001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static java.lang.Double.NEGATIVE_INFINITY; 019import static java.lang.Double.NaN; 020import static java.lang.Double.POSITIVE_INFINITY; 021import static java.util.Arrays.sort; 022import static java.util.Collections.unmodifiableMap; 023 024import com.google.common.annotations.Beta; 025import com.google.common.annotations.GwtIncompatible; 026import com.google.common.primitives.Doubles; 027import com.google.common.primitives.Ints; 028import java.math.RoundingMode; 029import java.util.Collection; 030import java.util.HashMap; 031import java.util.Map; 032 033/** 034 * Provides a fluent API for calculating 035 * <a href="http://en.wikipedia.org/wiki/Quantile">quantiles</a>. 036 * 037 * <h3>Examples</h3> 038 * 039 * <p>To compute the median: 040 * <pre> {@code 041 * 042 * double myMedian = median().compute(myDataset);}</pre> 043 * 044 * where {@link #median()} has been statically imported. 045 * 046 * <p>To compute the 99th percentile: 047 * <pre> {@code 048 * 049 * double myPercentile99 = percentiles().index(99).compute(myDataset);}</pre> 050 * 051 * where {@link #percentiles()} has been statically imported. 052 * 053 * <p>To compute median and the 90th and 99th percentiles: 054 * <pre> {@code 055 * 056 * Map<Integer, Double> myPercentiles = 057 * percentiles().indexes(50, 90, 99).compute(myDataset);}</pre> 058 * 059 * where {@link #percentiles()} has been statically imported: {@code myPercentiles} maps the keys 060 * 50, 90, and 99, to their corresponding quantile values. 061 * 062 * <p>To compute quartiles, use {@link #quartiles()} instead of {@link #percentiles()}. To compute 063 * arbitrary q-quantiles, use {@link #scale scale(q)}. 064 * 065 * <p>These examples all take a copy of your dataset. If you have a double array, you are okay with 066 * it being arbitrarily reordered, and you want to avoid that copy, you can use 067 * {@code computeInPlace} instead of {@code compute}. 068 * 069 * <h3>Definition and notes on interpolation</h3> 070 * 071 * <p>The definition of the kth q-quantile of N values is as follows: define x = k * (N - 1) / q; if 072 * x is an integer, the result is the value which would appear at index x in the sorted dataset 073 * (unless there are {@link Double#NaN NaN} values, see below); otherwise, the result is the average 074 * of the values which would appear at the indexes floor(x) and ceil(x) weighted by (1-frac(x)) and 075 * frac(x) respectively. This is the same definition as used by Excel and by S, it is the Type 7 076 * definition in 077 * <a href="http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html">R</a>, and it is 078 * described by 079 * <a href="http://en.wikipedia.org/wiki/Quantile#Estimating_the_quantiles_of_a_population"> 080 * wikipedia</a> as providing "Linear interpolation of the modes for the order statistics for the 081 * uniform distribution on [0,1]." 082 * 083 * <h3>Handling of non-finite values</h3> 084 * 085 * <p>If any values in the input are {@link Double#NaN NaN} then all values returned are 086 * {@link Double#NaN NaN}. (This is the one occasion when the behaviour is not the same as you'd get 087 * from sorting with {@link java.util.Arrays#sort(double[]) Arrays.sort(double[])} or 088 * {@link java.util.Collections#sort(java.util.List) Collections.sort(List<Double>)} and 089 * selecting the required value(s). Those methods would sort {@link Double#NaN NaN} as if it is 090 * greater than any other value and place them at the end of the dataset, even after 091 * {@link Double#POSITIVE_INFINITY POSITIVE_INFINITY}.) 092 * 093 * <p>Otherwise, {@link Double#NEGATIVE_INFINITY NEGATIVE_INFINITY} and 094 * {@link Double#POSITIVE_INFINITY POSITIVE_INFINITY} sort to the beginning and the end of the 095 * dataset, as you would expect. 096 * 097 * <p>If required to do a weighted average between an infinity and a finite value, or between an 098 * infinite value and itself, the infinite value is returned. If required to do a weighted average 099 * between {@link Double#NEGATIVE_INFINITY NEGATIVE_INFINITY} and {@link Double#POSITIVE_INFINITY 100 * POSITIVE_INFINITY}, {@link Double#NaN NaN} is returned (note that this will only happen if the 101 * dataset contains no finite values). 