001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.cache; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkState; 020 021import com.google.common.annotations.GwtCompatible; 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.base.Ascii; 024import com.google.common.base.Equivalence; 025import com.google.common.base.MoreObjects; 026import com.google.common.base.Supplier; 027import com.google.common.base.Suppliers; 028import com.google.common.base.Ticker; 029import com.google.common.cache.AbstractCache.SimpleStatsCounter; 030import com.google.common.cache.AbstractCache.StatsCounter; 031import com.google.common.cache.LocalCache.Strength; 032import java.lang.ref.SoftReference; 033import java.lang.ref.WeakReference; 034import java.util.ConcurrentModificationException; 035import java.util.concurrent.ConcurrentHashMap; 036import java.util.concurrent.TimeUnit; 037import java.util.logging.Level; 038import java.util.logging.Logger; 039import javax.annotation.CheckReturnValue; 040 041/** 042 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 043 * following features: 044 * 045 * <ul> 046 * <li>automatic loading of entries into the cache 047 * <li>least-recently-used eviction when a maximum size is exceeded 048 * <li>time-based expiration of entries, measured since last access or last write 049 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references 050 * <li>values automatically wrapped in {@linkplain WeakReference weak} or {@linkplain SoftReference 051 * soft} references 052 * <li>notification of evicted (or otherwise removed) entries 053 * <li>accumulation of cache access statistics 054 * </ul> 055 * 056 * 057 * <p>These features are all optional; caches can be created using all or none of them. By default 058 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 059 * 060 * <p>Usage example: <pre> {@code 061 * 062 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 063 * .maximumSize(10000) 064 * .expireAfterWrite(10, TimeUnit.MINUTES) 065 * .removalListener(MY_LISTENER) 066 * .build( 067 * new CacheLoader<Key, Graph>() { 068 * public Graph load(Key key) throws AnyException { 069 * return createExpensiveGraph(key); 070 * } 071 * });}</pre> 072 * 073 * <p>Or equivalently, <pre> {@code 074 * 075 * // In real life this would come from a command-line flag or config file 076 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 077 * 078 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 079 * .removalListener(MY_LISTENER) 080 * .build( 081 * new CacheLoader<Key, Graph>() { 082 * public Graph load(Key key) throws AnyException { 083 * return createExpensiveGraph(key); 084 * } 085 * });}</pre> 086 * 087 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 088 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 089 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 090 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 091 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 092 * are reflected in that iterator. These iterators never throw 093 * {@link ConcurrentModificationException}. 094 * 095 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the 096 * {@link Object#equals equals} method) to determine equality for keys or values. However, if 097 * {@link #weakKeys} was specified, the cache uses identity ({@code ==}) comparisons instead for 098 * keys. Likewise, if {@link #weakValues} or {@link #softValues} was specified, the cache uses 099 * identity comparisons for values. 100 * 101 * <p>Entries are automatically evicted from the cache when any of {@linkplain #maximumSize(long) 102 * maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, {@linkplain #expireAfterWrite 103 * expireAfterWrite}, {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys 104 * weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are 105 * requested. 106 * 107 * <p>If {@linkplain #maximumSize(long) maximumSize} or {@linkplain #maximumWeight(long) 108 * maximumWeight} is requested entries may be evicted on each cache modification. 109 * 110 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or {@linkplain #expireAfterAccess 111 * expireAfterAccess} is requested entries may be evicted on each cache modification, on occasional 112 * cache accesses, or on calls to {@link Cache#cleanUp}. Expired entries may be counted by 113 * {@link Cache#size}, but will never be visible to read or write operations. 114 * 115 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or 116 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in 117 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be 118 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to 119 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be 120 * visible to read or write operations. 121 * 122 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 123 * will be performed during write operations, or during occasional read operations in the absence of 124 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 125 * calling it should not be necessary with a high throughput cache. Only caches built with 126 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 127 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 128 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic 129 * maintenance. 130 * 131 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 132 * retain all the configuration properties of the original cache. Note that the serialized form does 133 * <i>not</i> include cache contents, but only configuration. 134 * 135 * <p>See the Guava User Guide article on 136 * <a href="https://github.com/google/guava/wiki/CachesExplained">caching</a> for a higher-level 137 * explanation. 