001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Objects; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.Maps; 026import com.google.errorprone.annotations.CanIgnoreReturnValue; 027import java.util.ArrayDeque; 028import java.util.Collections; 029import java.util.HashSet; 030import java.util.LinkedHashSet; 031import java.util.Map; 032import java.util.Queue; 033import java.util.Set; 034import javax.annotation.Nullable; 035 036/** 037 * Static utility methods for {@link Graph} and {@link Network} instances. 038 * 039 * @author James Sexton 040 * @author Joshua O'Madadhain 041 * @since 20.0 042 */ 043@Beta 044public final class Graphs { 045 046 private Graphs() {} 047 048 // Graph query methods 049 050 /** 051 * Returns true iff {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 052 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 053 * and ending with the same node. 054 * 055 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 056 */ 057 public static boolean hasCycle(Graph<?> graph) { 058 int numEdges = graph.edges().size(); 059 if (numEdges == 0) { 060 return false; // An edge-free graph is acyclic by definition. 061 } 062 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 063 return true; // Optimization for the undirected case: at least one cycle must exist. 064 } 065 066 Map<Object, NodeVisitState> visitedNodes = 067 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 068 for (Object node : graph.nodes()) { 069 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 070 return true; 071 } 072 } 073 return false; 074 } 075 076 /** 077 * Returns true iff {@code network} has at least one cycle. A cycle is defined as a non-empty 078 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 079 * starting and ending with the same node. 080 * 081 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 082 */ 083 public static boolean hasCycle(Network<?, ?> network) { 084 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 085 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 086 if (!network.isDirected() 087 && network.allowsParallelEdges() 088 && network.edges().size() > network.asGraph().edges().size()) { 089 return true; 090 } 091 return hasCycle(network.asGraph()); 092 } 093 094 /** 095 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 096 * already visited (following only outgoing edges and without reusing edges), we know there's a 097 * cycle in the graph. 098 */ 099 private static boolean subgraphHasCycle( 100 Graph<?> graph, 101 Map<Object, NodeVisitState> visitedNodes, 102 Object node, 103 @Nullable Object previousNode) { 104 NodeVisitState state = visitedNodes.get(node); 105 if (state == NodeVisitState.COMPLETE) { 106 return false; 107 } 108 if (state == NodeVisitState.PENDING) { 109 return true; 110 } 111 112 visitedNodes.put(node, NodeVisitState.PENDING); 113 for (Object nextNode : graph.successors(node)) { 114 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 115 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 116 return true; 117 } 118 } 119 visitedNodes.put(node, NodeVisitState.COMPLETE); 120 return false; 121 } 122 123 /** 124 * Determines whether an edge has already been used during traversal. In the directed case a cycle 125 * is always detected before reusing an edge, so no special logic is required. In the undirected 126 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 127 * from B to A). 128 */ 129 private static boolean canTraverseWithoutReusingEdge( 130 Graph<?> graph, Object nextNode, @Nullable Object previousNode) { 131 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 132 return true; 133 } 134 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 135 // edges, so this traversal would require reusing the undirected AB edge. 136 return false; 137 } 138 139 /** 140 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 141 * graph with an edge connecting node A to node B iff node B is {@link #reachableNodes(Graph, 142 * Object) reachable} from node A. 143 * 144 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 145 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 146 * be updated after modifications to {@code graph}. 147 */ 148 // TODO(b/31438252): Consider potential optimizations for this algorithm. 