstractValueGraph<N, V> {
329    private final ValueGraph<N, V> graph;
330
331    TransposedValueGraph(ValueGraph<N, V> graph) {
332      this.graph = graph;
333    }
334
335    @Override
336    public Set<N> nodes() {
337      return graph.nodes();
338    }
339
340    /**
341     * Defer to {@link AbstractGraph#edges()} (based on {@link #successors(Object)}) for full
342     * edges() implementation.
343     */
344    @Override
345    protected long edgeCount() {
346      return graph.edges().size();
347    }
348
349    @Override
350    public boolean isDirected() {
351      return graph.isDirected();
352    }
353
354    @Override
355    public boolean allowsSelfLoops() {
356      return graph.allowsSelfLoops();
357    }
358
359    @Override
360    public ElementOrder<N> nodeOrder() {
361      return graph.nodeOrder();
362    }
363
364    @Override
365    public Set<N> adjacentNodes(N node) {
366      return graph.adjacentNodes(node);
367    }
368
369    @Override
370    public Set<N> predecessors(N node) {
371      return graph.successors(node); // transpose
372    }
373
374    @Override
375    public Set<N> successors(N node) {
376      return graph.predecessors(node); // transpose
377    }
378
379    @Override
380    public V edgeValue(N nodeU, N nodeV) {
381      return graph.edgeValue(nodeV, nodeU); // transpose
382    }
383
384    @Override
385    public V edgeValueOrDefault(N nodeU, N nodeV, @Nullable V defaultValue) {
386      return graph.edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose
387    }
388  }
389
390  /**
391   * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other
392   * properties remain intact, and further updates to {@code network} will be reflected in the view.
393   */
394  public static <N, E> Network<N, E> transpose(Network<N, E> network) {
395    if (!network.isDirected()) {
396      return network; // the transpose of an undirected network is an identical network
397    }
398
399    if (network instanceof TransposedNetwork) {
400      return ((TransposedNetwork<N, E>) network).network;
401    }
402
403    return new TransposedNetwork<N, E>(network);
404  }
405
406  private static class TransposedNetwork<N, E> extends AbstractNetwork<N, E> {
407    private final Network<N, E> network;
408
409    TransposedNetwork(Network<N, E> network) {
410      this.network = network;
411    }
412
413    @Override
414    public Set<N> nodes() {
415      return network.nodes();
416    }
417
418    @Override
419    public Set<E> edges() {
420      return network.edges();
421    }
422
423    @Override
424    public boolean isDirected() {
425      return network.isDirected();
426    }
427
428    @Override
429    public boolean allowsParallelEdges() {
430      return network.allowsParallelEdges();
431    }
432
433    @Override
434    public boolean allowsSelfLoops() {
435      return network.allowsSelfLoops();
436    }
437
438    @Override
439    public ElementOrder<N> nodeOrder() {
440      return network.nodeOrder();
441    }
442
443    @Override
444    public ElementOrder<E> edgeOrder() {
445      return network.edgeOrder();
446    }
447
448    @Override
449    public Set<N> adjacentNodes(N node) {
450      return network.adjacentNodes(node);
451    }
452
453    @Override
454    public Set<N> predecessors(N node) {
455      return network.successors(node); // transpose
456    }
457
458    @Override
459    public Set<N> successors(N node) {
460      return network.predecessors(node); // transpose
461    }
462
463    @Override
464    public Set<E> incidentEdges(N node) {
465      return network.incidentEdges(node);
466    }
467
468    @Override
469    public Set<E> inEdges(N node) {
470      return network.outEdges(node); // transpose
471    }
472
473    @Override
474    public Set<E> outEdges(N node) {
475      return network.inEdges(node); // transpose
476    }
477
478    @Override
479    public EndpointPair<N> incidentNodes(E edge) {
480      EndpointPair<N> endpointPair = network.incidentNodes(edge);
481      return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose
482    }
483
484    @Override
485    public Set<E> adjacentEdges(E edge) {
486      return network.adjacentEdges(edge);
487    }
488
489    @Override
490    public Set<E> edgesConnecting(N nodeU, N nodeV) {
491      return network.edgesConnecting(nodeV, nodeU); // transpose
492    }
493
494    @Override
495    public Optional<E> edgeConnecting(N nodeU, N nodeV) {
496      return network.edgeConnecting(nodeV, nodeU); // transpose
497    }
498  }
499
500  // Graph copy methods
501
502  /**
503   * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph
504   * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges}
505   * from {@code graph} for which both nodes are contained by {@code nodes}.