102 * 103 * <h3>Performance</h3> 104 * 105 * <p>The average time complexity of the computation is O(N) in the size of the dataset. There is a 106 * worst case time complexity of O(N^2). You are extremely unlikely to hit this quadratic case on 107 * randomly ordered data (the probability decreases faster than exponentially in N), but if you are 108 * passing in unsanitized user data then a malicious user could force it. A light shuffle of the 109 * data using an unpredictable seed should normally be enough to thwart this attack. 110 * 111 * <p>The time taken to compute multiple quantiles on the same dataset using {@link Scale#indexes 112 * indexes} is generally less than the total time taken to compute each of them separately, and 113 * sometimes much less. For example, on a large enough dataset, computing the 90th and 99th 114 * percentiles together takes about 55% as long as computing them separately. 115 * 116 * <p>When calling {@link ScaleAndIndex#compute} (in {@linkplain ScaleAndIndexes#compute either 117 * form}), the memory requirement is 8*N bytes for the copy of the dataset plus an overhead which is 118 * independent of N (but depends on the quantiles being computed). When calling 119 * {@link ScaleAndIndex#computeInPlace computeInPlace} (in 120 * {@linkplain ScaleAndIndexes#computeInPlace either form}), only the overhead is required. The 121 * number of object allocations is independent of N in both cases. 122 * 123 * @author Pete Gillin 124 * @since 20.0 125 */ 126@Beta 127@GwtIncompatible 128public final class Quantiles { 129 130 /** 131 * Specifies the computation of a median (i.e. the 1st 2-quantile). 132 */ 133 public static ScaleAndIndex median() { 134 return scale(2).index(1); 135 } 136 137 /** 138 * Specifies the computation of quartiles (i.e. 4-quantiles). 139 */ 140 public static Scale quartiles() { 141 return scale(4); 142 } 143 144 /** 145 * Specifies the computation of percentiles (i.e. 100-quantiles). 146 */ 147 public static Scale percentiles() { 148 return scale(100); 149 } 150 151 /** 152 * Specifies the computation of q-quantiles. 153 * 154 * @param scale the scale for the quantiles to be calculated, i.e. the q of the q-quantiles, which 155 * must be positive 156 */ 157 public static Scale scale(int scale) { 158 return new Scale(scale); 159 } 160 161 /** 162 * Describes the point in a fluent API chain where only the scale (i.e. the q in q-quantiles) has 163 * been specified. 164 */ 165 public static final class Scale { 166 167 private final int scale; 168 169 private Scale(int scale) { 170 checkArgument(scale > 0, "Quantile scale must be positive"); 171 this.scale = scale; 172 } 173 174 /** 175 * Specifies a single quantile index to be calculated, i.e. the k in the kth q-quantile. 176 * 177 * @param index the quantile index, which must be in the inclusive range [0, q] for q-quantiles 178 */ 179 public ScaleAndIndex index(int index) { 180 return new ScaleAndIndex(scale, index); 181 } 182 183 /** 184 * Specifies multiple quantile indexes to be calculated, each index being the k in the kth 185 * q-quantile. 186 * 187 * @param indexes the quantile indexes, each of which must be in the inclusive range [0, q] for 188 * q-quantiles; the order of the indexes is unimportant, duplicates will be ignored, and the 189 * set will be snapshotted when this method is called 190 */ 191 public ScaleAndIndexes indexes(int... indexes) { 192 return new ScaleAndIndexes(scale, indexes.clone()); 193 } 194 195 /** 196 * Specifies multiple quantile indexes to be calculated, each index being the k in the kth 197 * q-quantile. 