001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static java.lang.Double.NEGATIVE_INFINITY; 019import static java.lang.Double.NaN; 020import static java.lang.Double.POSITIVE_INFINITY; 021import static java.util.Arrays.sort; 022import static java.util.Collections.unmodifiableMap; 023 024import com.google.common.annotations.Beta; 025import com.google.common.annotations.GwtIncompatible; 026import com.google.common.primitives.Doubles; 027import com.google.common.primitives.Ints; 028import java.math.RoundingMode; 029import java.util.Collection; 030import java.util.HashMap; 031import java.util.Map; 032 033/** 034 * Provides a fluent API for calculating 035 * <a href="http://en.wikipedia.org/wiki/Quantile">quantiles</a>. 036 * 037 * <h3>Examples</h3> 038 * 039 * <p>To compute the median: 040 * <pre> {@code 041 * 042 * double myMedian = median().compute(myDataset);}</pre> 043 * 044 * where {@link #median()} has been statically imported. 045 * 046 * <p>To compute the 99th percentile: 047 * <pre> {@code 048 * 049 * double myPercentile99 = percentiles().index(99).compute(myDataset);}</pre> 050 * 051 * where {@link #percentiles()} has been statically imported. 052 * 053 * <p>To compute median and the 90th and 99th percentiles: 054 * <pre> {@code 055 * 056 * Map<Integer, Double> myPercentiles = 057 * percentiles().indexes(50, 90, 99).compute(myDataset);}</pre> 058 * 059 * where {@link #percentiles()} has been statically imported: {@code myPercentiles} maps the keys 060 * 50, 90, and 99, to their corresponding quantile values. 061 * 062 * <p>To compute quartiles, use {@link #quartiles()} instead of {@link #percentiles()}. To compute 063 * arbitrary q-quantiles, use {@link #scale scale(q)}. 064 * 065 * <p>These examples all take a copy of your dataset. If you have a double array, you are okay with 066 * it being arbitrarily reordered, and you want to avoid that copy, you can use 067 * {@code computeInPlace} instead of {@code compute}. 068 * 069 * <h3>Definition and notes on interpolation</h3> 070 * 071 * <p>The definition of the kth q-quantile of N values is as follows: define x = k * (N - 1) / q; if 072 * x is an integer, the result is the value which would appear at index x in the sorted dataset 073 * (unless there are {@link Double#NaN NaN} values, see below); otherwise, the result is the average 074 * of the values which would appear at the indexes floor(x) and ceil(x) weighted by (1-frac(x)) and 075 * frac(x) respectively. This is the same definition as used by Excel and by S, it is the Type 7 076 * definition in 077 * <a href="http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html">R</a>, and it is 078 * described by 079 * <a href="http://en.wikipedia.org/wiki/Quantile#Estimating_the_quantiles_of_a_population"> 080 * wikipedia</a> as providing "Linear interpolation of the modes for the order statistics for the 081 * uniform distribution on [0,1]." 082 * 083 * <h3>Handling of non-finite values</h3> 084 * 085 * <p>If any values in the input are {@link Double#NaN NaN} then all values returned are 086 * {@link Double#NaN NaN}. (This is the one occasion when the behaviour is not the same as you'd get 087 * from sorting with {@link java.util.Arrays#sort(double[]) Arrays.sort(double[])} or 088 * {@link java.util.Collections#sort(java.util.List) Collections.sort(List<Double>)} and 089 * selecting the required value(s). Those methods would sort {@link Double#NaN NaN} as if it is 090 * greater than any other value and place them at the end of the dataset, even after 091 * {@link Double#POSITIVE_INFINITY POSITIVE_INFINITY}.) 092 * 093 * <p>Otherwise, {@link Double#NEGATIVE_INFINITY NEGATIVE_INFINITY} and 094 * {@link Double#POSITIVE_INFINITY POSITIVE_INFINITY} sort to the beginning and the end of the 095 * dataset, as you would expect. 096 * 097 * <p>If required to do a weighted average between an infinity and a finite value, or between an 098 * infinite value and itself, the infinite value is returned. If required to do a weighted average 099 * between {@link Double#NEGATIVE_INFINITY NEGATIVE_INFINITY} and {@link Double#POSITIVE_INFINITY 100 * POSITIVE_INFINITY}, {@link Double#NaN NaN} is returned (note that this will only happen if the 101 * dataset contains no finite values). 