001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkElementIndex; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkPositionIndex; 023import static com.google.common.base.Preconditions.checkPositionIndexes; 024import static com.google.common.base.Preconditions.checkState; 025import static com.google.common.collect.CollectPreconditions.checkNonnegative; 026import static com.google.common.collect.CollectPreconditions.checkRemove; 027 028import com.google.common.annotations.Beta; 029import com.google.common.annotations.GwtCompatible; 030import com.google.common.annotations.GwtIncompatible; 031import com.google.common.annotations.VisibleForTesting; 032import com.google.common.base.Function; 033import com.google.common.base.Objects; 034import com.google.common.math.IntMath; 035import com.google.common.primitives.Ints; 036import com.google.errorprone.annotations.CanIgnoreReturnValue; 037import java.io.Serializable; 038import java.math.RoundingMode; 039import java.util.AbstractList; 040import java.util.AbstractSequentialList; 041import java.util.ArrayList; 042import java.util.Arrays; 043import java.util.Collection; 044import java.util.Collections; 045import java.util.Iterator; 046import java.util.LinkedList; 047import java.util.List; 048import java.util.ListIterator; 049import java.util.NoSuchElementException; 050import java.util.RandomAccess; 051import java.util.concurrent.CopyOnWriteArrayList; 052import javax.annotation.Nullable; 053 054/** 055 * Static utility methods pertaining to {@link List} instances. Also see this 056 * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}. 057 * 058 * <p>See the Guava User Guide article on <a href= 059 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists"> 060 * {@code Lists}</a>. 061 * 062 * @author Kevin Bourrillion 063 * @author Mike Bostock 064 * @author Louis Wasserman 065 * @since 2.0 066 */ 067@GwtCompatible(emulated = true) 068public final class Lists { 069 private Lists() {} 070 071 // ArrayList 072 073 /** 074 * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and 075 * earlier). 076 * 077 * <p><b>Note:</b> if mutability is not required, use {@link 078 * ImmutableList#of()} instead. 079 * 080 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 081 * should be treated as deprecated. Instead, use the {@code ArrayList} 082 * {@linkplain ArrayList#ArrayList() constructor} directly, taking advantage 083 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 084 */ 085 @GwtCompatible(serializable = true) 086 public static <E> ArrayList<E> newArrayList() { 087 return new ArrayList<E>(); 088 } 089 090 /** 091 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 092 * elements. 093 * 094 * <p><b>Note:</b> essentially the only reason to use this method is when you 095 * will need to add or remove elements later. Otherwise, for non-null elements 096 * use {@link ImmutableList#of()} (for varargs) or {@link 097 * ImmutableList#copyOf(Object[])} (for an array) instead. If any elements 098 * might be null, or you need support for {@link List#set(int, Object)}, use 099 * {@link Arrays#asList}. 100 * 101 * <p>Note that even when you do need the ability to add or remove, this method 102 * provides only a tiny bit of syntactic sugar for {@code newArrayList(}{@link 103 * Arrays#asList asList}{@code (...))}, or for creating an empty list then 104 * calling {@link Collections#addAll}. This method is not actually very useful 105 * and will likely be deprecated in the future. 106 */ 107 @CanIgnoreReturnValue // TODO(kak): Remove this 108 @GwtCompatible(serializable = true) 109 public static <E> ArrayList<E> newArrayList(E... elements) { 110 checkNotNull(elements); // for GWT 111 // Avoid integer overflow when a large array is passed in 112 int capacity = computeArrayListCapacity(elements.length); 113 ArrayList<E> list = new ArrayList<E>(capacity); 114 Collections.addAll(list, elements); 115 return list; 116 } 117 118 @VisibleForTesting 119 static int computeArrayListCapacity(int arraySize) { 120 checkNonnegative(arraySize, "arraySize"); 121 122 // TODO(kevinb): Figure out the right behavior, and document it 123 return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); 124 } 125 126 /** 127 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 128 * elements; a very thin shortcut for creating an empty list then calling 129 * {@link Iterables#addAll}. 130 * 131 * <p><b>Note:</b> if mutability is not required and the elements are 132 * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change 133 * {@code elements} to be a {@link FluentIterable} and call 134 * {@code elements.toList()}.) 