198 * 199 * @param indexes the quantile indexes, each of which must be in the inclusive range [0, q] for 200 * q-quantiles; the order of the indexes is unimportant, duplicates will be ignored, and the 201 * set will be snapshotted when this method is called 202 */ 203 public ScaleAndIndexes indexes(Collection<Integer> indexes) { 204 return new ScaleAndIndexes(scale, Ints.toArray(indexes)); 205 } 206 } 207 208 /** 209 * Describes the point in a fluent API chain where the scale and a single quantile index (i.e. the 210 * q and the k in the kth q-quantile) have been specified. 211 */ 212 public static final class ScaleAndIndex { 213 214 private final int scale; 215 private final int index; 216 217 private ScaleAndIndex(int scale, int index) { 218 checkIndex(index, scale); 219 this.scale = scale; 220 this.index = index; 221 } 222 223 /** 224 * Computes the quantile value of the given dataset. 225 * 226 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 227 * cast to doubles (with any associated lost of precision), and which will not be mutated by 228 * this call (it is copied instead) 229 * @return the quantile value 230 */ 231 public double compute(Collection<? extends Number> dataset) { 232 return computeInPlace(Doubles.toArray(dataset)); 233 } 234 235 /** 236 * Computes the quantile value of the given dataset. 237 * 238 * @param dataset the dataset to do the calculation on, which must be non-empty, which will not 239 * be mutated by this call (it is copied instead) 240 * @return the quantile value 241 */ 242 public double compute(double... dataset) { 243 return computeInPlace(dataset.clone()); 244 } 245 246 /** 247 * Computes the quantile value of the given dataset. 248 * 249 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 250 * cast to doubles (with any associated lost of precision), and which will not be mutated by 251 * this call (it is copied instead) 252 * @return the quantile value 253 */ 254 public double compute(long... dataset) { 255 return computeInPlace(longsToDoubles(dataset)); 256 } 257 258 /** 259 * Computes the quantile value of the given dataset. 260 * 261 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 262 * cast to doubles, and which will not be mutated by this call (it is copied instead) 263 * @return the quantile value 264 */ 265 public double compute(int... dataset) { 266 return computeInPlace(intsToDoubles(dataset)); 267 } 268 269 /** 270 * Computes the quantile value of the given dataset, performing the computation in-place. 271 * 272 * @param dataset the dataset to do the calculation on, which must be non-empty, and which will 273 * be arbitrarily reordered by this method call 274 * @return the quantile value 275 */ 276 public double computeInPlace(double... dataset) { 277 checkArgument(dataset.length > 0, "Cannot calculate quantiles of an empty dataset"); 278 if (containsNaN(dataset)) { 279 return NaN; 280 } 281 282 // Calculate the quotient and remainder in the integer division x = k * (N-1) / q, i.e. 283 // index * (dataset.length - 1) / scale. If there is no remainder, we can just find the value 284 // whose index in the sorted dataset equals the quotient; if there is a remainder, we 285 // interpolate between that and the next value. 286 287 // Since index and (dataset.length - 1) are non-negative ints, their product can be expressed 288 // as a long, without risk of overflow: 289 long numerator = (long) index * (dataset.length - 1); 290 // Since scale is a positive int, index is in [0, scale], and (dataset.length - 1) is a 291 // non-negative int, we can do long-arithmetic on index * (dataset.length - 1) / scale to get 292 // a rounded ratio and a remainder which can be expressed as ints, without risk of overflow: 293 int quotient = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN); 294 int remainder = (int) (numerator - (long) quotient * scale); 295 selectInPlace(quotient, dataset, 0, dataset.length - 1); 296 if (remainder == 0) { 297 return dataset[quotient]; 298 } else { 299 selectInPlace(quotient + 1, dataset, quotient + 1, dataset.length - 1); 300 return interpolate(dataset[quotient], dataset[quotient + 1], remainder, scale); 301 } 302 } 303 } 304 305 /** 306 * Describes the point in a fluent API chain where the scale and a multiple quantile indexes (i.e. 307 * the q and a set of values for the k in the kth q-quantile) have been specified. 