001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.base.Predicates.and;
022import static com.google.common.base.Predicates.not;
023import static com.google.common.collect.CollectPreconditions.checkNonnegative;
024import static com.google.common.math.LongMath.binomial;
025
026import com.google.common.annotations.Beta;
027import com.google.common.annotations.GwtCompatible;
028import com.google.common.base.Function;
029import com.google.common.base.Joiner;
030import com.google.common.base.Predicate;
031import com.google.common.base.Predicates;
032import com.google.common.math.IntMath;
033import com.google.common.primitives.Ints;
034import java.util.AbstractCollection;
035import java.util.ArrayList;
036import java.util.Arrays;
037import java.util.Collection;
038import java.util.Collections;
039import java.util.Comparator;
040import java.util.Iterator;
041import java.util.List;
042import javax.annotation.Nullable;
043
044/**
045 * Provides static methods for working with {@code Collection} instances.
046 *
047 * @author Chris Povirk
048 * @author Mike Bostock
049 * @author Jared Levy
050 * @since 2.0
051 */
052@GwtCompatible
053public final class Collections2 {
054  private Collections2() {}
055
056  /**
057   * Returns the elements of {@code unfiltered} that satisfy a predicate. The
058   * returned collection is a live view of {@code unfiltered}; changes to one
059   * affect the other.
060   *
061   * <p>The resulting collection's iterator does not support {@code remove()},
062   * but all other collection methods are supported. When given an element that
063   * doesn't satisfy the predicate, the collection's {@code add()} and {@code
064   * addAll()} methods throw an {@link IllegalArgumentException}. When methods
065   * such as {@code removeAll()} and {@code clear()} are called on the filtered
066   * collection, only elements that satisfy the filter will be removed from the
067   * underlying collection.
068   *
069   * <p>The returned collection isn't threadsafe or serializable, even if
070   * {@code unfiltered} is.
071   *
072   * <p>Many of the filtered collection's methods, such as {@code size()},
073   * iterate across every element in the underlying collection and determine
074   * which elements satisfy the filter. When a live view is <i>not</i> needed,
075   * it may be faster to copy {@code Iterables.filter(unfiltered, predicate)}
076   * and use the copy.
077   *
078   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
079   * as documented at {@link Predicate#apply}. Do not provide a predicate such
080   * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
081   * with equals. (See {@link Iterables#filter(Iterable, Class)} for related
082   * functionality.)
083   */
084  // TODO(kevinb): how can we omit that Iterables link when building gwt
085  // javadoc?
086  public static <E> Collection<E> filter(Collection<E> unfiltered, Predicate<? super E> predicate) {
087    if (unfiltered instanceof FilteredCollection) {
088      // Support clear(), removeAll(), and retainAll() when filtering a filtered
089      // collection.
090      return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
091    }
092
093    return new FilteredCollection<E>(checkNotNull(unfiltered), checkNotNull(predicate));
094  }
095
096  /**
097   * Delegates to {@link Collection#contains}. Returns {@code false} if the
098   * {@code contains} method throws a {@code ClassCastException} or
099   * {@code NullPointerException}.
100   */
101  static boolean safeContains(Collection<?> collection, @Nullable Object object) {
102    checkNotNull(collection);
103    try {
104      return collection.contains(object);
105    } catch (ClassCastException e) {
106      return false;
107    } catch (NullPointerException e) {
108      return false;
109    }
110  }
111
112  /**
113   * Delegates to {@link Collection#remove}. Returns {@code false} if the
114   * {@code remove} method throws a {@code ClassCastException} or
115   * {@code NullPointerException}.
