001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.math.DoubleUtils.IMPLICIT_BIT; 019import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS; 020import static com.google.common.math.DoubleUtils.getSignificand; 021import static com.google.common.math.DoubleUtils.isFinite; 022import static com.google.common.math.DoubleUtils.isNormal; 023import static com.google.common.math.DoubleUtils.scaleNormalize; 024import static com.google.common.math.MathPreconditions.checkInRange; 025import static com.google.common.math.MathPreconditions.checkNonNegative; 026import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 027import static java.lang.Math.abs; 028import static java.lang.Math.copySign; 029import static java.lang.Math.getExponent; 030import static java.lang.Math.log; 031import static java.lang.Math.rint; 032 033import com.google.common.annotations.GwtCompatible; 034import com.google.common.annotations.GwtIncompatible; 035import com.google.common.annotations.VisibleForTesting; 036import com.google.common.primitives.Booleans; 037import com.google.errorprone.annotations.CanIgnoreReturnValue; 038import java.math.BigInteger; 039import java.math.RoundingMode; 040import java.util.Iterator; 041 042/** 043 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}. 044 * 045 * @author Louis Wasserman 046 * @since 11.0 047 */ 048@GwtCompatible(emulated = true) 049public final class DoubleMath { 050 /* 051 * This method returns a value y such that rounding y DOWN (towards zero) gives the same result as 052 * rounding x according to the specified mode. 053 */ 054 @GwtIncompatible // #isMathematicalInteger, com.google.common.math.DoubleUtils 055 static double roundIntermediate(double x, RoundingMode mode) { 056 if (!isFinite(x)) { 057 throw new ArithmeticException("input is infinite or NaN"); 058 } 059 switch (mode) { 060 case UNNECESSARY: 061 checkRoundingUnnecessary(isMathematicalInteger(x)); 062 return x; 063 064 case FLOOR: 065 if (x >= 0.0 || isMathematicalInteger(x)) { 066 return x; 067 } else { 068 return (long) x - 1; 069 } 070 071 case CEILING: 072 if (x <= 0.0 || isMathematicalInteger(x)) { 073 return x; 074 } else { 075 return (long) x + 1; 076 } 077 078 case DOWN: 079 return x; 080 081 case UP: 082 if (isMathematicalInteger(x)) { 083 return x; 084 } else { 085 return (long) x + (x > 0 ? 1 : -1); 086 } 087 088 case HALF_EVEN: 089 return rint(x); 090 091 case HALF_UP: 092 { 093 double z = rint(x); 094 if (abs(x - z) == 0.5) { 095 return x + copySign(0.5, x); 096 } else { 097 return z; 098 } 099 } 100 101 case HALF_DOWN: 102 { 103 double z = rint(x); 104 if (abs(x - z) == 0.5) { 105 return x; 106 } else { 107 return z; 108 } 109 } 110 111 default: 112 throw new AssertionError(); 113 } 114 } 115 116 /** 117 * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding 118 * mode, if possible. 119 * 120 * @throws ArithmeticException if 121 * <ul> 122 * <li>{@code x} is infinite or NaN 123 * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 124 * mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code 125 * Integer.MAX_VALUE} 126 * <li>{@code x} is not a mathematical integer and {@code mode} is 127 * {@link RoundingMode#UNNECESSARY} 128 * </ul> 129 */ 130 @GwtIncompatible // #roundIntermediate 131 public static int roundToInt(double x, RoundingMode mode) { 132 double z = roundIntermediate(x, mode); 133 checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0); 134 return (int) z; 135 } 136 137 private static final double MIN_INT_AS_DOUBLE = -0x1p31; 138 private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0; 139 140 /** 141 * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding 142 * mode, if possible. 143 * 144 * @throws ArithmeticException if 145 * <ul> 146 * <li>{@code x} is infinite or NaN 147 * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 148 * mode, is either less than {@code Long.MIN_VALUE} or greater than {@code 149 * Long.MAX_VALUE} 150 * <li>{@code x} is not a mathematical integer and {@code mode} is 151 * {@link RoundingMode#UNNECESSARY} 152 * </ul> 153 */ 154 @GwtIncompatible // #roundIntermediate 155 public static long roundToLong(double x, RoundingMode mode) { 156 double z = roundIntermediate(x, mode); 157 checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE); 158 return (long) z; 159 } 160 161 private static final double MIN_LONG_AS_DOUBLE = -0x1p63; 162 /* 163 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store 164 * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1. 165 */ 166 private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63; 167 168 /** 169 * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified 170 * rounding mode, if possible. 171 * 172 * @throws ArithmeticException if 173 * <ul> 174 * <li>{@code x} is infinite or NaN 175 * <li>{@code x} is not a mathematical integer and {@code mode} is 176 * {@link RoundingMode#UNNECESSARY} 177 * </ul> 178 */ 179 // #roundIntermediate, java.lang.Math.getExponent, com.google.common.math.DoubleUtils 180 @GwtIncompatible 181 public static BigInteger roundToBigInteger(double x, RoundingMode mode) { 182 x = roundIntermediate(x, mode); 183 if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { 184 return BigInteger.valueOf((long) x); 185 } 186 int exponent = getExponent(x); 187 long significand = getSignificand(x); 188 BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); 189 return (x < 0) ? result.negate() : result; 190 } 191 192 /** 193 * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer 194 * {@code k}. 