308 */ 309 public static final class ScaleAndIndexes { 310 311 private final int scale; 312 private final int[] indexes; 313 314 private ScaleAndIndexes(int scale, int[] indexes) { 315 for (int index : indexes) { 316 checkIndex(index, scale); 317 } 318 this.scale = scale; 319 this.indexes = indexes; 320 } 321 322 /** 323 * Computes the quantile values of the given dataset. 324 * 325 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 326 * cast to doubles (with any associated lost of precision), and which will not be mutated by 327 * this call (it is copied instead) 328 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 329 * the values the corresponding quantile values 330 */ 331 public Map<Integer, Double> compute(Collection<? extends Number> dataset) { 332 return computeInPlace(Doubles.toArray(dataset)); 333 } 334 335 /** 336 * Computes the quantile values of the given dataset. 337 * 338 * @param dataset the dataset to do the calculation on, which must be non-empty, which will not 339 * be mutated by this call (it is copied instead) 340 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 341 * the values the corresponding quantile values 342 */ 343 public Map<Integer, Double> compute(double... dataset) { 344 return computeInPlace(dataset.clone()); 345 } 346 347 /** 348 * Computes the quantile values of the given dataset. 349 * 350 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 351 * cast to doubles (with any associated lost of precision), and which will not be mutated by 352 * this call (it is copied instead) 353 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 354 * the values the corresponding quantile values 355 */ 356 public Map<Integer, Double> compute(long... dataset) { 357 return computeInPlace(longsToDoubles(dataset)); 358 } 359 360 /** 361 * Computes the quantile values of the given dataset. 362 * 363 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 364 * cast to doubles, and which will not be mutated by this call (it is copied instead) 365 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 366 * the values the corresponding quantile values 367 */ 368 public Map<Integer, Double> compute(int... dataset) { 369 return computeInPlace(intsToDoubles(dataset)); 370 } 371 372 /** 373 * Computes the quantile values of the given dataset, performing the computation in-place. 374 * 375 * @param dataset the dataset to do the calculation on, which must be non-empty, and which will 376 * be arbitrarily reordered by this method call 377 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 378 * the values the corresponding quantile values 379 */ 380 public Map<Integer, Double> computeInPlace(double... dataset) { 381 checkArgument(dataset.length > 0, "Cannot calculate quantiles of an empty dataset"); 382 if (containsNaN(dataset)) { 383 Map<Integer, Double> nanMap = new HashMap<Integer, Double>(); 384 for (int index : indexes) { 385 nanMap.put(index, NaN); 386 } 387 return unmodifiableMap(nanMap); 388 } 389 390 // Calculate the quotients and remainders in the integer division x = k * (N - 1) / q, i.e. 391 // index * (dataset.length - 1) / scale for each index in indexes. For each, if there is no 392 // remainder, we can just select the value whose index in the sorted dataset equals the 393 // quotient; if there is a remainder, we interpolate between that and the next value. 394 395 int[] quotients = new int[indexes.length]; 396 int[] remainders = new int[indexes.length]; 397 // The indexes to select. In the worst case, we'll need one each side of each quantile. 