102 * 103 * <h3>Performance</h3> 104 * 105 * <p>The average time complexity of the computation is O(N) in the size of the dataset. There is a 106 * worst case time complexity of O(N^2). You are extremely unlikely to hit this quadratic case on 107 * randomly ordered data (the probability decreases faster than exponentially in N), but if you are 108 * passing in unsanitized user data then a malicious user could force it. A light shuffle of the 109 * data using an unpredictable seed should normally be enough to thwart this attack. 110 * 111 * <p>The time taken to compute multiple quantiles on the same dataset using {@link Scale#indexes 112 * indexes} is generally less than the total time taken to compute each of them separately, and 113 * sometimes much less. For example, on a large enough dataset, computing the 90th and 99th 114 * percentiles together takes about 55% as long as computing them separately. 115 * 116 * <p>When calling {@link ScaleAndIndex#compute} (in {@linkplain ScaleAndIndexes#compute either 117 * form}), the memory requirement is 8*N bytes for the copy of the dataset plus an overhead which is 118 * independent of N (but depends on the quantiles being computed). When calling 119 * {@link ScaleAndIndex#computeInPlace computeInPlace} (in 120 * {@linkplain ScaleAndIndexes#computeInPlace either form}), only the overhead is required. The 121 * number of object allocations is independent of N in both cases. 122 * 123 * @author Pete Gillin 124 * @since 20.0 125 */ 126@Beta 127@GwtIncompatible 128public final class Quantiles { 129 130 /** 131 * Specifies the computation of a median (i.e. the 1st 2-quantile). 132 */ 133 public static ScaleAndIndex median() { 134 return scale(2).index(1); 135 } 136 137 /** 138 * Specifies the computation of quartiles (i.e. 4-quantiles). 139 */ 140 public static Scale quartiles() { 141 return scale(4); 142 } 143 144 /** 145 * Specifies the computation of percentiles (i.e. 100-quantiles). 146 */ 147 public static Scale percentiles() { 148 return scale(100); 149 } 150 151 /** 152 * Specifies the computation of q-quantiles. 153 * 154 * @param scale the scale for the quantiles to be calculated, i.e. the q of the q-quantiles, which 155 * must be positive 156 */ 157 public static Scale scale(int scale) { 158 return new Scale(scale); 159 } 160 161 /** 162 * Describes the point in a fluent API chain where only the scale (i.e. the q in q-quantiles) has 163 * been specified. 164 */ 165 public static final class Scale { 166 167 private final int scale; 168 169 private Scale(int scale) { 170 checkArgument(scale > 0, "Quantile scale must be positive"); 171 this.scale = scale; 172 } 173 174 /** 175 * Specifies a single quantile index to be calculated, i.e. the k in the kth q-quantile. 176 * 177 * @param index the quantile index, which must be in the inclusive range [0, q] for q-quantiles 178 */ 179 public ScaleAndIndex index(int index) { 180 return new ScaleAndIndex(scale, index); 181 } 182 183 /** 184 * Specifies multiple quantile indexes to be calculated, each index being the k in the kth 185 * q-quantile. 186 * 187 * @param indexes the quantile indexes, each of which must be in the inclusive range [0, q] for 188 * q-quantiles; the order of the indexes is unimportant, duplicates will be ignored, and the 189 * set will be snapshotted when this method is called 190 */ 191 public ScaleAndIndexes indexes(int... indexes) { 192 return new ScaleAndIndexes(scale, indexes.clone()); 193 } 194 195 /** 196 * Specifies multiple quantile indexes to be calculated, each index being the k in the kth 197 * q-quantile. 198 * 199 * @param indexes the quantile indexes, each of which must be in the inclusive range [0, q] for 200 * q-quantiles; the order of the indexes is unimportant, duplicates will be ignored, and the 201 * set will be snapshotted when this method is called 202 */ 203 public ScaleAndIndexes indexes(Collection<Integer> indexes) { 204 return new ScaleAndIndexes(scale, Ints.toArray(indexes)); 205 } 206 } 207 208 /** 209 * Describes the point in a fluent API chain where the scale and a single quantile index (i.e. the 210 * q and the k in the kth q-quantile) have been specified. 