135 * 136 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link 137 * Collection}, you don't need this method. Use the {@code ArrayList} 138 * {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking 139 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 140 */ 141 @CanIgnoreReturnValue // TODO(kak): Remove this 142 @GwtCompatible(serializable = true) 143 public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) { 144 checkNotNull(elements); // for GWT 145 // Let ArrayList's sizing logic work, if possible 146 return (elements instanceof Collection) 147 ? new ArrayList<E>(Collections2.cast(elements)) 148 : newArrayList(elements.iterator()); 149 } 150 151 /** 152 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 153 * elements; a very thin shortcut for creating an empty list and then calling 154 * {@link Iterators#addAll}. 155 * 156 * <p><b>Note:</b> if mutability is not required and the elements are 157 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 158 */ 159 @CanIgnoreReturnValue // TODO(kak): Remove this 160 @GwtCompatible(serializable = true) 161 public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) { 162 ArrayList<E> list = newArrayList(); 163 Iterators.addAll(list, elements); 164 return list; 165 } 166 167 /** 168 * Creates an {@code ArrayList} instance backed by an array with the specified 169 * initial size; simply delegates to {@link ArrayList#ArrayList(int)}. 170 * 171 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 172 * should be treated as deprecated. Instead, use {@code new }{@link 173 * ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking 174 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 175 * (Unlike here, there is no risk of overload ambiguity, since the {@code 176 * ArrayList} constructors very wisely did not accept varargs.) 177 * 178 * @param initialArraySize the exact size of the initial backing array for 179 * the returned array list ({@code ArrayList} documentation calls this 180 * value the "capacity") 181 * @return a new, empty {@code ArrayList} which is guaranteed not to resize 182 * itself unless its size reaches {@code initialArraySize + 1} 183 * @throws IllegalArgumentException if {@code initialArraySize} is negative 184 */ 185 @GwtCompatible(serializable = true) 186 public static <E> ArrayList<E> newArrayListWithCapacity(int initialArraySize) { 187 checkNonnegative(initialArraySize, "initialArraySize"); // for GWT. 188 return new ArrayList<E>(initialArraySize); 189 } 190 191 /** 192 * Creates an {@code ArrayList} instance to hold {@code estimatedSize} 193 * elements, <i>plus</i> an unspecified amount of padding; you almost 194 * certainly mean to call {@link #newArrayListWithCapacity} (see that method 195 * for further advice on usage). 196 * 197 * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case 198 * that you do want some amount of padding, it's best if you choose your 199 * desired amount explicitly. 200 * 201 * @param estimatedSize an estimate of the eventual {@link List#size()} of 202 * the new list 203 * @return a new, empty {@code ArrayList}, sized appropriately to hold the 204 * estimated number of elements 205 * @throws IllegalArgumentException if {@code estimatedSize} is negative 206 */ 207 @GwtCompatible(serializable = true) 208 public static <E> ArrayList<E> newArrayListWithExpectedSize(int estimatedSize) { 209 return new ArrayList<E>(computeArrayListCapacity(estimatedSize)); 210 } 211 212 // LinkedList 213 214 /** 215 * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and 216 * earlier). 217 * 218 * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link 219 * ImmutableList#of()} instead. 220 * 221 * <p><b>Performance note:</b> {@link ArrayList} and {@link 222 * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in 223 * certain rare and specific situations. Unless you have spent a lot of time 224 * benchmarking your specific needs, use one of those instead. 225 * 226 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 227 * should be treated as deprecated. Instead, use the {@code LinkedList} 228 * {@linkplain LinkedList#LinkedList() constructor} directly, taking advantage 229 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 230 */ 231 @GwtCompatible(serializable = true) 232 public static <E> LinkedList<E> newLinkedList() { 233 return new LinkedList<E>(); 234 } 235 236 /** 237 * Creates a <i>mutable</i> {@code LinkedList} instance containing the given 238 * elements; a very thin shortcut for creating an empty list then calling 239 * {@link Iterables#addAll}. 240 * 241 * <p><b>Note:</b> if mutability is not required and the elements are 242 * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change 243 * {@code elements} to be a {@link FluentIterable} and call 244 * {@code elements.toList()}.) 245 * 246 * <p><b>Performance note:</b> {@link ArrayList} and {@link 247 * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in 248 * certain rare and specific situations. Unless you have spent a lot of time 249 * benchmarking your specific needs, use one of those instead. 