116   */
117  static boolean safeRemove(Collection<?> collection, @Nullable Object object) {
118    checkNotNull(collection);
119    try {
120      return collection.remove(object);
121    } catch (ClassCastException e) {
122      return false;
123    } catch (NullPointerException e) {
124      return false;
125    }
126  }
127
128  static class FilteredCollection<E> extends AbstractCollection<E> {
129    final Collection<E> unfiltered;
130    final Predicate<? super E> predicate;
131
132    FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) {
133      this.unfiltered = unfiltered;
134      this.predicate = predicate;
135    }
136
137    FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
138      return new FilteredCollection<E>(unfiltered, Predicates.<E>and(predicate, newPredicate));
139      // .<E> above needed to compile in JDK 5
140    }
141
142    @Override
143    public boolean add(E element) {
144      checkArgument(predicate.apply(element));
145      return unfiltered.add(element);
146    }
147
148    @Override
149    public boolean addAll(Collection<? extends E> collection) {
150      for (E element : collection) {
151        checkArgument(predicate.apply(element));
152      }
153      return unfiltered.addAll(collection);
154    }
155
156    @Override
157    public void clear() {
158      Iterables.removeIf(unfiltered, predicate);
159    }
160
161    @Override
162    public boolean contains(@Nullable Object element) {
163      if (safeContains(unfiltered, element)) {
164        @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E
165        E e = (E) element;
166        return predicate.apply(e);
167      }
168      return false;
169    }
170
171    @Override
172    public boolean containsAll(Collection<?> collection) {
173      return containsAllImpl(this, collection);
174    }
175
176    @Override
177    public boolean isEmpty() {
178      return !Iterables.any(unfiltered, predicate);
179    }
180
181    @Override
182    public Iterator<E> iterator() {
183      return Iterators.filter(unfiltered.iterator(), predicate);
184    }
185
186    @Override
187    public boolean remove(Object element) {
188      return contains(element) && unfiltered.remove(element);
189    }
190
191    @Override
192    public boolean removeAll(final Collection<?> collection) {
193      return Iterables.removeIf(unfiltered, and(predicate, Predicates.<Object>in(collection)));
194    }
195
196    @Override
197    public boolean retainAll(final Collection<?> collection) {
198      return Iterables.removeIf(unfiltered, and(predicate, not(Predicates.<Object>in(collection))));
199    }
200
201    @Override
202    public int size() {
203      return Iterators.size(iterator());
204    }
205
206    @Override
207    public Object[] toArray() {
208      // creating an ArrayList so filtering happens once
209      return Lists.newArrayList(iterator()).toArray();
210    }
211
212    @Override
213    public <T> T[] toArray(T[] array) {
214      return Lists.newArrayList(iterator()).toArray(array);
215    }
216  }
217
218  /**
219   * Returns a collection that applies {@code function} to each element of
220   * {@code fromCollection}. The returned collection is a live view of {@code
221   * fromCollection}; changes to one affect the other.
222   *
223   * <p>The returned collection's {@code add()} and {@code addAll()} methods
224   * throw an {@link UnsupportedOperationException}. All other collection
225   * methods are supported, as long as {@code fromCollection} supports them.
226   *
227   * <p>The returned collection isn't threadsafe or serializable, even if
228   * {@code fromCollection} is.
229   *
230   * <p>When a live view is <i>not</i> needed, it may be faster to copy the
231   * transformed collection and use the copy.
232   *
233   * <p>If the input {@code Collection} is known to be a {@code List}, consider
234   * {@link Lists#transform}. If only an {@code Iterable} is available, use
235   * {@link Iterables#transform}.
236   */
237  public static <F, T> Collection<T> transform(
238      Collection<F> fromCollection, Function<? super F, T> function) {
239    return new TransformedCollection<F, T>(fromCollection, function);
240  }
241
242  static class TransformedCollection<F, T> extends AbstractCollection<T> {
243    final Collection<F> fromCollection;
244    final Function<? super F, ? extends T> function;
245
246    TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) {
247      this.fromCollection = checkNotNull(fromCollection);
248      this.function = checkNotNull(function);
249    }
250
251    @Override
252    public void clear() {
253      fromCollection.clear();
254    }
255
256    @Override
257    public boolean isEmpty() {
258      return fromCollection.isEmpty();
259    }
260
261    @Override
262    public Iterator<T> iterator() {
263      return Iterators.transform(fromCollection.iterator(), function);
264    }
265
266    @Override
267    public int size() {
268      return fromCollection.size();
269    }
270  }
271
272  /**
273   * Returns {@code true} if the collection {@code self} contains all of the
274   * elements in the collection {@code c}.