211 */ 212 public static final class ScaleAndIndex { 213 214 private final int scale; 215 private final int index; 216 217 private ScaleAndIndex(int scale, int index) { 218 checkIndex(index, scale); 219 this.scale = scale; 220 this.index = index; 221 } 222 223 /** 224 * Computes the quantile value of the given dataset. 225 * 226 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 227 * cast to doubles (with any associated lost of precision), and which will not be mutated by 228 * this call (it is copied instead) 229 * @return the quantile value 230 */ 231 public double compute(Collection<? extends Number> dataset) { 232 return computeInPlace(Doubles.toArray(dataset)); 233 } 234 235 /** 236 * Computes the quantile value of the given dataset. 237 * 238 * @param dataset the dataset to do the calculation on, which must be non-empty, which will not 239 * be mutated by this call (it is copied instead) 240 * @return the quantile value 241 */ 242 public double compute(double... dataset) { 243 return computeInPlace(dataset.clone()); 244 } 245 246 /** 247 * Computes the quantile value of the given dataset. 248 * 249 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 250 * cast to doubles (with any associated lost of precision), and which will not be mutated by 251 * this call (it is copied instead) 252 * @return the quantile value 253 */ 254 public double compute(long... dataset) { 255 return computeInPlace(longsToDoubles(dataset)); 256 } 257 258 /** 259 * Computes the quantile value of the given dataset. 260 * 261 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 262 * cast to doubles, and which will not be mutated by this call (it is copied instead) 263 * @return the quantile value 264 */ 265 public double compute(int... dataset) { 266 return computeInPlace(intsToDoubles(dataset)); 267 } 268 269 /** 270 * Computes the quantile value of the given dataset, performing the computation in-place. 271 * 272 * @param dataset the dataset to do the calculation on, which must be non-empty, and which will 273 * be arbitrarily reordered by this method call 274 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 275 * the values the corresponding quantile values 276 */ 277 public double computeInPlace(double... dataset) { 278 checkArgument(dataset.length > 0, "Cannot calculate quantiles of an empty dataset"); 279 if (containsNaN(dataset)) { 280 return NaN; 281 } 282 283 // Calculate the quotient and remainder in the integer division x = k * (N-1) / q, i.e. 284 // index * (dataset.length - 1) / scale. If there is no remainder, we can just find the value 285 // whose index in the sorted dataset equals the quotient; if there is a remainder, we 286 // interpolate between that and the next value. 287 288 // Since index and (dataset.length - 1) are non-negative ints, their product can be expressed 289 // as a long, without risk of overflow: 290 long numerator = (long) index * (dataset.length - 1); 291 // Since scale is a positive int, index is in [0, scale], and (dataset.length - 1) is a 292 // non-negative int, we can do long-arithmetic on index * (dataset.length - 1) / scale to get 293 // a rounded ratio and a remainder which can be expressed as ints, without risk of overflow: 294 int quotient = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN); 295 int remainder = (int) (numerator - (long) quotient * scale); 296 selectInPlace(quotient, dataset, 0, dataset.length - 1); 297 if (remainder == 0) { 298 return dataset[quotient]; 299 } else { 300 selectInPlace(quotient + 1, dataset, quotient + 1, dataset.length - 1); 301 return interpolate(dataset[quotient], dataset[quotient + 1], remainder, scale); 302 } 303 } 304 } 305 306 /** 307 * Describes the point in a fluent API chain where the scale and a multiple quantile indexes (i.e. 308 * the q and a set of values for the k in the kth q-quantile) have been specified. 