250 * 251 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link 252 * Collection}, you don't need this method. Use the {@code LinkedList} 253 * {@linkplain LinkedList#LinkedList(Collection) constructor} directly, taking 254 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 255 */ 256 @GwtCompatible(serializable = true) 257 public static <E> LinkedList<E> newLinkedList(Iterable<? extends E> elements) { 258 LinkedList<E> list = newLinkedList(); 259 Iterables.addAll(list, elements); 260 return list; 261 } 262 263 /** 264 * Creates an empty {@code CopyOnWriteArrayList} instance. 265 * 266 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 267 * {@link Collections#emptyList} instead. 268 * 269 * @return a new, empty {@code CopyOnWriteArrayList} 270 * @since 12.0 271 */ 272 @GwtIncompatible // CopyOnWriteArrayList 273 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() { 274 return new CopyOnWriteArrayList<E>(); 275 } 276 277 /** 278 * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. 279 * 280 * @param elements the elements that the list should contain, in order 281 * @return a new {@code CopyOnWriteArrayList} containing those elements 282 * @since 12.0 283 */ 284 @GwtIncompatible // CopyOnWriteArrayList 285 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList( 286 Iterable<? extends E> elements) { 287 // We copy elements to an ArrayList first, rather than incurring the 288 // quadratic cost of adding them to the COWAL directly. 289 Collection<? extends E> elementsCollection = 290 (elements instanceof Collection) ? Collections2.cast(elements) : newArrayList(elements); 291 return new CopyOnWriteArrayList<E>(elementsCollection); 292 } 293 294 /** 295 * Returns an unmodifiable list containing the specified first element and 296 * backed by the specified array of additional elements. Changes to the {@code 297 * rest} array will be reflected in the returned list. Unlike {@link 298 * Arrays#asList}, the returned list is unmodifiable. 299 * 300 * <p>This is useful when a varargs method needs to use a signature such as 301 * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload 302 * ambiguity or to enforce a minimum argument count. 303 * 304 * <p>The returned list is serializable and implements {@link RandomAccess}. 305 * 306 * @param first the first element 307 * @param rest an array of additional elements, possibly empty 308 * @return an unmodifiable list containing the specified elements 309 */ 310 public static <E> List<E> asList(@Nullable E first, E[] rest) { 311 return new OnePlusArrayList<E>(first, rest); 312 } 313 314 /** @see Lists#asList(Object, Object[]) */ 315 private static class OnePlusArrayList<E> extends AbstractList<E> 316 implements Serializable, RandomAccess { 317 final E first; 318 final E[] rest; 319 320 OnePlusArrayList(@Nullable E first, E[] rest) { 321 this.first = first; 322 this.rest = checkNotNull(rest); 323 } 324 325 @Override 326 public int size() { 327 return IntMath.saturatedAdd(rest.length, 1); 328 } 329 330 @Override 331 public E get(int index) { 332 // check explicitly so the IOOBE will have the right message 333 checkElementIndex(index, size()); 334 return (index == 0) ? first : rest[index - 1]; 335 } 336 337 private static final long serialVersionUID = 0; 338 } 339 340 /** 341 * Returns an unmodifiable list containing the specified first and second 342 * element, and backed by the specified array of additional elements. Changes 343 * to the {@code rest} array will be reflected in the returned list. Unlike 344 * {@link Arrays#asList}, the returned list is unmodifiable. 345 * 346 * <p>This is useful when a varargs method needs to use a signature such as 347 * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid 348 * overload ambiguity or to enforce a minimum argument count. 349 * 350 * <p>The returned list is serializable and implements {@link RandomAccess}. 351 * 352 * @param first the first element 353 * @param second the second element 354 * @param rest an array of additional elements, possibly empty 355 * @return an unmodifiable list containing the specified elements 356 */ 357 public static <E> List<E> asList(@Nullable E first, @Nullable E second, E[] rest) { 358 return new TwoPlusArrayList<E>(first, second, rest); 359 } 360 361 /** @see Lists#asList(Object, Object, Object[]) */ 362 private static class TwoPlusArrayList<E> extends AbstractList<E> 363 implements Serializable, RandomAccess { 364 final E first; 365 final E second; 366 final E[] rest; 367 368 TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) { 369 this.first = first; 370 this.second = second; 371 this.rest = checkNotNull(rest); 372 } 373 374 @Override 375 public int size() { 376 return IntMath.saturatedAdd(rest.length, 2); 377 } 378 379 @Override 380 public E get(int index) { 381 switch (index) { 382 case 0: 383 return first; 384 case 1: 385 return second; 386 default: 387 // check explicitly so the IOOBE