138 * 139 * @param <K> the base key type for all caches created by this builder 140 * @param <V> the base value type for all caches created by this builder 141 * @author Charles Fry 142 * @author Kevin Bourrillion 143 * @since 10.0 144 */ 145@GwtCompatible(emulated = true) 146public final class CacheBuilder<K, V> { 147 private static final int DEFAULT_INITIAL_CAPACITY = 16; 148 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 149 private static final int DEFAULT_EXPIRATION_NANOS = 0; 150 private static final int DEFAULT_REFRESH_NANOS = 0; 151 152 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = 153 Suppliers.ofInstance( 154 new StatsCounter() { 155 @Override 156 public void recordHits(int count) {} 157 158 @Override 159 public void recordMisses(int count) {} 160 161 @Override 162 public void recordLoadSuccess(long loadTime) {} 163 164 @Override 165 public void recordLoadException(long loadTime) {} 166 167 @Override 168 public void recordEviction() {} 169 170 @Override 171 public CacheStats snapshot() { 172 return EMPTY_STATS; 173 } 174 }); 175 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 176 177 static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 178 new Supplier<StatsCounter>() { 179 @Override 180 public StatsCounter get() { 181 return new SimpleStatsCounter(); 182 } 183 }; 184 185 enum NullListener implements RemovalListener<Object, Object> { 186 INSTANCE; 187 188 @Override 189 public void onRemoval(RemovalNotification<Object, Object> notification) {} 190 } 191 192 enum OneWeigher implements Weigher<Object, Object> { 193 INSTANCE; 194 195 @Override 196 public int weigh(Object key, Object value) { 197 return 1; 198 } 199 } 200 201 static final Ticker NULL_TICKER = 202 new Ticker() { 203 @Override 204 public long read() { 205 return 0; 206 } 207 }; 208 209 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 210 211 static final int UNSET_INT = -1; 212 213 boolean strictParsing = true; 214 215 int initialCapacity = UNSET_INT; 216 int concurrencyLevel = UNSET_INT; 217 long maximumSize = UNSET_INT; 218 long maximumWeight = UNSET_INT; 219 Weigher<? super K, ? super V> weigher; 220 221 Strength keyStrength; 222 Strength valueStrength; 223 224 long expireAfterWriteNanos = UNSET_INT; 225 long expireAfterAccessNanos = UNSET_INT; 226 long refreshNanos = UNSET_INT; 227 228 Equivalence<Object> keyEquivalence; 229 Equivalence<Object> valueEquivalence; 230 231 RemovalListener<? super K, ? super V> removalListener; 232 Ticker ticker; 233 234 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 235 236 // TODO(fry): make constructor private and update tests to use newBuilder 237 CacheBuilder() {} 238 239 /** 240 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 241 * strong values, and no automatic eviction of any kind. 242 */ 243 public static CacheBuilder<Object, Object> newBuilder() { 244 return new CacheBuilder<Object, Object>(); 245 } 246 247 /** 248 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 249 * 250 * @since 12.0 251 */ 252 @GwtIncompatible // To be supported 253 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 254 return spec.toCacheBuilder().lenientParsing(); 255 } 256 257 /** 258 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 259 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 260 * 261 * @param spec a String in the format specified by {@link CacheBuilderSpec} 262 * @since 12.0 263 */ 264 @GwtIncompatible // To be supported 265 public static CacheBuilder<Object, Object> from(String spec) { 266 return from(CacheBuilderSpec.parse(spec)); 267 } 268 269 /** 270 * Enables lenient parsing. Useful for tests and spec parsing. 271 * 272 * @return this {@code CacheBuilder} instance (for chaining) 273 */ 274 @GwtIncompatible // To be supported 275 CacheBuilder<K, V> lenientParsing() { 276 strictParsing = false; 277 return this; 278 } 279 280 /** 281 * Sets a custom {@code Equivalence} strategy for comparing keys. 282 * 283 * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 284 * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 285 * 286 * @return this {@code CacheBuilder} instance (for chaining) 287 */ 288 @GwtIncompatible // To be supported 289 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 290 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 291 keyEquivalence = checkNotNull(equivalence); 292 return this; 293 } 294 295 Equivalence<Object> getKeyEquivalence() { 296 return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 297 } 298 299 /** 300 * Sets a custom {@code Equivalence} strategy for comparing values. 301 * 302 * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 303 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 304 * otherwise. 305 * 306 * @return this {@code CacheBuilder} instance (for chaining) 307 */ 308 @GwtIncompatible // To be supported 309 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 310 checkState( 311 valueEquivalence == null, "value equivalence was already set to %s", valueEquivalence); 312 this.valueEquivalence = checkNotNull(equivalence); 313 return this; 314 } 315 316 Equivalence<Object> getValueEquivalence() { 317 return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 318 } 319 320 /** 321 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 322 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 323 * having a hash table of size eight. Providing a large enough estimate at construction time 324 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 325 * high wastes memory. 