309 */ 310 public static final class ScaleAndIndexes { 311 312 private final int scale; 313 private final int[] indexes; 314 315 private ScaleAndIndexes(int scale, int[] indexes) { 316 for (int index : indexes) { 317 checkIndex(index, scale); 318 } 319 this.scale = scale; 320 this.indexes = indexes; 321 } 322 323 /** 324 * Computes the quantile values of the given dataset. 325 * 326 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 327 * cast to doubles (with any associated lost of precision), and which will not be mutated by 328 * this call (it is copied instead) 329 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 330 * the values the corresponding quantile values 331 */ 332 public Map<Integer, Double> compute(Collection<? extends Number> dataset) { 333 return computeInPlace(Doubles.toArray(dataset)); 334 } 335 336 /** 337 * Computes the quantile values of the given dataset. 338 * 339 * @param dataset the dataset to do the calculation on, which must be non-empty, which will not 340 * be mutated by this call (it is copied instead) 341 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 342 * the values the corresponding quantile values 343 */ 344 public Map<Integer, Double> compute(double... dataset) { 345 return computeInPlace(dataset.clone()); 346 } 347 348 /** 349 * Computes the quantile values of the given dataset. 350 * 351 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 352 * cast to doubles (with any associated lost of precision), and which will not be mutated by 353 * this call (it is copied instead) 354 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 355 * the values the corresponding quantile values 356 */ 357 public Map<Integer, Double> compute(long... dataset) { 358 return computeInPlace(longsToDoubles(dataset)); 359 } 360 361 /** 362 * Computes the quantile values of the given dataset. 363 * 364 * @param dataset the dataset to do the calculation on, which must be non-empty, which will be 365 * cast to doubles, and which will not be mutated by this call (it is copied instead) 366 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 367 * the values the corresponding quantile values 368 */ 369 public Map<Integer, Double> compute(int... dataset) { 370 return computeInPlace(intsToDoubles(dataset)); 371 } 372 373 /** 374 * Computes the quantile values of the given dataset, performing the computation in-place. 375 * 376 * @param dataset the dataset to do the calculation on, which must be non-empty, and which will 377 * be arbitrarily reordered by this method call 378 * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and 379 * the values the corresponding quantile values 380 */ 381 public Map<Integer, Double> computeInPlace(double... dataset) { 382 checkArgument(dataset.length > 0, "Cannot calculate quantiles of an empty dataset"); 383 if (containsNaN(dataset)) { 384 Map<Integer, Double> nanMap = new HashMap<Integer, Double>(); 385 for (int index : indexes) { 386 nanMap.put(index, NaN); 387 } 388 return unmodifiableMap(nanMap); 389 } 390 391 // Calculate the quotients and remainders in the integer division x = k * (N - 1) / q, i.e. 392 // index * (dataset.length - 1) / scale for each index in indexes. For each, if there is no 393 // remainder, we can just select the value whose index in the sorted dataset equals the 394 // quotient; if there is a remainder, we interpolate between that and the next value. 395 396 int[] quotients = new int[indexes.length]; 397 int[] remainders = new int[indexes.length]; 398 // The indexes to select. In the worst case, we'll need one each side of each quantile. 