will have the right message 388 checkElementIndex(index, size()); 389 return rest[index - 2]; 390 } 391 } 392 393 private static final long serialVersionUID = 0; 394 } 395 396 /** 397 * Returns every possible list that can be formed by choosing one element 398 * from each of the given lists in order; the "n-ary 399 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 400 * product</a>" of the lists. For example: <pre> {@code 401 * 402 * Lists.cartesianProduct(ImmutableList.of( 403 * ImmutableList.of(1, 2), 404 * ImmutableList.of("A", "B", "C")))}</pre> 405 * 406 * <p>returns a list containing six lists in the following order: 407 * 408 * <ul> 409 * <li>{@code ImmutableList.of(1, "A")} 410 * <li>{@code ImmutableList.of(1, "B")} 411 * <li>{@code ImmutableList.of(1, "C")} 412 * <li>{@code ImmutableList.of(2, "A")} 413 * <li>{@code ImmutableList.of(2, "B")} 414 * <li>{@code ImmutableList.of(2, "C")} 415 * </ul> 416 * 417 * <p>The result is guaranteed to be in the "traditional", lexicographical 418 * order for Cartesian products that you would get from nesting for loops: 419 * <pre> {@code 420 * 421 * for (B b0 : lists.get(0)) { 422 * for (B b1 : lists.get(1)) { 423 * ... 424 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 425 * // operate on tuple 426 * } 427 * }}</pre> 428 * 429 * <p>Note that if any input list is empty, the Cartesian product will also be 430 * empty. If no lists at all are provided (an empty list), the resulting 431 * Cartesian product has one element, an empty list (counter-intuitive, but 432 * mathematically consistent). 433 * 434 * <p><i>Performance notes:</i> while the cartesian product of lists of size 435 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 436 * consumption is much smaller. When the cartesian product is constructed, the 437 * input lists are merely copied. Only as the resulting list is iterated are 438 * the individual lists created, and these are not retained after iteration. 439 * 440 * @param lists the lists to choose elements from, in the order that 441 * the elements chosen from those lists should appear in the resulting 442 * lists 443 * @param <B> any common base class shared by all axes (often just {@link 444 * Object}) 445 * @return the Cartesian product, as an immutable list containing immutable 446 * lists 447 * @throws IllegalArgumentException if the size of the cartesian product would 448 * be greater than {@link Integer#MAX_VALUE} 449 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, 450 * or any element of a provided list is null 451 * @since 19.0 452 */ 453 public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) { 454 return CartesianList.create(lists); 455 } 456 457 /** 458 * Returns every possible list that can be formed by choosing one element 459 * from each of the given lists in order; the "n-ary 460 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 461 * product</a>" of the lists. For example: <pre> {@code 462 * 463 * Lists.cartesianProduct(ImmutableList.of( 464 * ImmutableList.of(1, 2), 465 * ImmutableList.of("A", "B", "C")))}</pre> 466 * 467 * <p>returns a list containing six lists in the following order: 468 * 469 * <ul> 470 * <li>{@code ImmutableList.of(1, "A")} 471 * <li>{@code ImmutableList.of(1, "B")} 472 * <li>{@code ImmutableList.of(1, "C")} 473 * <li>{@code ImmutableList.of(2, "A")} 474 * <li>{@code ImmutableList.of(2, "B")} 475 * <li>{@code ImmutableList.of(2, "C")} 476 * </ul> 477 * 478 * <p>The result is guaranteed to be in the "traditional", lexicographical 479 * order for Cartesian products that you would get from nesting for loops: 480 * <pre> {@code 481 * 482 * for (B b0 : lists.get(0)) { 483 * for (B b1 : lists.get(1)) { 484 * ... 485 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 486 * // operate on tuple 487 * } 488 * }}</pre> 489 * 490 * <p>Note that if any input list is empty, the Cartesian product will also be 491 * empty. If no lists at all are provided (an empty list), the resulting 492 * Cartesian product has one element, an empty list (counter-intuitive, but 493 * mathematically consistent). 494 * 495 * <p><i>Performance notes:</i> while the cartesian product of lists of size 496 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 497 * consumption is much smaller. When the cartesian product is constructed, the 498 * input lists are merely copied. Only as the resulting list is iterated are 499 * the individual lists created, and these are not retained after iteration. 