326 * 327 * @return this {@code CacheBuilder} instance (for chaining) 328 * @throws IllegalArgumentException if {@code initialCapacity} is negative 329 * @throws IllegalStateException if an initial capacity was already set 330 */ 331 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 332 checkState( 333 this.initialCapacity == UNSET_INT, 334 "initial capacity was already set to %s", 335 this.initialCapacity); 336 checkArgument(initialCapacity >= 0); 337 this.initialCapacity = initialCapacity; 338 return this; 339 } 340 341 int getInitialCapacity() { 342 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 343 } 344 345 /** 346 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 347 * table is internally partitioned to try to permit the indicated number of concurrent updates 348 * without contention. Because assignment of entries to these partitions is not necessarily 349 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 350 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 351 * higher value than you need can waste space and time, and a significantly lower value can lead 352 * to thread contention. But overestimates and underestimates within an order of magnitude do not 353 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 354 * at a time, but since read operations and cache loading computations can proceed concurrently, 355 * this still yields higher concurrency than full synchronization. 356 * 357 * <p>Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 358 * value, you should always choose it explicitly. 359 * 360 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 361 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 362 * write, and twice for each cache loading computation (once prior to loading the new value, and 363 * once after loading completes). Much internal cache management is performed at the segment 364 * granularity. For example, access queues and write queues are kept per segment when they are 365 * required by the selected eviction algorithm. As such, when writing unit tests it is not 366 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 367 * behavior. 368 * 369 * <p>Note that future implementations may abandon segment locking in favor of more advanced 370 * concurrency controls. 371 * 372 * @return this {@code CacheBuilder} instance (for chaining) 373 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 374 * @throws IllegalStateException if a concurrency level was already set 375 */ 376 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 377 checkState( 378 this.concurrencyLevel == UNSET_INT, 379 "concurrency level was already set to %s", 380 this.concurrencyLevel); 381 checkArgument(concurrencyLevel > 0); 382 this.concurrencyLevel = concurrencyLevel; 383 return this; 384 } 385 386 int getConcurrencyLevel() { 387 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 388 } 389 390 /** 391 * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict 392 * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the 393 * cache evicts entries that are less likely to be used again. For example, the cache may evict an 394 * entry because it hasn't been used recently or very often. 395 * 396 * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the 397 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 398 * 399 * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 400 * 401 * @param size the maximum size of the cache 402 * @return this {@code CacheBuilder} instance (for chaining) 403 * @throws IllegalArgumentException if {@code size} is negative 404 * @throws IllegalStateException if a maximum size or weight was already set 405 */ 406 public CacheBuilder<K, V> maximumSize(long size) { 407 checkState( 408 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 409 checkState( 410 this.maximumWeight == UNSET_INT, 411 "maximum weight was already set to %s", 412 this.maximumWeight); 413 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 414 checkArgument(size >= 0, "maximum size must not be negative"); 415 this.maximumSize = size; 416 return this; 417 } 418 419 /** 420 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 421 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 422 * corresponding call to {@link #weigher} prior to calling {@link #build}. 423 * 424 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache 425 * size grows close to the maximum, the cache evicts entries that are less likely to be used 426 * again. For example, the cache may evict an entry because it hasn't been used recently or very 427 * often. 428 * 429 * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into 430 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 431 * 432 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 433 * effect on selecting which entry should be evicted next. 434 * 435 * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 436 * 437 * @param weight the maximum total weight of entries the cache may contain 438 * @return this {@code CacheBuilder} instance (for chaining) 439 * @throws IllegalArgumentException if {@code weight} is negative 440 * @throws IllegalStateException if a maximum weight or size was already set 441 * @since 11.0 442 */ 443 @GwtIncompatible // To be supported 444 public CacheBuilder<K, V> maximumWeight(long weight) { 445 checkState( 446 this.maximumWeight == UNSET_INT, 447 "maximum weight was already set to %s", 448 this.maximumWeight); 449 checkState( 450 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 451 this.maximumWeight = weight; 452 checkArgument(weight >= 0, "maximum weight must not be negative"); 453 return this; 454 } 455 456 /** 457 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken into 458 * consideration by {@link #maximumWeight(long)} when determining which entries to evict, and use 459 * of this method requires a corresponding call to {@link #maximumWeight(long)} prior to calling 460 * {@link #build}. Weights are measured and recorded when entries are inserted into the cache, and 461 * are thus effectively static during the lifetime of a cache entry. 