195 */ 196 @GwtIncompatible // com.google.common.math.DoubleUtils 197 public static boolean isPowerOfTwo(double x) { 198 return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x)); 199 } 200 201 /** 202 * Returns the base 2 logarithm of a double value. 203 * 204 * <p>Special cases: 205 * <ul> 206 * <li>If {@code x} is NaN or less than zero, the result is NaN. 207 * <li>If {@code x} is positive infinity, the result is positive infinity. 208 * <li>If {@code x} is positive or negative zero, the result is negative infinity. 209 * </ul> 210 * 211 * <p>The computed result is within 1 ulp of the exact result. 212 * 213 * <p>If the result of this method will be immediately rounded to an {@code int}, 214 * {@link #log2(double, RoundingMode)} is faster. 215 */ 216 public static double log2(double x) { 217 return log(x) / LN_2; // surprisingly within 1 ulp according to tests 218 } 219 220 private static final double LN_2 = log(2); 221 222 /** 223 * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an 224 * {@code int}. 225 * 226 * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. 227 * 228 * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is 229 * infinite 230 */ 231 @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 232 @SuppressWarnings("fallthrough") 233 public static int log2(double x, RoundingMode mode) { 234 checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); 235 int exponent = getExponent(x); 236 if (!isNormal(x)) { 237 return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; 238 // Do the calculation on a normal value. 239 } 240 // x is positive, finite, and normal 241 boolean increment; 242 switch (mode) { 243 case UNNECESSARY: 244 checkRoundingUnnecessary(isPowerOfTwo(x)); 245 // fall through 246 case FLOOR: 247 increment = false; 248 break; 249 case CEILING: 250 increment = !isPowerOfTwo(x); 251 break; 252 case DOWN: 253 increment = exponent < 0 & !isPowerOfTwo(x); 254 break; 255 case UP: 256 increment = exponent >= 0 & !isPowerOfTwo(x); 257 break; 258 case HALF_DOWN: 259 case HALF_EVEN: 260 case HALF_UP: 261 double xScaled = scaleNormalize(x); 262 // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," 263 // so log2(x) is never exactly exponent + 0.5. 264 increment = (xScaled * xScaled) > 2.0; 265 break; 266 default: 267 throw new AssertionError(); 268 } 269 return increment ? exponent + 1 : exponent; 270 } 271 272 /** 273 * Returns {@code true} if {@code x} represents a mathematical integer. 274 * 275 * <p>This is equivalent to, but not necessarily implemented as, the expression {@code 276 * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. 277 */ 278 @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 279 public static boolean isMathematicalInteger(double x) { 280 return isFinite(x) 281 && (x == 0.0 282 || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x)); 283 } 284 285 /** 286 * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if 287 * {@code n == 0}, or {@code n!}, or {@link Double#POSITIVE_INFINITY} if 288 * {@code n! > Double.MAX_VALUE}. 289 * 290 * <p>The result is within 1 ulp of the true value. 291 * 292 * @throws IllegalArgumentException if {@code n < 0} 293 */ 294 public static double factorial(int n) { 295 checkNonNegative("n", n); 296 if (n > MAX_FACTORIAL) { 297 return Double.POSITIVE_INFINITY; 298 } else { 299 // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate 300 // result than multiplying by everySixteenthFactorial[n >> 4] directly. 301 double accum = 1.0; 302 for (int i = 1 + (n & ~0xf); i <= n; i++) { 303 accum *= i; 304 } 305 return accum * everySixteenthFactorial[n >> 4]; 306 } 307 } 308 309 @VisibleForTesting static final int MAX_FACTORIAL = 170; 310 311 @VisibleForTesting 312 static final double[] everySixteenthFactorial = { 313 0x1.0p0, 314 0x1.30777758p44, 315 0x1.956ad0aae33a4p117, 316 0x1.ee69a78d72cb6p202, 317 0x1.fe478ee34844ap295, 318 0x1.c619094edabffp394, 319 0x1.3638dd7bd6347p498, 320 0x1.7cac197cfe503p605, 321 0x1.1e5dfc140e1e5p716, 322 0x1.8ce85fadb707ep829, 323 0x1.95d5f3d928edep945 324 }; 325 326 /** 327 * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other. 328 * 329 * <p>Technically speaking, this is equivalent to 330 * {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}. 331 * 332 * <p>Notable special cases include: 333 * <ul> 334 * <li>All NaNs are fuzzily equal. 335 * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal. 336 * <li>Positive and negative zero are always fuzzily equal. 337 * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then {@code a} 338 * and {@code b} are fuzzily equal if and only if {@code a == b}. 339 * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal. 340 * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code 341 * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves. 342 * 343 * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an 344 * equivalence relation and <em>not</em> suitable for use in {@link Object#equals} 345 * implementations. 346 * 347 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 348 * @since 13.0 349 */ 350 public static boolean fuzzyEquals(double a, double b, double tolerance) { 351 MathPreconditions.checkNonNegative("tolerance", tolerance); 352 return Math.copySign(a - b, 1.0) <= tolerance 353 // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics 354 || (a == b) // needed to ensure that infinities equal themselves 355 || (Double.isNaN(a) && Double.isNaN(b)); 356 } 357 358 /** 359 * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values. 