001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.primitives; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021 022import com.google.common.annotations.Beta; 023import com.google.common.annotations.VisibleForTesting; 024 025import sun.misc.Unsafe; 026 027import java.nio.ByteOrder; 028import java.util.Comparator; 029 030import javax.annotation.CheckReturnValue; 031 032/** 033 * Static utility methods pertaining to {@code byte} primitives that interpret 034 * values as <i>unsigned</i> (that is, any negative value {@code b} is treated 035 * as the positive value {@code 256 + b}). The corresponding methods that treat 036 * the values as signed are found in {@link SignedBytes}, and the methods for 037 * which signedness is not an issue are in {@link Bytes}. 038 * 039 * <p>See the Guava User Guide article on <a href= 040 * "https://github.com/google/guava/wiki/PrimitivesExplained"> 041 * primitive utilities</a>. 042 * 043 * @author Kevin Bourrillion 044 * @author Martin Buchholz 045 * @author Hiroshi Yamauchi 046 * @author Louis Wasserman 047 * @since 1.0 048 */ 049public final class UnsignedBytes { 050 private UnsignedBytes() {} 051 052 /** 053 * The largest power of two that can be represented as an unsigned {@code 054 * byte}. 055 * 056 * @since 10.0 057 */ 058 public static final byte MAX_POWER_OF_TWO = (byte) 0x80; 059 060 /** 061 * The largest value that fits into an unsigned byte. 062 * 063 * @since 13.0 064 */ 065 public static final byte MAX_VALUE = (byte) 0xFF; 066 067 private static final int UNSIGNED_MASK = 0xFF; 068 069 /** 070 * Returns the value of the given byte as an integer, when treated as 071 * unsigned. That is, returns {@code value + 256} if {@code value} is 072 * negative; {@code value} itself otherwise. 073 * 074 * @since 6.0 075 */ 076 @CheckReturnValue 077 public static int toInt(byte value) { 078 return value & UNSIGNED_MASK; 079 } 080 081 /** 082 * Returns the {@code byte} value that, when treated as unsigned, is equal to 083 * {@code value}, if possible. 084 * 085 * @param value a value between 0 and 255 inclusive 086 * @return the {@code byte} value that, when treated as unsigned, equals 087 * {@code value} 088 * @throws IllegalArgumentException if {@code value} is negative or greater 089 * than 255 090 */ 091 public static byte checkedCast(long value) { 092 if ((value >> Byte.SIZE) != 0) { 093 // don't use checkArgument here, to avoid boxing 094 throw new IllegalArgumentException("Out of range: " + value); 095 } 096 return (byte) value; 097 } 098 099 /** 100 * Returns the {@code byte} value that, when treated as unsigned, is nearest 101 * in value to {@code value}. 102 * 103 * @param value any {@code long} value 104 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if 105 * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise 106 */ 107 public static byte saturatedCast(long value) { 108 if (value > toInt(MAX_VALUE)) { 109 return MAX_VALUE; // -1 110 } 111 if (value < 0) { 112 return (byte) 0; 113 } 114 return (byte) value; 115 } 116 117 /** 118 * Compares the two specified {@code byte} values, treating them as unsigned 119 * values between 0 and 255 inclusive. For example, {@code (byte) -127} is 120 * considered greater than {@code (byte) 127} because it is seen as having 121 * the value of positive {@code 129}. 122 * 123 * @param a the first {@code byte} to compare 124 * @param b the second {@code byte} to compare 125 * @return a negative value if {@code a} is less than {@code b}; a positive 126 * value if {@code a} is greater than {@code b}; or zero if they are equal 127 */ 128 @CheckReturnValue 129 public static int compare(byte a, byte b) { 130 return toInt(a) - toInt(b); 131 } 132 133 /** 134 * Returns the least value present in {@code array}. 135 * 136 * @param array a <i>nonempty</i> array of {@code byte} values 137 * @return the value present in {@code array} that is less than or equal to 138 * every other value in the array 139 * @throws IllegalArgumentException if {@code array} is empty 140 */ 141 @CheckReturnValue 142 public static byte min(byte... array) { 143 checkArgument(array.length > 0); 144 int min = toInt(array[0]); 145 for (int i = 1; i < array.length; i++) { 146 int next = toInt(array[i]); 147 if (next < min) { 148 min = next; 149 } 150 } 151 return (byte) min; 152 } 153 154 /** 155 * Returns the greatest value present in {@code array}. 156 * 157 * @param array a <i>nonempty</i> array of {@code byte} values 158 * @return the value present in {@code array} that is greater than or equal 159 * to every other value in the array 160 * @throws IllegalArgumentException if {@code array} is empty 161 */ 162 @CheckReturnValue 163 public static byte max(byte... array) { 164 checkArgument(array.length > 0); 165 int max = toInt(array[0]); 166 for (int i = 1; i < array.length; i++) { 167 int next = toInt(array[i]); 168 if (next > max) { 169 max = next; 170 } 171 } 172 return (byte) max; 173 } 174 175 /** 176 * Returns a string representation of x, where x is treated as unsigned. 