500 * 501 * @param lists the lists to choose elements from, in the order that 502 * the elements chosen from those lists should appear in the resulting 503 * lists 504 * @param <B> any common base class shared by all axes (often just {@link 505 * Object}) 506 * @return the Cartesian product, as an immutable list containing immutable 507 * lists 508 * @throws IllegalArgumentException if the size of the cartesian product would 509 * be greater than {@link Integer#MAX_VALUE} 510 * @throws NullPointerException if {@code lists}, any one of the 511 * {@code lists}, or any element of a provided list is null 512 * @since 19.0 513 */ 514 public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) { 515 return cartesianProduct(Arrays.asList(lists)); 516 } 517 518 /** 519 * Returns a list that applies {@code function} to each element of {@code 520 * fromList}. The returned list is a transformed view of {@code fromList}; 521 * changes to {@code fromList} will be reflected in the returned list and vice 522 * versa. 523 * 524 * <p>Since functions are not reversible, the transform is one-way and new 525 * items cannot be stored in the returned list. The {@code add}, 526 * {@code addAll} and {@code set} methods are unsupported in the returned 527 * list. 528 * 529 * <p>The function is applied lazily, invoked when needed. This is necessary 530 * for the returned list to be a view, but it means that the function will be 531 * applied many times for bulk operations like {@link List#contains} and 532 * {@link List#hashCode}. For this to perform well, {@code function} should be 533 * fast. To avoid lazy evaluation when the returned list doesn't need to be a 534 * view, copy the returned list into a new list of your choosing. 535 * 536 * <p>If {@code fromList} implements {@link RandomAccess}, so will the 537 * returned list. The returned list is threadsafe if the supplied list and 538 * function are. 539 * 540 * <p>If only a {@code Collection} or {@code Iterable} input is available, use 541 * {@link Collections2#transform} or {@link Iterables#transform}. 542 * 543 * <p><b>Note:</b> serializing the returned list is implemented by serializing 544 * {@code fromList}, its contents, and {@code function} -- <i>not</i> by 545 * serializing the transformed values. This can lead to surprising behavior, 546 * so serializing the returned list is <b>not recommended</b>. Instead, 547 * copy the list using {@link ImmutableList#copyOf(Collection)} (for example), 548 * then serialize the copy. Other methods similar to this do not implement 549 * serialization at all for this reason. 550 */ 551 public static <F, T> List<T> transform( 552 List<F> fromList, Function<? super F, ? extends T> function) { 553 return (fromList instanceof RandomAccess) 554 ? new TransformingRandomAccessList<F, T>(fromList, function) 555 : new TransformingSequentialList<F, T>(fromList, function); 556 } 557 558 /** 559 * Implementation of a sequential transforming list. 560 * 561 * @see Lists#transform 562 */ 563 private static class TransformingSequentialList<F, T> extends AbstractSequentialList<T> 564 implements Serializable { 565 final List<F> fromList; 566 final Function<? super F, ? extends T> function; 567 568 TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) { 569 this.fromList = checkNotNull(fromList); 570 this.function = checkNotNull(function); 571 } 572 /** 573 * The default implementation inherited is based on iteration and removal of 574 * each element which can be overkill. That's why we forward this call 575 * directly to the backing list. 576 */ 577 @Override 578 public void clear() { 579 fromList.clear(); 580 } 581 582 @Override 583 public int size() { 584 return fromList.size(); 585 } 586 587 @Override 588 public ListIterator<T> listIterator(final int index) { 589 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 590 @Override 591 T transform(F from) { 592 return function.apply(from); 593 } 594 }; 595 } 596 597 private static final long serialVersionUID = 0; 598 } 599 600 /** 601 * Implementation of a transforming random access list. We try to make as many 602 * of these methods pass-through to the source list as possible so that the 603 * performance characteristics of the source list and transformed list are 604 * similar. 605 * 606 * @see Lists#transform 607 */ 608 private static class TransformingRandomAccessList<F, T> extends AbstractList<T> 609 implements RandomAccess, Serializable { 610 final List<F> fromList; 611 final Function<? super F, ? extends T> function; 612 613 TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) { 614 this.fromList = checkNotNull(fromList); 615 this.function = checkNotNull(function); 616 } 617 618 @Override 619 public void clear() { 620 fromList.clear(); 621 } 622 623 @Override 624 public T get(int index) { 625 return function.apply(fromList.get(index)); 626 } 627 628 @Override 629 public Iterator<T> iterator() { 630 return listIterator(); 631 } 632 633 @Override 634 public ListIterator<T> listIterator(int index) { 635 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 636 @Override 637 T transform(F from) { 638 return function.apply(from); 639 } 640 }; 641 } 642 643 @Override 644 public boolean isEmpty() { 645 return fromList.isEmpty(); 646 } 647 648 @Override 649 public T remove(int index) { 650 return function.apply(fromList.remove(index)); 651 } 652 653 @Override 654 public int size() { 655 return fromList.size(); 656 } 657 658 private static final long serialVersionUID = 0; 659 } 660 661 /** 662 * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, 663 * each of the same size (the final list may be smaller). For example, 664 * partitioning a list containing {@code [a, b, c, d, e]} with a partition 665 * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing 666 * two inner lists of three and two elements, all in the original order. 