275   *
276   * <p>This method iterates over the specified collection {@code c}, checking
277   * each element returned by the iterator in turn to see if it is contained in
278   * the specified collection {@code self}. If all elements are so contained,
279   * {@code true} is returned, otherwise {@code false}.
280   *
281   * @param self a collection which might contain all elements in {@code c}
282   * @param c a collection whose elements might be contained by {@code self}
283   */
284  static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
285    return Iterables.all(c, Predicates.in(self));
286  }
287
288  /**
289   * An implementation of {@link Collection#toString()}.
290   */
291  static String toStringImpl(final Collection<?> collection) {
292    StringBuilder sb = newStringBuilderForCollection(collection.size()).append('[');
293    STANDARD_JOINER.appendTo(
294        sb,
295        Iterables.transform(
296            collection,
297            new Function<Object, Object>() {
298              @Override
299              public Object apply(Object input) {
300                return input == collection ? "(this Collection)" : input;
301              }
302            }));
303    return sb.append(']').toString();
304  }
305
306  /**
307   * Returns best-effort-sized StringBuilder based on the given collection size.
308   */
309  static StringBuilder newStringBuilderForCollection(int size) {
310    checkNonnegative(size, "size");
311    return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO));
312  }
313
314  /**
315   * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
316   */
317  static <T> Collection<T> cast(Iterable<T> iterable) {
318    return (Collection<T>) iterable;
319  }
320
321  static final Joiner STANDARD_JOINER = Joiner.on(", ").useForNull("null");
322
323  /**
324   * Returns a {@link Collection} of all the permutations of the specified
325   * {@link Iterable}.
326   *
327   * <p><i>Notes:</i> This is an implementation of the algorithm for
328   * Lexicographical Permutations Generation, described in Knuth's "The Art of
329   * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
330   * iteration order follows the lexicographical order. This means that
331   * the first permutation will be in ascending order, and the last will be in
332   * descending order.
333   *
334   * <p>Duplicate elements are considered equal. For example, the list [1, 1]
335   * will have only one permutation, instead of two. This is why the elements
336   * have to implement {@link Comparable}.
337   *
338   * <p>An empty iterable has only one permutation, which is an empty list.
339   *
340   * <p>This method is equivalent to
341   * {@code Collections2.orderedPermutations(list, Ordering.natural())}.
342   *
343   * @param elements the original iterable whose elements have to be permuted.
344   * @return an immutable {@link Collection} containing all the different
345   *     permutations of the original iterable.
346   * @throws NullPointerException if the specified iterable is null or has any
347   *     null elements.
348   * @since 12.0
349   */
350  @Beta
351  public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations(
352      Iterable<E> elements) {
353    return orderedPermutations(elements, Ordering.natural());
354  }
355
356  /**
357   * Returns a {@link Collection} of all the permutations of the specified
358   * {@link Iterable} using the specified {@link Comparator} for establishing
359   * the lexicographical ordering.
360   *
361   * <p>Examples: <pre>   {@code
362   *
363   *   for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
364   *     println(perm);
365   *   }
366   *   // -> ["a", "b", "c"]
367   *   // -> ["a", "c", "b"]
368   *   // -> ["b", "a", "c"]
369   *   // -> ["b", "c", "a"]
370   *   // -> ["c", "a", "b"]
371   *   // -> ["c", "b", "a"]
372   *
373   *   for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
374   *     println(perm);
375   *   }
376   *   // -> [1, 1, 2, 2]
377   *   // -> [1, 2, 1, 2]
378   *   // -> [1, 2, 2, 1]
379   *   // -> [2, 1, 1, 2]
380   *   // -> [2, 1, 2, 1]
381   *   // -> [2, 2, 1, 1]}</pre>
382   *
383   * <p><i>Notes:</i> This is an implementation of the algorithm for
384   * Lexicographical Permutations Generation, described in Knuth's "The Art of
385   * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
386   * iteration order follows the lexicographical order. This means that
387   * the first permutation will be in ascending order, and the last will be in
388   * descending order.