506   *
507   * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph
508   */
509  public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) {
510    MutableGraph<N> subgraph = GraphBuilder.from(graph).build();
511    for (N node : nodes) {
512      subgraph.addNode(node);
513    }
514    for (N node : subgraph.nodes()) {
515      for (N successorNode : graph.successors(node)) {
516        if (subgraph.nodes().contains(successorNode)) {
517          subgraph.putEdge(node, successorNode);
518        }
519      }
520    }
521    return subgraph;
522  }
523
524  /**
525   * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph
526   * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges}
527   * (and associated edge values) from {@code graph} for which both nodes are contained by {@code
528   * nodes}.
529   *
530   * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph
531   */
532  public static <N, V> MutableValueGraph<N, V> inducedSubgraph(
533      ValueGraph<N, V> graph, Iterable<? extends N> nodes) {
534    MutableValueGraph<N, V> subgraph = ValueGraphBuilder.from(graph).build();
535    for (N node : nodes) {
536      subgraph.addNode(node);
537    }
538    for (N node : subgraph.nodes()) {
539      for (N successorNode : graph.successors(node)) {
540        if (subgraph.nodes().contains(successorNode)) {
541          subgraph.putEdgeValue(node, successorNode, graph.edgeValue(node, successorNode));
542        }
543      }
544    }
545    return subgraph;
546  }
547
548  /**
549   * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph
550   * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges}
551   * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are
552   * both contained by {@code nodes}.
553   *
554   * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph
555   */
556  public static <N, E> MutableNetwork<N, E> inducedSubgraph(
557      Network<N, E> network, Iterable<? extends N> nodes) {
558    MutableNetwork<N, E> subgraph = NetworkBuilder.from(network).build();
559    for (N node : nodes) {
560      subgraph.addNode(node);
561    }
562    for (N node : subgraph.nodes()) {
563      for (E edge : network.outEdges(node)) {
564        N successorNode = network.incidentNodes(edge).adjacentNode(node);
565        if (subgraph.nodes().contains(successorNode)) {
566          subgraph.addEdge(node, successorNode, edge);
567        }
568      }
569    }
570    return subgraph;
571  }
572
573  /** Creates a mutable copy of {@code graph} with the same nodes and edges. */
574  public static <N> MutableGraph<N> copyOf(Graph<N> graph) {
575    MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build();
576    for (N node : graph.nodes()) {
577      copy.addNode(node);
578    }
579    for (EndpointPair<N> edge : graph.edges()) {
580      copy.putEdge(edge.nodeU(), edge.nodeV());
581    }
582    return copy;
583  }
584
585  /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */
586  public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) {
587    MutableValueGraph<N, V> copy =
588        ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build();
589    for (N node : graph.nodes()) {
590      copy.addNode(node);
591    }
592    for (EndpointPair<N> edge : graph.edges()) {
593      copy.putEdgeValue(edge.nodeU(), edge.nodeV(), graph.edgeValue(edge.nodeU(), edge.nodeV()));
594    }
595    return copy;
596  }
597
598  /** Creates a mutable copy of {@code network} with the same nodes and edges. */
599  public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) {
600    MutableNetwork<N, E> copy =
601        NetworkBuilder.from(network)
602            .expectedNodeCount(network.nodes().size())
603            .expectedEdgeCount(network.edges().size())
604            .build();
605    for (N node : network.nodes()) {
606      copy.addNode(node);
607    }
608    for (E edge : network.edges()) {
609      EndpointPair<N> endpointPair = network.incidentNodes(edge);
610      copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge);
611    }
612    return copy;
613  }
614
615  @CanIgnoreReturnValue
616  static int checkNonNegative(int value) {
617    checkArgument(value >= 0, "Not true that %s is non-negative.", value);
618    return value;
619  }
620
621  @CanIgnoreReturnValue
622  static int checkPositive(int value) {
623    checkArgument(value > 0, "Not true that %s is positive.", value);
624    return value;
625  }
626
627  @CanIgnoreReturnValue
628  static long checkNonNegative(long value) {
629    checkArgument(value >= 0, "Not true that %s is non-negative.", value);
630    return value;
631  }
632
633  @CanIgnoreReturnValue
634  static long checkPositive(long value) {
635    checkArgument(value > 0, "Not true that %s is positive.", value);
636    return value;
637  }
638
639  /**
640   * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on
641   * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have
642   * been already explored. Any node that has not been explored will not have a state at all.
643   */
644  private enum NodeVisitState {
645    PENDING,
646    COMPLETE
647  }
648}