462 * 463 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 464 * (though it still may be evicted by other means). 465 * 466 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 467 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 468 * original reference or the returned reference may be used to complete configuration and build 469 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 470 * building caches whose key or value types are incompatible with the types accepted by the 471 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 472 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 473 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 474 * 475 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build a 476 * cache whose key or value type is incompatible with the weigher, you will likely experience a 477 * {@link ClassCastException} at some <i>undefined</i> point in the future. 478 * 479 * @param weigher the weigher to use in calculating the weight of cache entries 480 * @return this {@code CacheBuilder} instance (for chaining) 481 * @throws IllegalArgumentException if {@code size} is negative 482 * @throws IllegalStateException if a maximum size was already set 483 * @since 11.0 484 */ 485 @GwtIncompatible // To be supported 486 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 487 Weigher<? super K1, ? super V1> weigher) { 488 checkState(this.weigher == null); 489 if (strictParsing) { 490 checkState( 491 this.maximumSize == UNSET_INT, 492 "weigher can not be combined with maximum size", 493 this.maximumSize); 494 } 495 496 // safely limiting the kinds of caches this can produce 497 @SuppressWarnings("unchecked") 498 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 499 me.weigher = checkNotNull(weigher); 500 return me; 501 } 502 503 long getMaximumWeight() { 504 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 505 return 0; 506 } 507 return (weigher == null) ? maximumSize : maximumWeight; 508 } 509 510 // Make a safe contravariant cast now so we don't have to do it over and over. 511 @SuppressWarnings("unchecked") 512 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 513 return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE); 514 } 515 516 /** 517 * Specifies that each key (not value) stored in the cache should be wrapped in a 518 * {@link WeakReference} (by default, strong references are used). 519 * 520 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 521 * comparison to determine equality of keys. 522 * 523 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, but 524 * will never be visible to read or write operations; such entries are cleaned up as part of the 525 * routine maintenance described in the class javadoc. 526 * 527 * @return this {@code CacheBuilder} instance (for chaining) 528 * @throws IllegalStateException if the key strength was already set 529 */ 530 @GwtIncompatible // java.lang.ref.WeakReference 531 public CacheBuilder<K, V> weakKeys() { 532 return setKeyStrength(Strength.WEAK); 533 } 534 535 CacheBuilder<K, V> setKeyStrength(Strength strength) { 536 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 537 keyStrength = checkNotNull(strength); 538 return this; 539 } 540 541 Strength getKeyStrength() { 542 return MoreObjects.firstNonNull(keyStrength, Strength.STRONG); 543 } 544 545 /** 546 * Specifies that each value (not key) stored in the cache should be wrapped in a 547 * {@link WeakReference} (by default, strong references are used). 548 * 549 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 550 * candidate for caching; consider {@link #softValues} instead. 551 * 552 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 553 * comparison to determine equality of values. 554 * 555 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 556 * but will never be visible to read or write operations; such entries are cleaned up as part of 557 * the routine maintenance described in the class javadoc. 558 * 559 * @return this {@code CacheBuilder} instance (for chaining) 560 * @throws IllegalStateException if the value strength was already set 561 */ 562 @GwtIncompatible // java.lang.ref.WeakReference 563 public CacheBuilder<K, V> weakValues() { 564 return setValueStrength(Strength.WEAK); 565 } 566 567 /** 568 * Specifies that each value (not key) stored in the cache should be wrapped in a 569 * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will 570 * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 571 * demand. 572 * 573 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache 574 * {@linkplain #maximumSize(long) maximum size} instead of using soft references. You should only 575 * use this method if you are well familiar with the practical consequences of soft references. 576 * 577 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 578 * comparison to determine equality of values. 579 * 580 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 581 * but will never be visible to read or write operations; such entries are cleaned up as part of 582 * the routine maintenance described in the class javadoc. 583 * 584 * @return this {@code CacheBuilder} instance (for chaining) 585 * @throws IllegalStateException if the value strength was already set 586 */ 587 @GwtIncompatible // java.lang.ref.SoftReference 588 public CacheBuilder<K, V> softValues() { 589 return setValueStrength(Strength.SOFT); 590 } 591 592 CacheBuilder<K, V> setValueStrength(Strength strength) { 593 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 594 valueStrength = checkNotNull(strength); 595 return this; 596 } 597 598 Strength getValueStrength() { 599 return MoreObjects.firstNonNull(valueStrength, Strength.STRONG); 600 } 601 602 /** 603 * Specifies that each entry should be automatically removed from the cache once a fixed duration 604 * has elapsed after the entry's creation, or the most recent replacement of its value. 