398 int[] requiredSelections = new int[indexes.length * 2]; 399 int requiredSelectionsCount = 0; 400 for (int i = 0; i < indexes.length; i++) { 401 // Since index and (dataset.length - 1) are non-negative ints, their product can be 402 // expressed as a long, without risk of overflow: 403 long numerator = (long) indexes[i] * (dataset.length - 1); 404 // Since scale is a positive int, index is in [0, scale], and (dataset.length - 1) is a 405 // non-negative int, we can do long-arithmetic on index * (dataset.length - 1) / scale to 406 // get a rounded ratio and a remainder which can be expressed as ints, without risk of 407 // overflow: 408 int quotient = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN); 409 int remainder = (int) (numerator - (long) quotient * scale); 410 quotients[i] = quotient; 411 remainders[i] = remainder; 412 requiredSelections[requiredSelectionsCount] = quotient; 413 requiredSelectionsCount++; 414 if (remainder != 0) { 415 requiredSelections[requiredSelectionsCount] = quotient + 1; 416 requiredSelectionsCount++; 417 } 418 } 419 sort(requiredSelections, 0, requiredSelectionsCount); 420 selectAllInPlace( 421 requiredSelections, 0, requiredSelectionsCount - 1, dataset, 0, dataset.length - 1); 422 Map<Integer, Double> ret = new HashMap<Integer, Double>(); 423 for (int i = 0; i < indexes.length; i++) { 424 int quotient = quotients[i]; 425 int remainder = remainders[i]; 426 if (remainder == 0) { 427 ret.put(indexes[i], dataset[quotient]); 428 } else { 429 ret.put( 430 indexes[i], interpolate(dataset[quotient], dataset[quotient + 1], remainder, scale)); 431 } 432 } 433 return unmodifiableMap(ret); 434 } 435 } 436 437 /** 438 * Returns whether any of the values in {@code dataset} are {@code NaN}. 439 */ 440 private static boolean containsNaN(double... dataset) { 441 for (double value : dataset) { 442 if (Double.isNaN(value)) { 443 return true; 444 } 445 } 446 return false; 447 } 448 449 /** 450 * Returns a value a fraction {@code (remainder / scale)} of the way between {@code lower} and 451 * {@code upper}. Assumes that {@code lower <= upper}. Correctly handles infinities (but not 452 * {@code NaN}). 453 */ 454 private static double interpolate(double lower, double upper, double remainder, double scale) { 455 if (lower == NEGATIVE_INFINITY) { 456 if (upper == POSITIVE_INFINITY) { 457 // Return NaN when lower == NEGATIVE_INFINITY and upper == POSITIVE_INFINITY: 458 return NaN; 459 } 460 // Return NEGATIVE_INFINITY when NEGATIVE_INFINITY == lower <= upper < POSITIVE_INFINITY: 461 return NEGATIVE_INFINITY; 462 } 463 if (upper == POSITIVE_INFINITY) { 464 // Return POSITIVE_INFINITY when NEGATIVE_INFINITY < lower <= upper == POSITIVE_INFINITY: 465 return POSITIVE_INFINITY; 466 } 467 return lower + (upper - lower) * remainder / scale; 468 } 469 470 private static void checkIndex(int index, int scale) { 471 if (index < 0 || index > scale) { 472 throw new IllegalArgumentException( 473 "Quantile indexes must be between 0 and the scale, which is " + scale); 474 } 475 } 476 477 private static double[] longsToDoubles(long[] longs) { 478 int len = longs.length; 479 double[] doubles = new double[len]; 480 for (int i = 0; i < len; i++) { 481 doubles[i] = longs[i]; 482 } 483 return doubles; 484 } 485 486 private static double[] intsToDoubles(int[] ints) { 487 int len = ints.length; 488 double[] doubles = new double[len]; 489 for (int i = 0; i < len; i++) { 490 doubles[i] = ints[i]; 491 } 492 return doubles; 493 } 494 495 /** 496 * Performs an in-place selection to find the element which would appear at a given index in a 497 * dataset if it were sorted. The following preconditions should hold: 498 * <ul> 499 * <li>{@code required}, {@code from}, and {@code to} should all be indexes into {@code array}; 500 * <li>{@code required} should be in the range [{@code from}, {@code to}]; 501 * <li>all the values with indexes in the range [0, {@code from}) should be less than or equal to 502 * all the values with indexes in the range [{@code from}, {@code to}]; 503 * <li>all the values with indexes in the range ({@code to}, {@code array.length - 1}] should be 504 * greater than or equal to all the values with indexes in the range [{@code from}, {@code to}]. 505 * </ul> 506 * This method will reorder the values with indexes in the range [{@code from}, {@code to}] such 507 * that all the values with indexes in the range [{@code from}, {@code required}) are less than or 508 * equal to the value with index {@code required}, and all the values with indexes in the range 509 * ({@code required}, {@code to}] are greater than or equal to that value. Therefore, the value at 510 * {@code required} is the value which would appear at that index in the sorted dataset. 