001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the 010 * License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 011 * express or implied. See the License for the specific language governing permissions and 012 * limitations under the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019 020import com.google.common.annotations.Beta; 021import com.google.common.annotations.GwtCompatible; 022 023import java.math.BigInteger; 024import java.util.Arrays; 025import java.util.Comparator; 026 027import javax.annotation.CheckReturnValue; 028 029/** 030 * Static utility methods pertaining to {@code long} primitives that interpret values as 031 * <i>unsigned</i> (that is, any negative value {@code x} is treated as the positive value 032 * {@code 2^64 + x}). The methods for which signedness is not an issue are in {@link Longs}, as 033 * well as signed versions of methods for which signedness is an issue. 034 * 035 * <p>In addition, this class provides several static methods for converting a {@code long} to a 036 * {@code String} and a {@code String} to a {@code long} that treat the {@code long} as an unsigned 037 * number. 038 * 039 * <p>Users of these utilities must be <i>extremely careful</i> not to mix up signed and unsigned 040 * {@code long} values. When possible, it is recommended that the {@link UnsignedLong} wrapper 041 * class be used, at a small efficiency penalty, to enforce the distinction in the type system. 042 * 043 * <p>See the Guava User Guide article on <a href= 044 * "https://github.com/google/guava/wiki/PrimitivesExplained#unsigned-support"> 045 * unsigned primitive utilities</a>. 046 * 047 * @author Louis Wasserman 048 * @author Brian Milch 049 * @author Colin Evans 050 * @since 10.0 051 */ 052@Beta 053@GwtCompatible 054public final class UnsignedLongs { 055 private UnsignedLongs() {} 056 057 public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1 058 059 /** 060 * A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on 061 * longs, that is, {@code a <= b} as unsigned longs if and only if {@code flip(a) <= flip(b)} 062 * as signed longs. 063 */ 064 private static long flip(long a) { 065 return a ^ Long.MIN_VALUE; 066 } 067 068 /** 069 * Compares the two specified {@code long} values, treating them as unsigned values between 070 * {@code 0} and {@code 2^64 - 1} inclusive. 071 * 072 * @param a the first unsigned {@code long} to compare 073 * @param b the second unsigned {@code long} to compare 074 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 075 * greater than {@code b}; or zero if they are equal 076 */ 077 @CheckReturnValue 078 public static int compare(long a, long b) { 079 return Longs.compare(flip(a), flip(b)); 080 } 081 082 /** 083 * Returns the least value present in {@code array}, treating values as unsigned. 084 * 085 * @param array a <i>nonempty</i> array of unsigned {@code long} values 086 * @return the value present in {@code array} that is less than or equal to every other value in 087 * the array according to {@link #compare} 088 * @throws IllegalArgumentException if {@code array} is empty 089 */ 090 @CheckReturnValue 091 public static long min(long... array) { 092 checkArgument(array.length > 0); 093 long min = flip(array[0]); 094 for (int i = 1; i < array.length; i++) { 095 long next = flip(array[i]); 096 if (next < min) { 097 min = next; 098 } 099 } 100 return flip(min); 101 } 102 103 /** 104 * Returns the greatest value present in {@code array}, treating values as unsigned. 105 * 106 * @param array a <i>nonempty</i> array of unsigned {@code long} values 107 * @return the value present in {@code array} that is greater than or equal to every other value 108 * in the array according to {@link #compare} 109 * @throws IllegalArgumentException if {@code array} is empty 110 */ 111 @CheckReturnValue 112 public static long max(long... array) { 113 checkArgument(array.length > 0); 114 long max = flip(array[0]); 115 for (int i = 1; i < array.length; i++) { 116 long next = flip(array[i]); 117 if (next > max) { 118 max = next; 119 } 120 } 121 return flip(max); 122 } 123 124 /** 125 * Returns a string containing the supplied unsigned {@code long} values separated by 126 * {@code separator}. For example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}. 