605 * 606 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 607 * maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum size or weight. This can be 608 * useful in testing, or to disable caching temporarily without a code change. 609 * 610 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 611 * write operations. Expired entries are cleaned up as part of the routine maintenance described 612 * in the class javadoc. 613 * 614 * @param duration the length of time after an entry is created that it should be automatically 615 * removed 616 * @param unit the unit that {@code duration} is expressed in 617 * @return this {@code CacheBuilder} instance (for chaining) 618 * @throws IllegalArgumentException if {@code duration} is negative 619 * @throws IllegalStateException if the time to live or time to idle was already set 620 */ 621 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 622 checkState( 623 expireAfterWriteNanos == UNSET_INT, 624 "expireAfterWrite was already set to %s ns", 625 expireAfterWriteNanos); 626 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 627 this.expireAfterWriteNanos = unit.toNanos(duration); 628 return this; 629 } 630 631 long getExpireAfterWriteNanos() { 632 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 633 } 634 635 /** 636 * Specifies that each entry should be automatically removed from the cache once a fixed duration 637 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 638 * access. Access time is reset by all cache read and write operations (including 639 * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations 640 * on the collection-views of {@link Cache#asMap}. 641 * 642 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 643 * maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum size or weight. This can be 644 * useful in testing, or to disable caching temporarily without a code change. 645 * 646 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 647 * write operations. Expired entries are cleaned up as part of the routine maintenance described 648 * in the class javadoc. 649 * 650 * @param duration the length of time after an entry is last accessed that it should be 651 * automatically removed 652 * @param unit the unit that {@code duration} is expressed in 653 * @return this {@code CacheBuilder} instance (for chaining) 654 * @throws IllegalArgumentException if {@code duration} is negative 655 * @throws IllegalStateException if the time to idle or time to live was already set 656 */ 657 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 658 checkState( 659 expireAfterAccessNanos == UNSET_INT, 660 "expireAfterAccess was already set to %s ns", 661 expireAfterAccessNanos); 662 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 663 this.expireAfterAccessNanos = unit.toNanos(duration); 664 return this; 665 } 666 667 long getExpireAfterAccessNanos() { 668 return (expireAfterAccessNanos == UNSET_INT) 669 ? DEFAULT_EXPIRATION_NANOS 670 : expireAfterAccessNanos; 671 } 672 673 /** 674 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 675 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 676 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling 677 * {@link CacheLoader#reload}. 678 * 679 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 680 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 681 * implementation; otherwise refreshes will be performed during unrelated cache read and write 682 * operations. 683 * 684 * <p>Currently automatic refreshes are performed when the first stale request for an entry 685 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 686 * and immediately return the new value if the returned future is complete, and the old value 687 * otherwise. 688 * 689 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 690 * 691 * @param duration the length of time after an entry is created that it should be considered 692 * stale, and thus eligible for refresh 693 * @param unit the unit that {@code duration} is expressed in 694 * @return this {@code CacheBuilder} instance (for chaining) 695 * @throws IllegalArgumentException if {@code duration} is negative 696 * @throws IllegalStateException if the refresh interval was already set 697 * @since 11.0 698 */ 699 @GwtIncompatible // To be supported (synchronously). 700 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 701 checkNotNull(unit); 702 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 703 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 704 this.refreshNanos = unit.toNanos(duration); 705 return this; 706 } 707 708 long getRefreshNanos() { 709 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 710 } 711 712 /** 713 * Specifies a nanosecond-precision time source for this cache. By default, 714 * {@link System#nanoTime} is used. 715 * 716 * <p>The primary intent of this method is to facilitate testing of caches with a fake or mock 717 * time source. 718 * 719 * @return this {@code CacheBuilder} instance (for chaining) 720 * @throws IllegalStateException if a ticker was already set 721 */ 722 public CacheBuilder<K, V> ticker(Ticker ticker) { 723 checkState(this.ticker == null); 724 this.ticker = checkNotNull(ticker); 725 return this; 726 } 727 728 Ticker getTicker(boolean recordsTime) { 729 if (ticker != null) { 730 return ticker; 731 } 732 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 733 } 734 735 /** 736 * Specifies a listener instance that caches should notify each time an entry is removed for any 737 * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener 738 * as part of the routine maintenance described in the class documentation above. 