149 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 150 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 151 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 152 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 153 154 if (graph.isDirected()) { 155 // Note: works for both directed and undirected graphs, but we only use in the directed case. 156 for (N node : graph.nodes()) { 157 for (N reachableNode : reachableNodes(graph, node)) { 158 transitiveClosure.putEdge(node, reachableNode); 159 } 160 } 161 } else { 162 // An optimization for the undirected case: for every node B reachable from node A, 163 // node A and node B have the same reachability set. 164 Set<N> visitedNodes = new HashSet<N>(); 165 for (N node : graph.nodes()) { 166 if (!visitedNodes.contains(node)) { 167 Set<N> reachableNodes = reachableNodes(graph, node); 168 visitedNodes.addAll(reachableNodes); 169 int pairwiseMatch = 1; // start at 1 to include self-loops 170 for (N nodeU : reachableNodes) { 171 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 172 transitiveClosure.putEdge(nodeU, nodeV); 173 } 174 } 175 } 176 } 177 } 178 179 return transitiveClosure; 180 } 181 182 /** 183 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 184 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 185 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 186 * 187 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 188 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 189 * not be updated after modifications to {@code graph}. 190 * 191 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 192 */ 193 @SuppressWarnings("unchecked") // Safe because we only cast if node is an element of the graph. 194 public static <N> Set<N> reachableNodes(Graph<N> graph, Object node) { 195 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 196 Set<N> visitedNodes = new LinkedHashSet<N>(); 197 Queue<N> queuedNodes = new ArrayDeque<N>(); 198 visitedNodes.add((N) node); 199 queuedNodes.add((N) node); 200 // Perform a breadth-first traversal rooted at the input node. 201 while (!queuedNodes.isEmpty()) { 202 N currentNode = queuedNodes.remove(); 203 for (N successor : graph.successors(currentNode)) { 204 if (visitedNodes.add(successor)) { 205 queuedNodes.add(successor); 206 } 207 } 208 } 209 return Collections.unmodifiableSet(visitedNodes); 210 } 211 212 /** 213 * Returns {@code true} iff {@code graphA} and {@code graphB} have the same elements and the same 214 * relationships between elements, as exposed via the {@link Graph} interface. 215 * 216 * <p>Thus, two graphs A and B are equivalent if both are null or <b>all</b> of the following are 217 * true: 218 * 219 * <ul> 220 * <li>A and B have equal {@link Graph#isDirected() directedness}. 221 * <li>A and B have equal {@link Graph#nodes() node sets}. 222 * <li>A and B have equal {@link Graph#edges() edge sets}. 223 * </ul> 224 * 225 * <p>Graph properties besides {@link Graph#isDirected() directedness} do <b>not</b> affect 226 * equivalence. For example, two graphs may be considered equivalent even if one allows self-loops 227 * and the other doesn't. Additionally, the order in which nodes or edges are added to the graph, 228 * and the order in which they are iterated over, are irrelevant. 229 */ 230 public static boolean equivalent(@Nullable Graph<?> graphA, @Nullable Graph<?> graphB) { 231 if (graphA == graphB) { 232 return true; 233 } 234 if (graphA == null || graphB == null) { 235 return false; 236 } 237 238 return graphA.isDirected() == graphB.isDirected() 239 && graphA.nodes().equals(graphB.nodes()) 240 && graphA.edges().equals(graphB.edges()); 241 } 242 243 /** 244 * Returns {@code true} iff {@code graphA} and {@code graphB} have the same elements (including 245 * edge values) and the same relationships between elements, as exposed via the {@link ValueGraph} 246 * interface. 247 * 248 * <p>Thus, two value graphs A and B are equivalent if both are null or <b>all</b> of the 249 * following are true: 250 * 251 * <ul> 252 * <li>A and B have equal {@link Graph#isDirected() directedness}. 253 * <li>A and B have equal {@link Graph#nodes() node sets}. 254 * <li>A and B have equal {@link Graph#edges() edge sets}. 255 * <li>Each edge in A has a {@link ValueGraph#edgeValue(Object, Object) value} equal to the {@link 256 * ValueGraph#edgeValue(Object, Object) value} of the corresponding edge in B. 257 * </ul> 258 * 259 * <p>Graph properties besides {@link Graph#isDirected() directedness} do <b>not</b> affect 260 * equivalence. For example, two graphs may be considered equivalent even if one allows self-loops 261 * and the other doesn't. Additionally, the order in which nodes or edges are added to the graph, 262 * and the order in which they are iterated over, are irrelevant. 