399 int[] requiredSelections = new int[indexes.length * 2]; 400 int requiredSelectionsCount = 0; 401 for (int i = 0; i < indexes.length; i++) { 402 // Since index and (dataset.length - 1) are non-negative ints, their product can be 403 // expressed as a long, without risk of overflow: 404 long numerator = (long) indexes[i] * (dataset.length - 1); 405 // Since scale is a positive int, index is in [0, scale], and (dataset.length - 1) is a 406 // non-negative int, we can do long-arithmetic on index * (dataset.length - 1) / scale to 407 // get a rounded ratio and a remainder which can be expressed as ints, without risk of 408 // overflow: 409 int quotient = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN); 410 int remainder = (int) (numerator - (long) quotient * scale); 411 quotients[i] = quotient; 412 remainders[i] = remainder; 413 requiredSelections[requiredSelectionsCount] = quotient; 414 requiredSelectionsCount++; 415 if (remainder != 0) { 416 requiredSelections[requiredSelectionsCount] = quotient + 1; 417 requiredSelectionsCount++; 418 } 419 } 420 sort(requiredSelections, 0, requiredSelectionsCount); 421 selectAllInPlace( 422 requiredSelections, 0, requiredSelectionsCount - 1, dataset, 0, dataset.length - 1); 423 Map<Integer, Double> ret = new HashMap<Integer, Double>(); 424 for (int i = 0; i < indexes.length; i++) { 425 int quotient = quotients[i]; 426 int remainder = remainders[i]; 427 if (remainder == 0) { 428 ret.put(indexes[i], dataset[quotient]); 429 } else { 430 ret.put( 431 indexes[i], interpolate(dataset[quotient], dataset[quotient + 1], remainder, scale)); 432 } 433 } 434 return unmodifiableMap(ret); 435 } 436 } 437 438 /** 439 * Returns whether any of the values in {@code dataset} are {@code NaN}. 440 */ 441 private static boolean containsNaN(double... dataset) { 442 for (double value : dataset) { 443 if (Double.isNaN(value)) { 444 return true; 445 } 446 } 447 return false; 448 } 449 450 /** 451 * Returns a value a fraction {@code (remainder / scale)} of the way between {@code lower} and 452 * {@code upper}. Assumes that {@code lower <= upper}. Correctly handles infinities (but not 453 * {@code NaN}). 454 */ 455 private static double interpolate(double lower, double upper, double remainder, double scale) { 456 if (lower == NEGATIVE_INFINITY) { 457 if (upper == POSITIVE_INFINITY) { 458 // Return NaN when lower == NEGATIVE_INFINITY and upper == POSITIVE_INFINITY: 459 return NaN; 460 } 461 // Return NEGATIVE_INFINITY when NEGATIVE_INFINITY == lower <= upper < POSITIVE_INFINITY: 462 return NEGATIVE_INFINITY; 463 } 464 if (upper == POSITIVE_INFINITY) { 465 // Return POSITIVE_INFINITY when NEGATIVE_INFINITY < lower <= upper == POSITIVE_INFINITY: 466 return POSITIVE_INFINITY; 467 } 468 return lower + (upper - lower) * remainder / scale; 469 } 470 471 private static void checkIndex(int index, int scale) { 472 if (index < 0 || index > scale) { 473 throw new IllegalArgumentException( 474 "Quantile indexes must be between 0 and the scale, which is " + scale); 475 } 476 } 477 478 private static double[] longsToDoubles(long[] longs) { 479 int len = longs.length; 480 double[] doubles = new double[len]; 481 for (int i = 0; i < len; i++) { 482 doubles[i] = longs[i]; 483 } 484 return doubles; 485 } 486 487 private static double[] intsToDoubles(int[] ints) { 488 int len = ints.length; 489 double[] doubles = new double[len]; 490 for (int i = 0; i < len; i++) { 491 doubles[i] = ints[i]; 492 } 493 return doubles; 494 } 495 496 /** 497 * Performs an in-place selection to find the element which would appear at a given index in a 498 * dataset if it were sorted. The following preconditions should hold: 499 * <ul> 500 * <li>{@code required}, {@code from}, and {@code to} should all be indexes into {@code array}; 501 * <li>{@code required} should be in the range [{@code from}, {@code to}]; 502 * <li>all the values with indexes in the range [0, {@code from}) should be less than or equal to 503 * all the values with indexes in the range [{@code from}, {@code to}]; 504 * <li>all the values with indexes in the range ({@code to}, {@code array.length - 1}] should be 505 * greater than or equal to all the values with indexes in the range [{@code from}, {@code to}]. 506 * </ul> 507 * This method will reorder the values with indexes in the range [{@code from}, {@code to}] such 508 * that all the values with indexes in the range [{@code from}, {@code required}) are less than or 509 * equal to the value with index {@code required}, and all the values with indexes in the range 510 * ({@code required}, {@code to}] are greater than or equal to that value. Therefore, the value at 511 * {@code required} is the value which would appear at that index in the sorted dataset. 