360 * 361 * <p>This method is equivalent to 362 * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like 363 * {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all 364 * other values (including {@link Double#POSITIVE_INFINITY}). 365 * 366 * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in 367 * {@link Comparable#compareTo} implementations. In particular, it is not transitive. 368 * 369 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 370 * @since 13.0 371 */ 372 public static int fuzzyCompare(double a, double b, double tolerance) { 373 if (fuzzyEquals(a, b, tolerance)) { 374 return 0; 375 } else if (a < b) { 376 return -1; 377 } else if (a > b) { 378 return 1; 379 } else { 380 return Booleans.compare(Double.isNaN(a), Double.isNaN(b)); 381 } 382 } 383 384 /** 385 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 386 * {@code values}. 387 * 388 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 389 * the arithmetic mean of the population. 390 * 391 * @param values a nonempty series of values 392 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 393 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 394 * values. This method will be removed in February 2018. 395 */ 396 @Deprecated 397 // com.google.common.math.DoubleUtils 398 @GwtIncompatible 399 public static double mean(double... values) { 400 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 401 long count = 1; 402 double mean = checkFinite(values[0]); 403 for (int index = 1; index < values.length; ++index) { 404 checkFinite(values[index]); 405 count++; 406 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 407 mean += (values[index] - mean) / count; 408 } 409 return mean; 410 } 411 412 /** 413 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 414 * {@code values}. 415 * 416 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 417 * the arithmetic mean of the population. 418 * 419 * @param values a nonempty series of values 420 * @throws IllegalArgumentException if {@code values} is empty 421 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 422 * values. This method will be removed in February 2018. 423 */ 424 @Deprecated 425 public static double mean(int... values) { 426 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 427 // The upper bound on the the length of an array and the bounds on the int values mean that, in 428 // this case only, we can compute the sum as a long without risking overflow or loss of 429 // precision. So we do that, as it's slightly quicker than the Knuth algorithm. 430 long sum = 0; 431 for (int index = 0; index < values.length; ++index) { 432 sum += values[index]; 433 } 434 return (double) sum / values.length; 435 } 436 437 /** 438 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 439 * {@code values}. 440 * 441 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 442 * the arithmetic mean of the population. 443 * 444 * @param values a nonempty series of values, which will be converted to {@code double} values 445 * (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15)) 446 * @throws IllegalArgumentException if {@code values} is empty 447 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 448 * values. This method will be removed in February 2018. 449 */ 450 @Deprecated 451 public static double mean(long... values) { 452 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 453 long count = 1; 454 double mean = values[0]; 455 for (int index = 1; index < values.length; ++index) { 456 count++; 457 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 458 mean += (values[index] - mean) / count; 459 } 460 return mean; 461 } 462 463 /** 464 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 465 * {@code values}. 466 * 467 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 468 * the arithmetic mean of the population. 469 * 470 * @param values a nonempty series of values, which will be converted to {@code double} values 471 * (this may cause loss of precision) 472 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 473 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 474 * values. This method will be removed in February 2018. 475 */ 476 @Deprecated 477 // com.google.common.math.DoubleUtils 478 @GwtIncompatible 479 public static double mean(Iterable<? extends Number> values) { 480 return mean(values.iterator()); 481 } 482 483 /** 484 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 485 * {@code values}. 486 * 487 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 488 * the arithmetic mean of the population. 489 * 490 * @param values a nonempty series of values, which will be converted to {@code double} values 491 * (this may cause loss of precision) 492 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 493 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 494 * values. This method will be removed in February 2018. 495 */ 496 @Deprecated 497 // com.google.common.math.DoubleUtils 498 @GwtIncompatible 499 public static double mean(Iterator<? extends Number> values) { 500 checkArgument(values.hasNext(), "Cannot take mean of 0 values"); 501 long count = 1; 502 double mean = checkFinite(values.next().doubleValue()); 503 while (values.hasNext()) { 504 double value = checkFinite(values.next().doubleValue()); 505 count++; 506 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 507 mean += (value - mean) / count; 508 } 509 return mean; 510 } 511 512 @GwtIncompatible // com.google.common.math.DoubleUtils 513 @CanIgnoreReturnValue 514 private static double checkFinite(double argument) { 515 checkArgument(isFinite(argument)); 516 return argument; 517 } 518 519 private DoubleMath() {} 520}