263 */ 264 public static boolean equivalent( 265 @Nullable ValueGraph<?, ?> graphA, @Nullable ValueGraph<?, ?> graphB) { 266 if (graphA == graphB) { 267 return true; 268 } 269 if (graphA == null || graphB == null) { 270 return false; 271 } 272 273 if (graphA.isDirected() != graphB.isDirected() 274 || !graphA.nodes().equals(graphB.nodes()) 275 || !graphA.edges().equals(graphB.edges())) { 276 return false; 277 } 278 279 for (EndpointPair<?> edge : graphA.edges()) { 280 if (!graphA 281 .edgeValue(edge.nodeU(), edge.nodeV()) 282 .equals(graphB.edgeValue(edge.nodeU(), edge.nodeV()))) { 283 return false; 284 } 285 } 286 287 return true; 288 } 289 290 /** 291 * Returns {@code true} iff {@code networkA} and {@code networkB} have the same elements and the 292 * same relationships between elements, as exposed via the {@link Network} interface. 293 * 294 * <p>Thus, two networks A and B are equivalent if both are null or <b>all</b> of the following 295 * are true: 296 * 297 * <ul> 298 * <li>A and B have equal {@link Network#isDirected() directedness}. 299 * <li>A and B have equal {@link Network#nodes() node sets}. 300 * <li>A and B have equal {@link Network#edges() edge sets}. 301 * <li>Each edge in A connects the same nodes in the same direction (if any) as the corresponding 302 * edge in B. 303 * </ul> 304 * 305 * <p>Network properties besides {@link Network#isDirected() directedness} do <b>not</b> affect 306 * equivalence. For example, two networks may be considered equal even if one allows parallel 307 * edges and the other doesn't. Additionally, the order in which nodes or edges are added to the 308 * network, and the order in which they are iterated over, are irrelevant. 309 */ 310 public static boolean equivalent( 311 @Nullable Network<?, ?> networkA, @Nullable Network<?, ?> networkB) { 312 if (networkA == networkB) { 313 return true; 314 } 315 if (networkA == null || networkB == null) { 316 return false; 317 } 318 319 if (networkA.isDirected() != networkB.isDirected() 320 || !networkA.nodes().equals(networkB.nodes()) 321 || !networkA.edges().equals(networkB.edges())) { 322 return false; 323 } 324 325 for (Object edge : networkA.edges()) { 326 if (!networkA.incidentNodes(edge).equals(networkB.incidentNodes(edge))) { 327 return false; 328 } 329 } 330 331 return true; 332 } 333 334 // Graph mutation methods 335 336 // Graph view methods 337 338 /** 339 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 340 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 341 */ 342 public static <N> Graph<N> transpose(Graph<N> graph) { 343 if (!graph.isDirected()) { 344 return graph; // the transpose of an undirected graph is an identical graph 345 } 346 347 if (graph instanceof TransposedGraph) { 348 return ((TransposedGraph<N>) graph).graph; 349 } 350 351 return new TransposedGraph<N>(graph); 352 } 353 354 private static class TransposedGraph<N> extends AbstractGraph<N> { 355 private final Graph<N> graph; 356 357 TransposedGraph(Graph<N> graph) { 358 this.graph = graph; 359 } 360 361 @Override 362 public Set<N> nodes() { 363 return graph.nodes(); 364 } 365 366 /** 367 * Defer to {@link AbstractGraph#edges()} (based on {@link #successors(Object)}) for full 368 * edges() implementation. 369 */ 370 @Override 371 protected long edgeCount() { 372 return graph.edges().size(); 373 } 374 375 @Override 376 public boolean isDirected() { 377 return graph.isDirected(); 378 } 379 380 @Override 381 public boolean allowsSelfLoops() { 382 return graph.allowsSelfLoops(); 383 } 384 385 @Override 386 public ElementOrder<N> nodeOrder() { 387 return graph.nodeOrder(); 388 } 389 390 @Override 391 public Set<N> adjacentNodes(Object node) { 392 return graph.adjacentNodes(node); 393 } 394 395 @Override 396 public Set<N> predecessors(Object node) { 397 return graph.successors(node); // transpose 398 } 399 400 @Override 401 public Set<N> successors(Object node) { 402 return graph.predecessors(node); // transpose 403 } 404 } 405 406 /** 407 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 408 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 409 */ 410 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 411 if (!graph.isDirected()) { 412 return graph; // the transpose of an undirected graph is an identical graph 413 } 414 415 if (graph instanceof TransposedValueGraph) { 416 return ((TransposedValueGraph<N, V>) graph).graph; 417 } 418 419 return new TransposedValueGraph<N, V>(graph); 420 } 421 422 private static class TransposedValueGraph<N, V> extends AbstractValueGraph<N, V> { 423 private final ValueGraph<N, V> graph; 424 425 TransposedValueGraph(ValueGraph<N, V> graph) { 426 this.graph = graph; 427 } 428 429 @Override 430 public Set<N> nodes() { 431 return graph.nodes(); 432 } 433 434 /** 435 * Defer to {@link AbstractGraph#edges()} (based on {@link #successors(Object)}) for full 436 * edges() implementation. 