667 * 668 * <p>The outer list is unmodifiable, but reflects the latest state of the 669 * source list. The inner lists are sublist views of the original list, 670 * produced on demand using {@link List#subList(int, int)}, and are subject 671 * to all the usual caveats about modification as explained in that API. 672 * 673 * @param list the list to return consecutive sublists of 674 * @param size the desired size of each sublist (the last may be 675 * smaller) 676 * @return a list of consecutive sublists 677 * @throws IllegalArgumentException if {@code partitionSize} is nonpositive 678 */ 679 public static <T> List<List<T>> partition(List<T> list, int size) { 680 checkNotNull(list); 681 checkArgument(size > 0); 682 return (list instanceof RandomAccess) 683 ? new RandomAccessPartition<T>(list, size) 684 : new Partition<T>(list, size); 685 } 686 687 private static class Partition<T> extends AbstractList<List<T>> { 688 final List<T> list; 689 final int size; 690 691 Partition(List<T> list, int size) { 692 this.list = list; 693 this.size = size; 694 } 695 696 @Override 697 public List<T> get(int index) { 698 checkElementIndex(index, size()); 699 int start = index * size; 700 int end = Math.min(start + size, list.size()); 701 return list.subList(start, end); 702 } 703 704 @Override 705 public int size() { 706 return IntMath.divide(list.size(), size, RoundingMode.CEILING); 707 } 708 709 @Override 710 public boolean isEmpty() { 711 return list.isEmpty(); 712 } 713 } 714 715 private static class RandomAccessPartition<T> extends Partition<T> implements RandomAccess { 716 RandomAccessPartition(List<T> list, int size) { 717 super(list, size); 718 } 719 } 720 721 /** 722 * Returns a view of the specified string as an immutable list of {@code 723 * Character} values. 724 * 725 * @since 7.0 726 */ 727 public static ImmutableList<Character> charactersOf(String string) { 728 return new StringAsImmutableList(checkNotNull(string)); 729 } 730 731 @SuppressWarnings("serial") // serialized using ImmutableList serialization 732 private static final class StringAsImmutableList extends ImmutableList<Character> { 733 734 private final String string; 735 736 StringAsImmutableList(String string) { 737 this.string = string; 738 } 739 740 @Override 741 public int indexOf(@Nullable Object object) { 742 return (object instanceof Character) ? string.indexOf((Character) object) : -1; 743 } 744 745 @Override 746 public int lastIndexOf(@Nullable Object object) { 747 return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1; 748 } 749 750 @Override 751 public ImmutableList<Character> subList(int fromIndex, int toIndex) { 752 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 753 return charactersOf(string.substring(fromIndex, toIndex)); 754 } 755 756 @Override 757 boolean isPartialView() { 758 return false; 759 } 760 761 @Override 762 public Character get(int index) { 763 checkElementIndex(index, size()); // for GWT 764 return string.charAt(index); 765 } 766 767 @Override 768 public int size() { 769 return string.length(); 770 } 771 } 772 773 /** 774 * Returns a view of the specified {@code CharSequence} as a {@code 775 * List<Character>}, viewing {@code sequence} as a sequence of Unicode code 776 * units. The view does not support any modification operations, but reflects 777 * any changes to the underlying character sequence. 778 * 779 * @param sequence the character sequence to view as a {@code List} of 780 * characters 781 * @return an {@code List<Character>} view of the character sequence 782 * @since 7.0 783 */ 784 @Beta 785 public static List<Character> charactersOf(CharSequence sequence) { 786 return new CharSequenceAsList(checkNotNull(sequence)); 787 } 788 789 private static final class CharSequenceAsList extends AbstractList<Character> { 790 private final CharSequence sequence; 791 792 CharSequenceAsList(CharSequence sequence) { 793 this.sequence = sequence; 794 } 795 796 @Override 797 public Character get(int index) { 798 checkElementIndex(index, size()); // for GWT 799 return sequence.charAt(index); 800 } 801 802 @Override 803 public int size() { 804 return sequence.length(); 805 } 806 } 807 808 /** 809 * Returns a reversed view of the specified list. For example, {@code 810 * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 811 * 2, 1}. The returned list is backed by this list, so changes in the returned 812 * list are reflected in this list, and vice-versa. The returned list supports 813 * all of the optional list operations supported by this list. 814 * 815 * <p>The returned list is random-access if the specified list is random 816 * access. 