389   *
390   * <p>Elements that compare equal are considered equal and no new permutations
391   * are created by swapping them.
392   *
393   * <p>An empty iterable has only one permutation, which is an empty list.
394   *
395   * @param elements the original iterable whose elements have to be permuted.
396   * @param comparator a comparator for the iterable's elements.
397   * @return an immutable {@link Collection} containing all the different
398   *     permutations of the original iterable.
399   * @throws NullPointerException If the specified iterable is null, has any
400   *     null elements, or if the specified comparator is null.
401   * @since 12.0
402   */
403  @Beta
404  public static <E> Collection<List<E>> orderedPermutations(
405      Iterable<E> elements, Comparator<? super E> comparator) {
406    return new OrderedPermutationCollection<E>(elements, comparator);
407  }
408
409  private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> {
410    final ImmutableList<E> inputList;
411    final Comparator<? super E> comparator;
412    final int size;
413
414    OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) {
415      this.inputList = Ordering.from(comparator).immutableSortedCopy(input);
416      this.comparator = comparator;
417      this.size = calculateSize(inputList, comparator);
418    }
419
420    /**
421     * The number of permutations with repeated elements is calculated as
422     * follows:
423     * <ul>
424     * <li>For an empty list, it is 1 (base case).</li>
425     * <li>When r numbers are added to a list of n-r elements, the number of
426     * permutations is increased by a factor of (n choose r).</li>
427     * </ul>
428     */
429    private static <E> int calculateSize(
430        List<E> sortedInputList, Comparator<? super E> comparator) {
431      long permutations = 1;
432      int n = 1;
433      int r = 1;
434      while (n < sortedInputList.size()) {
435        int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n));
436        if (comparison < 0) {
437          // We move to the next non-repeated element.
438          permutations *= binomial(n, r);
439          r = 0;
440          if (!isPositiveInt(permutations)) {
441            return Integer.MAX_VALUE;
442          }
443        }
444        n++;
445        r++;
446      }
447      permutations *= binomial(n, r);
448      if (!isPositiveInt(permutations)) {
449        return Integer.MAX_VALUE;
450      }
451      return (int) permutations;
452    }
453
454    @Override
455    public int size() {
456      return size;
457    }
458
459    @Override
460    public boolean isEmpty() {
461      return false;
462    }
463
464    @Override
465    public Iterator<List<E>> iterator() {
466      return new OrderedPermutationIterator<E>(inputList, comparator);
467    }
468
469    @Override
470    public boolean contains(@Nullable Object obj) {
471      if (obj instanceof List) {
472        List<?> list = (List<?>) obj;
473        return isPermutation(inputList, list);
474      }
475      return false;
476    }
477
478    @Override
479    public String toString() {
480      return "orderedPermutationCollection(" + inputList + ")";
481    }
482  }
483
484  private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> {
485
486    List<E> nextPermutation;
487    final Comparator<? super E> comparator;
488
489    OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) {
490      this.nextPermutation = Lists.newArrayList(list);
491      this.comparator = comparator;
492    }
493
494    @Override
495    protected List<E> computeNext() {
496      if (nextPermutation == null) {
497        return endOfData();
498      }
499      ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
500      calculateNextPermutation();
501      return next;
502    }
503
504    void calculateNextPermutation() {
505      int j = findNextJ();
506      if (j == -1) {
507        nextPermutation = null;
508        return;
509      }
510
511      int l = findNextL(j);
512      Collections.swap(nextPermutation, j, l);
513      int n = nextPermutation.size();
514      Collections.reverse(nextPermutation.subList(j + 1, n));
515    }
516
517    int findNextJ() {
518      for (int k = nextPermutation.size() - 2; k >= 0; k--) {
519        if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) {
520          return k;
521        }
522      }
523      return -1;
524    }
525
526    int findNextL(int j) {
527      E ak = nextPermutation.get(j);
528      for (int l = nextPermutation.size() - 1; l > j; l--) {
529        if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
530          return l;
531        }
532      }
533      throw new AssertionError("this statement should be unreachable");
534    }
535  }
536
537  /**
538   * Returns a {@link Collection} of all the permutations of the specified
539   * {@link Collection}.