512 */ 513 private static void selectInPlace(int required, double[] array, int from, int to) { 514 // If we are looking for the least element in the range, we can just do a linear search for it. 515 // (We will hit this whenever we are doing quantile interpolation: our first selection finds 516 // the lower value, our second one finds the upper value by looking for the next least element.) 517 if (required == from) { 518 int min = from; 519 for (int index = from + 1; index <= to; index++) { 520 if (array[min] > array[index]) { 521 min = index; 522 } 523 } 524 if (min != from) { 525 swap(array, min, from); 526 } 527 return; 528 } 529 530 // Let's play quickselect! We'll repeatedly partition the range [from, to] containing the 531 // required element, as long as it has more than one element. 532 while (to > from) { 533 int partitionPoint = partition(array, from, to); 534 if (partitionPoint >= required) { 535 to = partitionPoint - 1; 536 } 537 if (partitionPoint <= required) { 538 from = partitionPoint + 1; 539 } 540 } 541 } 542 543 /** 544 * Performs a partition operation on the slice of {@code array} with elements in the range 545 * [{@code from}, {@code to}]. Uses the median of {@code from}, {@code to}, and the midpoint 546 * between them as a pivot. Returns the index which the slice is partitioned around, i.e. if it 547 * returns {@code ret} then we know that the values with indexes in [{@code from}, {@code ret}) 548 * are less than or equal to the value at {@code ret} and the values with indexes in ({@code ret}, 549 * {@code to}] are greater than or equal to that. 550 */ 551 private static int partition(double[] array, int from, int to) { 552 // Select a pivot, and move it to the start of the slice i.e. to index from. 553 movePivotToStartOfSlice(array, from, to); 554 double pivot = array[from]; 555 556 // Move all elements with indexes in (from, to] which are greater than the pivot to the end of 557 // the array. Keep track of where those elements begin. 558 int partitionPoint = to; 559 for (int i = to; i > from; i--) { 560 if (array[i] > pivot) { 561 swap(array, partitionPoint, i); 562 partitionPoint--; 563 } 564 } 565 566 // We now know that all elements with indexes in (from, partitionPoint] are less than or equal 567 // to the pivot at from, and all elements with indexes in (partitionPoint, to] are greater than 568 // it. We swap the pivot into partitionPoint and we know the array is partitioned around that. 569 swap(array, from, partitionPoint); 570 return partitionPoint; 571 } 572 573 /** 574 * Selects the pivot to use, namely the median of the values at {@code from}, {@code to}, and 575 * halfway between the two (rounded down), from {@code array}, and ensure (by swapping elements if 576 * necessary) that that pivot value appears at the start of the slice i.e. at {@code from}. 577 * Expects that {@code from} is strictly less than {@code to}. 578 */ 579 private static void movePivotToStartOfSlice(double[] array, int from, int to) { 580 int mid = (from + to) >>> 1; 581 // We want to make a swap such that either array[to] <= array[from] <= array[mid], or 582 // array[mid] <= array[from] <= array[to]. We know that from < to, so we know mid < to 583 // (although it's possible that mid == from, if to == from + 1). Note that the postcondition 584 // would be impossible to fulfil if mid == to unless we also have array[from] == array[to]. 585 boolean toLessThanMid = (array[to] < array[mid]); 586 boolean midLessThanFrom = (array[mid] < array[from]); 587 boolean toLessThanFrom = (array[to] < array[from]); 588 if (toLessThanMid == midLessThanFrom) { 589 // Either array[to] < array[mid] < array[from] or array[from] <= array[mid] <= array[to]. 590 swap(array, mid, from); 591 } else if (toLessThanMid != toLessThanFrom) { 592 // Either array[from] <= array[to] < array[mid] or array[mid] <= array[to] < array[from]. 