127 * 128 * @param separator the text that should appear between consecutive values in the resulting 129 * string (but not at the start or end) 130 * @param array an array of unsigned {@code long} values, possibly empty 131 */ 132 @CheckReturnValue 133 public static String join(String separator, long... array) { 134 checkNotNull(separator); 135 if (array.length == 0) { 136 return ""; 137 } 138 139 // For pre-sizing a builder, just get the right order of magnitude 140 StringBuilder builder = new StringBuilder(array.length * 5); 141 builder.append(toString(array[0])); 142 for (int i = 1; i < array.length; i++) { 143 builder.append(separator).append(toString(array[i])); 144 } 145 return builder.toString(); 146 } 147 148 /** 149 * Returns a comparator that compares two arrays of unsigned {@code long} values 150 * lexicographically. That is, it compares, using {@link #compare(long, long)}), the first pair of 151 * values that follow any common prefix, or when one array is a prefix of the other, treats the 152 * shorter array as the lesser. For example, {@code [] < [1L] < [1L, 2L] < [2L] < [1L << 63]}. 153 * 154 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 155 * support only identity equality), but it is consistent with 156 * {@link Arrays#equals(long[], long[])}. 157 * 158 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order">Lexicographical order 159 * article at Wikipedia</a> 160 */ 161 @CheckReturnValue 162 public static Comparator<long[]> lexicographicalComparator() { 163 return LexicographicalComparator.INSTANCE; 164 } 165 166 enum LexicographicalComparator implements Comparator<long[]> { 167 INSTANCE; 168 169 @Override 170 public int compare(long[] left, long[] right) { 171 int minLength = Math.min(left.length, right.length); 172 for (int i = 0; i < minLength; i++) { 173 if (left[i] != right[i]) { 174 return UnsignedLongs.compare(left[i], right[i]); 175 } 176 } 177 return left.length - right.length; 178 } 179 } 180 181 /** 182 * Returns dividend / divisor, where the dividend and divisor are treated as unsigned 64-bit 183 * quantities. 184 * 185 * @param dividend the dividend (numerator) 186 * @param divisor the divisor (denominator) 187 * @throws ArithmeticException if divisor is 0 188 */ 189 @CheckReturnValue 190 public static long divide(long dividend, long divisor) { 191 if (divisor < 0) { // i.e., divisor >= 2^63: 192 if (compare(dividend, divisor) < 0) { 193 return 0; // dividend < divisor 194 } else { 195 return 1; // dividend >= divisor 196 } 197 } 198 199 // Optimization - use signed division if dividend < 2^63 200 if (dividend >= 0) { 201 return dividend / divisor; 202 } 203 204 /* 205 * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is 206 * guaranteed to be either exact or one less than the correct value. This follows from fact 207 * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not 208 * quite trivial. 209 */ 210 long quotient = ((dividend >>> 1) / divisor) << 1; 211 long rem = dividend - quotient * divisor; 212 return quotient + (compare(rem, divisor) >= 0 ? 1 : 0); 213 } 214 215 /** 216 * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit 217 * quantities. 218 * 219 * @param dividend the dividend (numerator) 220 * @param divisor the divisor (denominator) 221 * @throws ArithmeticException if divisor is 0 222 * @since 11.0 223 */ 224 @CheckReturnValue 225 public static long remainder(long dividend, long divisor) { 226 if (divisor < 0) { // i.e., divisor >= 2^63: 227 if (compare(dividend, divisor) < 0) { 228 return dividend; // dividend < divisor 229 } else { 230 return dividend - divisor; // dividend >= divisor 231 } 232 } 233 234 // Optimization - use signed modulus if dividend < 2^63 235 if (dividend >= 0) { 236 return dividend % divisor; 237 } 238 239 /* 240 * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is 241 * guaranteed to be either exact or one less than the correct value. This follows from fact 242 * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not 243 * quite trivial. 244 */ 245 long quotient = ((dividend >>> 1) / divisor) << 1; 246 long rem = dividend - quotient * divisor; 247 return rem - (compare(rem, divisor) >= 0 ? divisor : 0); 248 } 249 250 /** 251 * Returns the unsigned {@code long} value represented by the given decimal string. 252 * 253 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} 254 * value 255 * @throws NullPointerException if {@code s} is null 256 * (in contrast to {@link Long#parseLong(String)}) 257 */ 258 public static long parseUnsignedLong(String s) { 259 return parseUnsignedLong(s, 10); 260 } 261 262 /** 263 * Returns the unsigned {@code long} value represented by the given string. 