540   *
541   * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm
542   * for permutations generation, described in Knuth's "The Art of Computer
543   * Programming", Volume 4, Chapter 7, Section 7.2.1.2.
544   *
545   * <p>If the input list contains equal elements, some of the generated
546   * permutations will be equal.
547   *
548   * <p>An empty collection has only one permutation, which is an empty list.
549   *
550   * @param elements the original collection whose elements have to be permuted.
551   * @return an immutable {@link Collection} containing all the different
552   *     permutations of the original collection.
553   * @throws NullPointerException if the specified collection is null or has any
554   *     null elements.
555   * @since 12.0
556   */
557  @Beta
558  public static <E> Collection<List<E>> permutations(Collection<E> elements) {
559    return new PermutationCollection<E>(ImmutableList.copyOf(elements));
560  }
561
562  private static final class PermutationCollection<E> extends AbstractCollection<List<E>> {
563    final ImmutableList<E> inputList;
564
565    PermutationCollection(ImmutableList<E> input) {
566      this.inputList = input;
567    }
568
569    @Override
570    public int size() {
571      return IntMath.factorial(inputList.size());
572    }
573
574    @Override
575    public boolean isEmpty() {
576      return false;
577    }
578
579    @Override
580    public Iterator<List<E>> iterator() {
581      return new PermutationIterator<E>(inputList);
582    }
583
584    @Override
585    public boolean contains(@Nullable Object obj) {
586      if (obj instanceof List) {
587        List<?> list = (List<?>) obj;
588        return isPermutation(inputList, list);
589      }
590      return false;
591    }
592
593    @Override
594    public String toString() {
595      return "permutations(" + inputList + ")";
596    }
597  }
598
599  private static class PermutationIterator<E> extends AbstractIterator<List<E>> {
600    final List<E> list;
601    final int[] c;
602    final int[] o;
603    int j;
604
605    PermutationIterator(List<E> list) {
606      this.list = new ArrayList<E>(list);
607      int n = list.size();
608      c = new int[n];
609      o = new int[n];
610      Arrays.fill(c, 0);
611      Arrays.fill(o, 1);
612      j = Integer.MAX_VALUE;
613    }
614
615    @Override
616    protected List<E> computeNext() {
617      if (j <= 0) {
618        return endOfData();
619      }
620      ImmutableList<E> next = ImmutableList.copyOf(list);
621      calculateNextPermutation();
622      return next;
623    }
624
625    void calculateNextPermutation() {
626      j = list.size() - 1;
627      int s = 0;
628
629      // Handle the special case of an empty list. Skip the calculation of the
630      // next permutation.
631      if (j == -1) {
632        return;
633      }
634
635      while (true) {
636        int q = c[j] + o[j];
637        if (q < 0) {
638          switchDirection();
639          continue;
640        }
641        if (q == j + 1) {
642          if (j == 0) {
643            break;
644          }
645          s++;
646          switchDirection();
647          continue;
648        }
649
650        Collections.swap(list, j - c[j] + s, j - q + s);
651        c[j] = q;
652        break;
653      }
654    }
655
656    void switchDirection() {
657      o[j] = -o[j];
658      j--;
659    }
660  }
661
662  /**
663   * Returns {@code true} if the second list is a permutation of the first.
664   */
665  private static boolean isPermutation(List<?> first, List<?> second) {
666    if (first.size() != second.size()) {
667      return false;
668    }
669    Multiset<?> firstMultiset = HashMultiset.create(first);
670    Multiset<?> secondMultiset = HashMultiset.create(second);
671    return firstMultiset.equals(secondMultiset);
672  }
673
674  private static boolean isPositiveInt(long n) {
675    return n >= 0 && n <= Integer.MAX_VALUE;
676  }
677}