593 swap(array, from, to); 594 } 595 // The postcondition now holds. So the median, our chosen pivot, is at from. 596 } 597 598 /** 599 * Performs an in-place selection, like {@link #selectInPlace}, to select all the indexes 600 * {@code allRequired[i]} for {@code i} in the range [{@code requiredFrom}, {@code requiredTo}]. 601 * These indexes must be sorted in the array and must all be in the range [{@code from}, 602 * {@code to}]. 603 */ 604 private static void selectAllInPlace( 605 int[] allRequired, int requiredFrom, int requiredTo, double[] array, int from, int to) { 606 // Choose the first selection to do... 607 int requiredChosen = chooseNextSelection(allRequired, requiredFrom, requiredTo, from, to); 608 int required = allRequired[requiredChosen]; 609 610 // ...do the first selection... 611 selectInPlace(required, array, from, to); 612 613 // ...then recursively perform the selections in the range below... 614 int requiredBelow = requiredChosen - 1; 615 while (requiredBelow >= requiredFrom && allRequired[requiredBelow] == required) { 616 requiredBelow--; // skip duplicates of required in the range below 617 } 618 if (requiredBelow >= requiredFrom) { 619 selectAllInPlace(allRequired, requiredFrom, requiredBelow, array, from, required - 1); 620 } 621 622 // ...and then recursively perform the selections in the range above. 623 int requiredAbove = requiredChosen + 1; 624 while (requiredAbove <= requiredTo && allRequired[requiredAbove] == required) { 625 requiredAbove++; // skip duplicates of required in the range above 626 } 627 if (requiredAbove <= requiredTo) { 628 selectAllInPlace(allRequired, requiredAbove, requiredTo, array, required + 1, to); 629 } 630 } 631 632 /** 633 * Chooses the next selection to do from the required selections. It is required that the array 634 * {@code allRequired} is sorted and that {@code allRequired[i]} are in the range [{@code from}, 635 * {@code to}] for all {@code i} in the range [{@code requiredFrom}, {@requiredTo}]. The value 636 * returned by this method is the {@code i} in that range such that {@code allRequired[i]} is as 637 * close as possible to the center of the range [{@code from}, {@code to}]. Choosing the value 638 * closest to the center of the range first is the most efficient strategy because it minimizes 639 * the size of the subranges from which the remaining selections must be done. 640 */ 641 private static int chooseNextSelection( 642 int[] allRequired, int requiredFrom, int requiredTo, int from, int to) { 643 if (requiredFrom == requiredTo) { 644 return requiredFrom; // only one thing to choose, so choose it 645 } 646 647 // Find the center and round down. The true center is either centerFloor or halfway between 648 // centerFloor and centerFloor + 1. 649 int centerFloor = (from + to) >>> 1; 650 651 // Do a binary search until we're down to the range of two which encloses centerFloor (unless 652 // all values are lower or higher than centerFloor, in which case we find the two highest or 653 // lowest respectively). If centerFloor is in allRequired, we will definitely find it. If not, 654 // but centerFloor + 1 is, we'll definitely find that. The closest value to the true (unrounded) 655 // center will be at either low or high. 656 int low = requiredFrom; 657 int high = requiredTo; 658 while (high > low + 1) { 659 int mid = (low + high) >>> 1; 660 if (allRequired[mid] > centerFloor) { 661 high = mid; 662 } else if (allRequired[mid] < centerFloor) { 663 low = mid; 664 } else { 665 return mid; // allRequired[mid] = centerFloor, so we can't get closer than that 666 } 667 } 668 669 // Now pick the closest of the two candidates. Note that there is no rounding here. 670 if (from + to - allRequired[low] - allRequired[high] > 0) { 671 return high; 672 } else { 673 return low; 674 } 675 } 676 677 /** 678 * Swaps the values at {@code i} and {@code j} in {@code array}. 679 */ 680 private static void swap(double[] array, int i, int j) { 681 double temp = array[i]; 682 array[i] = array[j]; 683 array[j] = temp; 684 } 685}