437 */ 438 @Override 439 protected long edgeCount() { 440 return graph.edges().size(); 441 } 442 443 @Override 444 public boolean isDirected() { 445 return graph.isDirected(); 446 } 447 448 @Override 449 public boolean allowsSelfLoops() { 450 return graph.allowsSelfLoops(); 451 } 452 453 @Override 454 public ElementOrder<N> nodeOrder() { 455 return graph.nodeOrder(); 456 } 457 458 @Override 459 public Set<N> adjacentNodes(Object node) { 460 return graph.adjacentNodes(node); 461 } 462 463 @Override 464 public Set<N> predecessors(Object node) { 465 return graph.successors(node); // transpose 466 } 467 468 @Override 469 public Set<N> successors(Object node) { 470 return graph.predecessors(node); // transpose 471 } 472 473 @Override 474 public V edgeValue(Object nodeU, Object nodeV) { 475 return graph.edgeValue(nodeV, nodeU); // transpose 476 } 477 478 @Override 479 public V edgeValueOrDefault(Object nodeU, Object nodeV, @Nullable V defaultValue) { 480 return graph.edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 481 } 482 } 483 484 /** 485 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 486 * properties remain intact, and further updates to {@code network} will be reflected in the view. 487 */ 488 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 489 if (!network.isDirected()) { 490 return network; // the transpose of an undirected network is an identical network 491 } 492 493 if (network instanceof TransposedNetwork) { 494 return ((TransposedNetwork<N, E>) network).network; 495 } 496 497 return new TransposedNetwork<N, E>(network); 498 } 499 500 private static class TransposedNetwork<N, E> extends AbstractNetwork<N, E> { 501 private final Network<N, E> network; 502 503 TransposedNetwork(Network<N, E> network) { 504 this.network = network; 505 } 506 507 @Override 508 public Set<N> nodes() { 509 return network.nodes(); 510 } 511 512 @Override 513 public Set<E> edges() { 514 return network.edges(); 515 } 516 517 @Override 518 public boolean isDirected() { 519 return network.isDirected(); 520 } 521 522 @Override 523 public boolean allowsParallelEdges() { 524 return network.allowsParallelEdges(); 525 } 526 527 @Override 528 public boolean allowsSelfLoops() { 529 return network.allowsSelfLoops(); 530 } 531 532 @Override 533 public ElementOrder<N> nodeOrder() { 534 return network.nodeOrder(); 535 } 536 537 @Override 538 public ElementOrder<E> edgeOrder() { 539 return network.edgeOrder(); 540 } 541 542 @Override 543 public Set<N> adjacentNodes(Object node) { 544 return network.adjacentNodes(node); 545 } 546 547 @Override 548 public Set<N> predecessors(Object node) { 549 return network.successors(node); // transpose 550 } 551 552 @Override 553 public Set<N> successors(Object node) { 554 return network.predecessors(node); // transpose 555 } 556 557 @Override 558 public Set<E> incidentEdges(Object node) { 559 return network.incidentEdges(node); 560 } 561 562 @Override 563 public Set<E> inEdges(Object node) { 564 return network.outEdges(node); // transpose 565 } 566 567 @Override 568 public Set<E> outEdges(Object node) { 569 return network.inEdges(node); // transpose 570 } 571 572 @Override 573 public EndpointPair<N> incidentNodes(Object edge) { 574 EndpointPair<N> endpointPair = network.incidentNodes(edge); 575 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 576 } 577 578 @Override 579 public Set<E> adjacentEdges(Object edge) { 580 return network.adjacentEdges(edge); 581 } 582 583 @Override 584 public Set<E> edgesConnecting(Object nodeU, Object nodeV) { 585 return network.edgesConnecting(nodeV, nodeU); // transpose 586 } 587 } 588 589 // Graph copy methods 590 591 /** 592 * Returns an induced subgraph of {@code graph}. This subgraph is a new graph that contains all of 593 * the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} from {@code graph} for 594 * which both nodes are contained by {@code nodes}. 