511 */ 512 private static void selectInPlace(int required, double[] array, int from, int to) { 513 // If we are looking for the least element in the range, we can just do a linear search for it. 514 // (We will hit this whenever we are doing quantile interpolation: our first selection finds 515 // the lower value, our second one finds the upper value by looking for the next least element.) 516 if (required == from) { 517 int min = from; 518 for (int index = from + 1; index <= to; index++) { 519 if (array[min] > array[index]) { 520 min = index; 521 } 522 } 523 if (min != from) { 524 swap(array, min, from); 525 } 526 return; 527 } 528 529 // Let's play quickselect! We'll repeatedly partition the range [from, to] containing the 530 // required element, as long as it has more than one element. 531 while (to > from) { 532 int partitionPoint = partition(array, from, to); 533 if (partitionPoint >= required) { 534 to = partitionPoint - 1; 535 } 536 if (partitionPoint <= required) { 537 from = partitionPoint + 1; 538 } 539 } 540 } 541 542 /** 543 * Performs a partition operation on the slice of {@code array} with elements in the range 544 * [{@code from}, {@code to}]. Uses the median of {@code from}, {@code to}, and the midpoint 545 * between them as a pivot. Returns the index which the slice is partitioned around, i.e. if it 546 * returns {@code ret} then we know that the values with indexes in [{@code from}, {@code ret}) 547 * are less than or equal to the value at {@code ret} and the values with indexes in ({@code ret}, 548 * {@code to}] are greater than or equal to that. 549 */ 550 private static int partition(double[] array, int from, int to) { 551 // Select a pivot, and move it to the start of the slice i.e. to index from. 552 movePivotToStartOfSlice(array, from, to); 553 double pivot = array[from]; 554 555 // Move all elements with indexes in (from, to] which are greater than the pivot to the end of 556 // the array. Keep track of where those elements begin. 557 int partitionPoint = to; 558 for (int i = to; i > from; i--) { 559 if (array[i] > pivot) { 560 swap(array, partitionPoint, i); 561 partitionPoint--; 562 } 563 } 564 565 // We now know that all elements with indexes in (from, partitionPoint] are less than or equal 566 // to the pivot at from, and all elements with indexes in (partitionPoint, to] are greater than 567 // it. We swap the pivot into partitionPoint and we know the array is partitioned around that. 568 swap(array, from, partitionPoint); 569 return partitionPoint; 570 } 571 572 /** 573 * Selects the pivot to use, namely the median of the values at {@code from}, {@code to}, and 574 * halfway between the two (rounded down), from {@code array}, and ensure (by swapping elements if 575 * necessary) that that pivot value appears at the start of the slice i.e. at {@code from}. 576 * Expects that {@code from} is strictly less than {@code to}. 577 */ 578 private static void movePivotToStartOfSlice(double[] array, int from, int to) { 579 int mid = (from + to) >>> 1; 580 // We want to make a swap such that either array[to] <= array[from] <= array[mid], or 581 // array[mid] <= array[from] <= array[to]. We know that from < to, so we know mid < to 582 // (although it's possible that mid == from, if to == from + 1). Note that the postcondition 583 // would be impossible to fulfil if mid == to unless we also have array[from] == array[to]. 584 boolean toLessThanMid = (array[to] < array[mid]); 585 boolean midLessThanFrom = (array[mid] < array[from]); 586 boolean toLessThanFrom = (array[to] < array[from]); 587 if (toLessThanMid == midLessThanFrom) { 588 // Either array[to] < array[mid] < array[from] or array[from] <= array[mid] <= array[to]. 589 swap(array, mid, from); 590 } else if (toLessThanMid != toLessThanFrom) { 591 // Either array[from] <= array[to] < array[mid] or array[mid] <= array[to] < array[from]. 