177 * 178 * @since 13.0 179 */ 180 @Beta 181 @CheckReturnValue 182 public static String toString(byte x) { 183 return toString(x, 10); 184 } 185 186 /** 187 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated 188 * as unsigned. 189 * 190 * @param x the value to convert to a string. 191 * @param radix the radix to use while working with {@code x} 192 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 193 * and {@link Character#MAX_RADIX}. 194 * @since 13.0 195 */ 196 @Beta 197 @CheckReturnValue 198 public static String toString(byte x, int radix) { 199 checkArgument( 200 radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 201 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", 202 radix); 203 // Benchmarks indicate this is probably not worth optimizing. 204 return Integer.toString(toInt(x), radix); 205 } 206 207 /** 208 * Returns the unsigned {@code byte} value represented by the given decimal string. 209 * 210 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 211 * value 212 * @throws NullPointerException if {@code s} is null 213 * (in contrast to {@link Byte#parseByte(String)}) 214 * @since 13.0 215 */ 216 @Beta 217 public static byte parseUnsignedByte(String string) { 218 return parseUnsignedByte(string, 10); 219 } 220 221 /** 222 * Returns the unsigned {@code byte} value represented by a string with the given radix. 223 * 224 * @param string the string containing the unsigned {@code byte} representation to be parsed. 225 * @param radix the radix to use while parsing {@code string} 226 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 227 * with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} 228 * and {@link Character#MAX_RADIX}. 229 * @throws NullPointerException if {@code s} is null 230 * (in contrast to {@link Byte#parseByte(String)}) 231 * @since 13.0 232 */ 233 @Beta 234 public static byte parseUnsignedByte(String string, int radix) { 235 int parse = Integer.parseInt(checkNotNull(string), radix); 236 // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( 237 if (parse >> Byte.SIZE == 0) { 238 return (byte) parse; 239 } else { 240 throw new NumberFormatException("out of range: " + parse); 241 } 242 } 243 244 /** 245 * Returns a string containing the supplied {@code byte} values separated by 246 * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2, 247 * (byte) 255)} returns the string {@code "1:2:255"}. 248 * 249 * @param separator the text that should appear between consecutive values in 250 * the resulting string (but not at the start or end) 251 * @param array an array of {@code byte} values, possibly empty 252 */ 253 @CheckReturnValue 254 public static String join(String separator, byte... array) { 255 checkNotNull(separator); 256 if (array.length == 0) { 257 return ""; 258 } 259 260 // For pre-sizing a builder, just get the right order of magnitude 261 StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); 262 builder.append(toInt(array[0])); 263 for (int i = 1; i < array.length; i++) { 264 builder.append(separator).append(toString(array[i])); 265 } 266 return builder.toString(); 267 } 268 269 /** 270 * Returns a comparator that compares two {@code byte} arrays 271 * lexicographically. That is, it compares, using {@link 272 * #compare(byte, byte)}), the first pair of values that follow any common 273 * prefix, or when one array is a prefix of the other, treats the shorter 274 * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] < 275 * [0x01, 0x80] < [0x02]}. Values are treated as unsigned. 276 * 277 * <p>The returned comparator is inconsistent with {@link 278 * Object#equals(Object)} (since arrays support only identity equality), but 279 * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. 280 * 281 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order"> 282 * Lexicographical order article at Wikipedia</a> 283 * @since 2.0 284 */ 285 @CheckReturnValue 286 public static Comparator<byte[]> lexicographicalComparator() { 287 return LexicographicalComparatorHolder.BEST_COMPARATOR; 288 } 289 290 @VisibleForTesting 291 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 292 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 293 } 294 295 /** 296 * Provides a lexicographical comparator implementation; either a Java 297 * implementation or a faster implementation based on {@link Unsafe}. 298 * 299 * <p>Uses reflection to gracefully fall back to the Java implementation if 300 * {@code Unsafe} isn't available. 