739 * 740 * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache builder 741 * reference; instead use the reference this method <i>returns</i>. At runtime, these point to the 742 * same instance, but only the returned reference has the correct generic type information so as 743 * to ensure type safety. For best results, use the standard method-chaining idiom illustrated in 744 * the class documentation above, configuring a builder and building your cache in a single 745 * statement. Failure to heed this advice can result in a {@link ClassCastException} being thrown 746 * by a cache operation at some <i>undefined</i> point in the future. 747 * 748 * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to 749 * the {@code Cache} user, only logged via a {@link Logger}. 750 * 751 * @return the cache builder reference that should be used instead of {@code this} for any 752 * remaining configuration and cache building 753 * @return this {@code CacheBuilder} instance (for chaining) 754 * @throws IllegalStateException if a removal listener was already set 755 */ 756 @CheckReturnValue 757 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 758 RemovalListener<? super K1, ? super V1> listener) { 759 checkState(this.removalListener == null); 760 761 // safely limiting the kinds of caches this can produce 762 @SuppressWarnings("unchecked") 763 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 764 me.removalListener = checkNotNull(listener); 765 return me; 766 } 767 768 // Make a safe contravariant cast now so we don't have to do it over and over. 769 @SuppressWarnings("unchecked") 770 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 771 return (RemovalListener<K1, V1>) 772 MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE); 773 } 774 775 /** 776 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 777 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 778 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 779 * cache operation. 780 * 781 * @return this {@code CacheBuilder} instance (for chaining) 782 * @since 12.0 (previously, stats collection was automatic) 783 */ 784 public CacheBuilder<K, V> recordStats() { 785 statsCounterSupplier = CACHE_STATS_COUNTER; 786 return this; 787 } 788 789 boolean isRecordingStats() { 790 return statsCounterSupplier == CACHE_STATS_COUNTER; 791 } 792 793 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 794 return statsCounterSupplier; 795 } 796 797 /** 798 * Builds a cache, which either returns an already-loaded value for a given key or atomically 799 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 800 * loading the value for this key, simply waits for that thread to finish and returns its loaded 801 * value. Note that multiple threads can concurrently load values for distinct keys. 802 * 803 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 804 * invoked again to create multiple independent caches. 805 * 806 * @param loader the cache loader used to obtain new values 807 * @return a cache having the requested features 808 */ 809 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 810 CacheLoader<? super K1, V1> loader) { 811 checkWeightWithWeigher(); 812 return new LocalCache.LocalLoadingCache<K1, V1>(this, loader); 813 } 814 815 /** 816 * Builds a cache which does not automatically load values when keys are requested. 817 * 818 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a 819 * {@code CacheLoader}. 820 * 821 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 822 * invoked again to create multiple independent caches. 823 * 824 * @return a cache having the requested features 825 * @since 11.0 826 */ 827 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 828 checkWeightWithWeigher(); 829 checkNonLoadingCache(); 830 return new LocalCache.LocalManualCache<K1, V1>(this); 831 } 832 833 private void checkNonLoadingCache() { 834 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 835 } 836 837 private void checkWeightWithWeigher() { 838 if (weigher == null) { 839 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 840 } else { 841 if (strictParsing) { 842 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 843 } else { 844 if (maximumWeight == UNSET_INT) { 845 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 846 } 847 } 848 } 849 } 850 851 /** 852 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 853 * string is not specified. 854 */ 855 @Override 856 public String toString() { 857 MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this); 858 if (initialCapacity != UNSET_INT) { 859 s.add("initialCapacity", initialCapacity); 860 } 861 if (concurrencyLevel != UNSET_INT) { 862 s.add("concurrencyLevel", concurrencyLevel); 863 } 864 if (maximumSize != UNSET_INT) { 865 s.add("maximumSize", maximumSize); 866 } 867 if (maximumWeight != UNSET_INT) { 868 s.add("maximumWeight", maximumWeight); 869 } 870 if (expireAfterWriteNanos != UNSET_INT) { 871 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 872 } 873 if (expireAfterAccessNanos != UNSET_INT) { 874 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 875 } 876 if (keyStrength != null) { 877 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 878 } 879 if (valueStrength != null) { 880 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 881 } 882 if (keyEquivalence != null) { 883 s.addValue("keyEquivalence"); 884 } 885 if (valueEquivalence != null) { 886 s.addValue("valueEquivalence"); 887 } 888 if (removalListener != null) { 889 s.addValue("removalListener"); 890 } 891 return s.toString(); 892 } 893}