592 swap(array, from, to); 593 } 594 // The postcondition now holds. So the median, our chosen pivot, is at from. 595 } 596 597 /** 598 * Performs an in-place selection, like {@link #selectInPlace}, to select all the indexes 599 * {@code allRequired[i]} for {@code i} in the range [{@code requiredFrom}, {@code requiredTo}]. 600 * These indexes must be sorted in the array and must all be in the range [{@code from}, 601 * {@code to}]. 602 */ 603 private static void selectAllInPlace( 604 int[] allRequired, int requiredFrom, int requiredTo, double[] array, int from, int to) { 605 // Choose the first selection to do... 606 int requiredChosen = chooseNextSelection(allRequired, requiredFrom, requiredTo, from, to); 607 int required = allRequired[requiredChosen]; 608 609 // ...do the first selection... 610 selectInPlace(required, array, from, to); 611 612 // ...then recursively perform the selections in the range below... 613 int requiredBelow = requiredChosen - 1; 614 while (requiredBelow >= requiredFrom && allRequired[requiredBelow] == required) { 615 requiredBelow--; // skip duplicates of required in the range below 616 } 617 if (requiredBelow >= requiredFrom) { 618 selectAllInPlace(allRequired, requiredFrom, requiredBelow, array, from, required - 1); 619 } 620 621 // ...and then recursively perform the selections in the range above. 622 int requiredAbove = requiredChosen + 1; 623 while (requiredAbove <= requiredTo && allRequired[requiredAbove] == required) { 624 requiredAbove++; // skip duplicates of required in the range above 625 } 626 if (requiredAbove <= requiredTo) { 627 selectAllInPlace(allRequired, requiredAbove, requiredTo, array, required + 1, to); 628 } 629 } 630 631 /** 632 * Chooses the next selection to do from the required selections. It is required that the array 633 * {@code allRequired} is sorted and that {@code allRequired[i]} are in the range [{@code from}, 634 * {@code to}] for all {@code i} in the range [{@code requiredFrom}, {@code requiredTo}]. The 635 * value returned by this method is the {@code i} in that range such that {@code allRequired[i]} 636 * is as close as possible to the center of the range [{@code from}, {@code to}]. Choosing the 637 * value closest to the center of the range first is the most efficient strategy because it 638 * minimizes the size of the subranges from which the remaining selections must be done. 639 */ 640 private static int chooseNextSelection( 641 int[] allRequired, int requiredFrom, int requiredTo, int from, int to) { 642 if (requiredFrom == requiredTo) { 643 return requiredFrom; // only one thing to choose, so choose it 644 } 645 646 // Find the center and round down. The true center is either centerFloor or halfway between 647 // centerFloor and centerFloor + 1. 648 int centerFloor = (from + to) >>> 1; 649 650 // Do a binary search until we're down to the range of two which encloses centerFloor (unless 651 // all values are lower or higher than centerFloor, in which case we find the two highest or 652 // lowest respectively). If centerFloor is in allRequired, we will definitely find it. If not, 653 // but centerFloor + 1 is, we'll definitely find that. The closest value to the true (unrounded) 654 // center will be at either low or high. 655 int low = requiredFrom; 656 int high = requiredTo; 657 while (high > low + 1) { 658 int mid = (low + high) >>> 1; 659 if (allRequired[mid] > centerFloor) { 660 high = mid; 661 } else if (allRequired[mid] < centerFloor) { 662 low = mid; 663 } else { 664 return mid; // allRequired[mid] = centerFloor, so we can't get closer than that 665 } 666 } 667 668 // Now pick the closest of the two candidates. Note that there is no rounding here. 669 if (from + to - allRequired[low] - allRequired[high] > 0) { 670 return high; 671 } else { 672 return low; 673 } 674 } 675 676 /** 677 * Swaps the values at {@code i} and {@code j} in {@code array}. 678 */ 679 private static void swap(double[] array, int i, int j) { 680 double temp = array[i]; 681 array[i] = array[j]; 682 array[j] = temp; 683 } 684}