595 * 596 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 597 */ 598 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 599 MutableGraph<N> subgraph = GraphBuilder.from(graph).build(); 600 for (N node : nodes) { 601 subgraph.addNode(node); 602 } 603 for (N node : subgraph.nodes()) { 604 for (N successorNode : graph.successors(node)) { 605 if (subgraph.nodes().contains(successorNode)) { 606 subgraph.putEdge(node, successorNode); 607 } 608 } 609 } 610 return subgraph; 611 } 612 613 /** 614 * Returns an induced subgraph of {@code graph}. This subgraph is a new graph that contains all of 615 * the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} (and associated edge 616 * values) from {@code graph} for which both nodes are contained by {@code nodes}. 617 * 618 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 619 */ 620 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 621 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 622 MutableValueGraph<N, V> subgraph = ValueGraphBuilder.from(graph).build(); 623 for (N node : nodes) { 624 subgraph.addNode(node); 625 } 626 for (N node : subgraph.nodes()) { 627 for (N successorNode : graph.successors(node)) { 628 if (subgraph.nodes().contains(successorNode)) { 629 subgraph.putEdgeValue(node, successorNode, graph.edgeValue(node, successorNode)); 630 } 631 } 632 } 633 return subgraph; 634 } 635 636 /** 637 * Returns an induced subgraph of {@code network}. This subgraph is a new graph that contains all 638 * of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} from {@code 639 * network} for which the {@link Network#incidentNodes(Object) incident nodes} are both contained 640 * by {@code nodes}. 641 * 642 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 643 */ 644 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 645 Network<N, E> network, Iterable<? extends N> nodes) { 646 MutableNetwork<N, E> subgraph = NetworkBuilder.from(network).build(); 647 for (N node : nodes) { 648 subgraph.addNode(node); 649 } 650 for (N node : subgraph.nodes()) { 651 for (E edge : network.outEdges(node)) { 652 N successorNode = network.incidentNodes(edge).adjacentNode(node); 653 if (subgraph.nodes().contains(successorNode)) { 654 subgraph.addEdge(node, successorNode, edge); 655 } 656 } 657 } 658 return subgraph; 659 } 660 661 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 662 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 663 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 664 for (N node : graph.nodes()) { 665 copy.addNode(node); 666 } 667 for (EndpointPair<N> edge : graph.edges()) { 668 copy.putEdge(edge.nodeU(), edge.nodeV()); 669 } 670 return copy; 671 } 672 673 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 674 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 675 MutableValueGraph<N, V> copy = 676 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 677 for (N node : graph.nodes()) { 678 copy.addNode(node); 679 } 680 for (EndpointPair<N> edge : graph.edges()) { 681 copy.putEdgeValue(edge.nodeU(), edge.nodeV(), graph.edgeValue(edge.nodeU(), edge.nodeV())); 682 } 683 return copy; 684 } 685 686 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 687 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 688 MutableNetwork<N, E> copy = 689 NetworkBuilder.from(network) 690 .expectedNodeCount(network.nodes().size()) 691 .expectedEdgeCount(network.edges().size()) 692 .build(); 693 for (N node : network.nodes()) { 694 copy.addNode(node); 695 } 696 for (E edge : network.edges()) { 697 EndpointPair<N> endpointPair = network.incidentNodes(edge); 698 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 699 } 700 return copy; 701 } 702 703 @CanIgnoreReturnValue 704 static int checkNonNegative(int value) { 705 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 706 return value; 707 } 708 709 @CanIgnoreReturnValue 710 static int checkPositive(int value) { 711 checkArgument(value > 0, "Not true that %s is positive.", value); 712 return value; 713 } 714 715 @CanIgnoreReturnValue 716 static long checkNonNegative(long value) { 717 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 718 return value; 719 } 720 721 @CanIgnoreReturnValue 722 static long checkPositive(long value) { 723 checkArgument(value > 0, "Not true that %s is positive.", value); 724 return value; 725 } 726 727 /** 728 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 729 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 730 * been already explored. Any node that has not been explored will not have a state at all. 731 */ 732 private enum NodeVisitState { 733 PENDING, 734 COMPLETE 735 } 736}