264 * 265 * Accepts a decimal, hexadecimal, or octal number given by specifying the following prefix: 266 * 267 * <ul> 268 * <li>{@code 0x}<i>HexDigits</i> 269 * <li>{@code 0X}<i>HexDigits</i> 270 * <li>{@code #}<i>HexDigits</i> 271 * <li>{@code 0}<i>OctalDigits</i> 272 * </ul> 273 * 274 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} 275 * value 276 * @since 13.0 277 */ 278 public static long decode(String stringValue) { 279 ParseRequest request = ParseRequest.fromString(stringValue); 280 281 try { 282 return parseUnsignedLong(request.rawValue, request.radix); 283 } catch (NumberFormatException e) { 284 NumberFormatException decodeException = 285 new NumberFormatException("Error parsing value: " + stringValue); 286 decodeException.initCause(e); 287 throw decodeException; 288 } 289 } 290 291 /** 292 * Returns the unsigned {@code long} value represented by a string with the given radix. 293 * 294 * @param s the string containing the unsigned {@code long} representation to be parsed. 295 * @param radix the radix to use while parsing {@code s} 296 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} 297 * with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} 298 * and {@link Character#MAX_RADIX}. 299 * @throws NullPointerException if {@code s} is null 300 * (in contrast to {@link Long#parseLong(String)}) 301 */ 302 public static long parseUnsignedLong(String s, int radix) { 303 checkNotNull(s); 304 if (s.length() == 0) { 305 throw new NumberFormatException("empty string"); 306 } 307 if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) { 308 throw new NumberFormatException("illegal radix: " + radix); 309 } 310 311 int max_safe_pos = maxSafeDigits[radix] - 1; 312 long value = 0; 313 for (int pos = 0; pos < s.length(); pos++) { 314 int digit = Character.digit(s.charAt(pos), radix); 315 if (digit == -1) { 316 throw new NumberFormatException(s); 317 } 318 if (pos > max_safe_pos && overflowInParse(value, digit, radix)) { 319 throw new NumberFormatException("Too large for unsigned long: " + s); 320 } 321 value = (value * radix) + digit; 322 } 323 324 return value; 325 } 326 327 /** 328 * Returns true if (current * radix) + digit is a number too large to be represented by an 329 * unsigned long. This is useful for detecting overflow while parsing a string representation of 330 * a number. Does not verify whether supplied radix is valid, passing an invalid radix will give 331 * undefined results or an ArrayIndexOutOfBoundsException. 332 */ 333 private static boolean overflowInParse(long current, int digit, int radix) { 334 if (current >= 0) { 335 if (current < maxValueDivs[radix]) { 336 return false; 337 } 338 if (current > maxValueDivs[radix]) { 339 return true; 340 } 341 // current == maxValueDivs[radix] 342 return (digit > maxValueMods[radix]); 343 } 344 345 // current < 0: high bit is set 346 return true; 347 } 348 349 /** 350 * Returns a string representation of x, where x is treated as unsigned. 351 */ 352 @CheckReturnValue 353 public static String toString(long x) { 354 return toString(x, 10); 355 } 356 357 /** 358 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated 359 * as unsigned. 360 * 361 * @param x the value to convert to a string. 362 * @param radix the radix to use while working with {@code x} 363 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 364 * and {@link Character#MAX_RADIX}. 365 */ 366 @CheckReturnValue 367 public static String toString(long x, int radix) { 368 checkArgument( 369 radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 370 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", 371 radix); 372 if (x == 0) { 373 // Simply return "0" 374 return "0"; 375 } else { 376 char[] buf = new char[64]; 377 int i = buf.length; 378 if (x < 0) { 379 // Separate off the last digit using unsigned division. That will leave 380 // a number that is nonnegative as a signed integer. 381 long quotient = divide(x, radix); 382 long rem = x - quotient * radix; 383 buf[--i] = Character.forDigit((int) rem, radix); 384 x = quotient; 385 } 386 // Simple modulo/division approach 387 while (x > 0) { 388 buf[--i] = Character.forDigit((int) (x % radix), radix); 389 x /= radix; 390 } 391 // Generate string 392 return new String(buf, i, buf.length - i); 393 } 394 } 395 396 // calculated as 0xffffffffffffffff / radix 397 private static final long[] maxValueDivs = new long[Character.MAX_RADIX + 1]; 398 private static final int[] maxValueMods = new int[Character.MAX_RADIX + 1]; 399 private static final int[] maxSafeDigits = new int[Character.MAX_RADIX + 1]; 400 401 static { 402 BigInteger overflow = new BigInteger("10000000000000000", 16); 403 for (int i = Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) { 404 maxValueDivs[i] = divide(MAX_VALUE, i); 405 maxValueMods[i] = (int) remainder(MAX_VALUE, i); 406 maxSafeDigits[i] = overflow.toString(i).length() - 1; 407 } 408 } 409}