817 * 818 * @since 7.0 819 */ 820 public static <T> List<T> reverse(List<T> list) { 821 if (list instanceof ImmutableList) { 822 return ((ImmutableList<T>) list).reverse(); 823 } else if (list instanceof ReverseList) { 824 return ((ReverseList<T>) list).getForwardList(); 825 } else if (list instanceof RandomAccess) { 826 return new RandomAccessReverseList<T>(list); 827 } else { 828 return new ReverseList<T>(list); 829 } 830 } 831 832 private static class ReverseList<T> extends AbstractList<T> { 833 private final List<T> forwardList; 834 835 ReverseList(List<T> forwardList) { 836 this.forwardList = checkNotNull(forwardList); 837 } 838 839 List<T> getForwardList() { 840 return forwardList; 841 } 842 843 private int reverseIndex(int index) { 844 int size = size(); 845 checkElementIndex(index, size); 846 return (size - 1) - index; 847 } 848 849 private int reversePosition(int index) { 850 int size = size(); 851 checkPositionIndex(index, size); 852 return size - index; 853 } 854 855 @Override 856 public void add(int index, @Nullable T element) { 857 forwardList.add(reversePosition(index), element); 858 } 859 860 @Override 861 public void clear() { 862 forwardList.clear(); 863 } 864 865 @Override 866 public T remove(int index) { 867 return forwardList.remove(reverseIndex(index)); 868 } 869 870 @Override 871 protected void removeRange(int fromIndex, int toIndex) { 872 subList(fromIndex, toIndex).clear(); 873 } 874 875 @Override 876 public T set(int index, @Nullable T element) { 877 return forwardList.set(reverseIndex(index), element); 878 } 879 880 @Override 881 public T get(int index) { 882 return forwardList.get(reverseIndex(index)); 883 } 884 885 @Override 886 public int size() { 887 return forwardList.size(); 888 } 889 890 @Override 891 public List<T> subList(int fromIndex, int toIndex) { 892 checkPositionIndexes(fromIndex, toIndex, size()); 893 return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex))); 894 } 895 896 @Override 897 public Iterator<T> iterator() { 898 return listIterator(); 899 } 900 901 @Override 902 public ListIterator<T> listIterator(int index) { 903 int start = reversePosition(index); 904 final ListIterator<T> forwardIterator = forwardList.listIterator(start); 905 return new ListIterator<T>() { 906 907 boolean canRemoveOrSet; 908 909 @Override 910 public void add(T e) { 911 forwardIterator.add(e); 912 forwardIterator.previous(); 913 canRemoveOrSet = false; 914 } 915 916 @Override 917 public boolean hasNext() { 918 return forwardIterator.hasPrevious(); 919 } 920 921 @Override 922 public boolean hasPrevious() { 923 return forwardIterator.hasNext(); 924 } 925 926 @Override 927 public T next() { 928 if (!hasNext()) { 929 throw new NoSuchElementException(); 930 } 931 canRemoveOrSet = true; 932 return forwardIterator.previous(); 933 } 934 935 @Override 936 public int nextIndex() { 937 return reversePosition(forwardIterator.nextIndex()); 938 } 939 940 @Override 941 public T previous() { 942 if (!hasPrevious()) { 943 throw new NoSuchElementException(); 944 } 945 canRemoveOrSet = true; 946 return forwardIterator.next(); 947 } 948 949 @Override 950 public int previousIndex() { 951 return nextIndex() - 1; 952 } 953 954 @Override 955 public void remove() { 956 checkRemove(canRemoveOrSet); 957 forwardIterator.remove(); 958 canRemoveOrSet = false; 959 } 960 961 @Override 962 public void set(T e) { 963 checkState(canRemoveOrSet); 964 forwardIterator.set(e); 965 } 966 }; 967 } 968 } 969 970 private static class RandomAccessReverseList<T> extends ReverseList<T> implements RandomAccess { 971 RandomAccessReverseList(List<T> forwardList) { 972 super(forwardList); 973 } 974 } 975 976 /** 977 * An implementation of {@link List#hashCode()}. 978 */ 979 static int hashCodeImpl(List<?> list) { 980 // TODO(lowasser): worth optimizing for RandomAccess? 981 int hashCode = 1; 982 for (Object o : list) { 983 hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); 984 985 hashCode = ~~hashCode; 986 // needed to deal with GWT integer overflow 987 } 988 return hashCode; 989 } 990 991 /** 992 * An implementation of {@link List#equals(Object)}. 993 */ 994 static boolean equalsImpl(List<?> thisList, @Nullable Object other) { 995 if (other == checkNotNull(thisList)) { 996 return true; 997 } 998 if (!(other instanceof List)) { 999 return false; 1000 } 1001 List<?> otherList = (List<?>) other; 1002 int size = thisList.size(); 1003 if (size != otherList.size()) { 1004 return false; 1005 } 1006 if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) { 1007 // avoid allocation and use the faster loop 1008 for (int i = 0; i < size; i++) { 1009 if (!Objects.equal(thisList.get(i), otherList.get(i))) { 1010 return false; 1011 } 1012 } 1013 return true; 1014 } else { 1015 return Iterators.elementsEqual(thisList.iterator(), otherList.iterator()); 1016 } 1017 } 1018 1019 /** 1020 * An implementation of {@link List#addAll(int, Collection)}. 1021 */ 1022 static <E> boolean addAllImpl(List<E> list, int index, Iterable<? extends E> elements) { 1023 boolean changed = false; 1024 ListIterator<E> listIterator = list.listIterator(index); 1025 for (E e : elements) { 1026 listIterator.add(e); 1027 changed = true; 1028 } 1029 return changed; 1030 } 1031 1032 /** 1033 * An implementation of {@link List#indexOf(Object)}. 1034 */ 1035 static int indexOfImpl(List<?> list, @Nullable Object element) { 1036 if (list instanceof RandomAccess) { 1037 return indexOfRandomAccess(list, element); 1038 } else { 1039 ListIterator<?> listIterator = list.listIterator(); 1040 while (listIterator.hasNext()) { 1041 if (Objects.equal(element, listIterator.next())) { 1042 return listIterator.previousIndex(); 1043 } 1044 } 1045 return -1; 1046 } 1047 } 1048 1049 private static int indexOfRandomAccess(List<?> list, @Nullable Object element) { 1050 int size = list.size(); 1051 if (element == null) { 1052 for (int i = 0; i < size; i++) { 1053 if (list.get(i) == null) { 1054 return i; 1055 } 1056 } 1057 } else { 1058 for (int i = 0; i < size; i++) { 1059 if (element.equals(list.get(i))) { 1060 return i; 1061 } 1062 } 1063 } 1064 return -1; 1065 } 1066 1067 /** 1068 * An implementation of {@link List#lastIndexOf(Object)}. 1069 */ 1070 static int lastIndexOfImpl(List<?> list, @Nullable Object element) { 1071 if (list instanceof RandomAccess) { 1072 return lastIndexOfRandomAccess(list, element); 1073 } else { 1074 ListIterator<?> listIterator = list.listIterator(list.size()); 1075 while (listIterator.hasPrevious()) { 1076 if (Objects.equal(element, listIterator.previous())) { 1077 return listIterator.nextIndex(); 1078 } 1079 } 1080 return -1; 1081 } 1082 } 1083 1084 private static int lastIndexOfRandomAccess(List<?> list, @Nullable Object element) { 1085 if (element == null) { 1086 for (int i = list.size() - 1; i >= 0; i--) { 1087 if (list.get(i) == null) { 1088 return i; 1089 } 1090 } 1091 } else { 1092 for (int i = list.size() - 1; i >= 0; i--) { 1093 if (element.equals(list.get(i))) { 1094 return i; 1095 } 1096 } 1097 } 1098 return -1; 1099 } 1100 1101 /** 1102 * Returns an implementation of {@link List#listIterator(int)}. 1103 */ 1104 static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) { 1105 return new AbstractListWrapper<E>(list).listIterator(index); 1106 } 1107 1108 /** 1109 * An implementation of {@link List#subList(int, int)}. 1110 */ 1111 static <E> List<E> subListImpl(final List<E> list, int fromIndex, int toIndex) { 1112 List<E> wrapper; 1113 if (list instanceof RandomAccess) { 1114 wrapper = 1115 new RandomAccessListWrapper<E>(list) { 1116 @Override 1117 public ListIterator<E> listIterator(int index) { 1118 return backingList.listIterator(index); 1119 } 1120 1121 private static final long serialVersionUID = 0; 1122 }; 1123 } else { 1124 wrapper = 1125 new AbstractListWrapper<E>(list) { 1126 @Override 1127 public ListIterator<E> listIterator(int index) { 1128 return backingList.listIterator(index); 1129 } 1130 1131 private static final long serialVersionUID = 0; 1132 }; 1133 } 1134 return wrapper.subList(fromIndex, toIndex); 1135 } 1136 1137 private static class AbstractListWrapper<E> extends AbstractList<E> { 1138 final List<E> backingList; 1139 1140 AbstractListWrapper(List<E> backingList) { 1141 this.backingList = checkNotNull(backingList); 1142 } 1143 1144 @Override 1145 public void add(int index, E element) { 1146 backingList.add(index, element); 1147 } 1148 1149 @Override 1150 public boolean addAll(int index, Collection<? extends E> c) { 1151 return backingList.addAll(index, c); 1152 } 1153 1154 @Override 1155 public E get(int index) { 1156 return backingList.get(index); 1157 } 1158 1159 @Override 1160 public E remove(int index) { 1161 return backingList.remove(index); 1162 } 1163 1164 @Override 1165 public E set(int index, E element) { 1166 return backingList.set(index, element); 1167 } 1168 1169 @Override 1170 public boolean contains(Object o) { 1171 return backingList.contains(o); 1172 } 1173 1174 @Override 1175 public int size() { 1176 return backingList.size(); 1177 } 1178 } 1179 1180 private static class RandomAccessListWrapper<E> extends AbstractListWrapper<E> 1181 implements RandomAccess { 1182 RandomAccessListWrapper(List<E> backingList) { 1183 super(backingList); 1184 } 1185 } 1186 1187 /** 1188 * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 1189 */ 1190 static <T> List<T> cast(Iterable<T> iterable) { 1191 return (List<T>) iterable; 1192 } 1193}