301 */ 302 @VisibleForTesting 303 static class LexicographicalComparatorHolder { 304 static final String UNSAFE_COMPARATOR_NAME = 305 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 306 307 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 308 309 @VisibleForTesting 310 enum UnsafeComparator implements Comparator<byte[]> { 311 INSTANCE; 312 313 static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); 314 315 /* 316 * The following static final fields exist for performance reasons. 317 * 318 * In UnsignedBytesBenchmark, accessing the following objects via static 319 * final fields is the fastest (more than twice as fast as the Java 320 * implementation, vs ~1.5x with non-final static fields, on x86_32) 321 * under the Hotspot server compiler. The reason is obviously that the 322 * non-final fields need to be reloaded inside the loop. 323 * 324 * And, no, defining (final or not) local variables out of the loop still 325 * isn't as good because the null check on the theUnsafe object remains 326 * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get 327 * constant-folded. 328 * 329 * The compiler can treat static final fields as compile-time constants 330 * and can constant-fold them while (final or not) local variables are 331 * run time values. 332 */ 333 334 static final Unsafe theUnsafe; 335 336 /** The offset to the first element in a byte array. */ 337 static final int BYTE_ARRAY_BASE_OFFSET; 338 339 static { 340 theUnsafe = getUnsafe(); 341 342 BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 343 344 // sanity check - this should never fail 345 if (theUnsafe.arrayIndexScale(byte[].class) != 1) { 346 throw new AssertionError(); 347 } 348 } 349 350 /** 351 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. 352 * Replace with a simple call to Unsafe.getUnsafe when integrating 353 * into a jdk. 354 * 355 * @return a sun.misc.Unsafe 356 */ 357 private static sun.misc.Unsafe getUnsafe() { 358 try { 359 return sun.misc.Unsafe.getUnsafe(); 360 } catch (SecurityException e) { 361 // that's okay; try reflection instead 362 } 363 try { 364 return java.security.AccessController.doPrivileged( 365 new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() { 366 public sun.misc.Unsafe run() throws Exception { 367 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class; 368 for (java.lang.reflect.Field f : k.getDeclaredFields()) { 369 f.setAccessible(true); 370 Object x = f.get(null); 371 if (k.isInstance(x)) { 372 return k.cast(x); 373 } 374 } 375 throw new NoSuchFieldError("the Unsafe"); 376 } 377 }); 378 } catch (java.security.PrivilegedActionException e) { 379 throw new RuntimeException("Could not initialize intrinsics", e.getCause()); 380 } 381 } 382 383 @Override 384 public int compare(byte[] left, byte[] right) { 385 int minLength = Math.min(left.length, right.length); 386 int minWords = minLength / Longs.BYTES; 387 388 /* 389 * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a 390 * time is no slower than comparing 4 bytes at a time even on 32-bit. 391 * On the other hand, it is substantially faster on 64-bit. 392 */ 393 for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { 394 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 395 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 396 if (lw != rw) { 397 if (BIG_ENDIAN) { 398 return UnsignedLongs.compare(lw, rw); 399 } 400 401 /* 402 * We want to compare only the first index where left[index] != right[index]. 403 * This corresponds to the least significant nonzero byte in lw ^ rw, since lw 404 * and rw are little-endian. Long.numberOfTrailingZeros(diff) tells us the least 405 * significant nonzero bit, and zeroing out the first three bits of L.nTZ gives us the 406 * shift to get that least significant nonzero byte. 407 */ 408 int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; 409 return (int) (((lw >>> n) & UNSIGNED_MASK) - ((rw >>> n) & UNSIGNED_MASK)); 410 } 411 } 412 413 // The epilogue to cover the last (minLength % 8) elements. 414 for (int i = minWords * Longs.BYTES; i < minLength; i++) { 415 int result = UnsignedBytes.compare(left[i], right[i]); 416 if (result != 0) { 417 return result; 418 } 419 } 420 return left.length - right.length; 421 } 422 } 423 424 enum PureJavaComparator implements Comparator<byte[]> { 425 INSTANCE; 426 427 @Override 428 public int compare(byte[] left, byte[] right) { 429 int minLength = Math.min(left.length, right.length); 430 for (int i = 0; i < minLength; i++) { 431 int result = UnsignedBytes.compare(left[i], right[i]); 432 if (result != 0) { 433 return result; 434 } 435 } 436 return left.length - right.length; 437 } 438 } 439 440 /** 441 * Returns the Unsafe-using Comparator, or falls back to the pure-Java 442 * implementation if unable to do so. 443 */ 444 static Comparator<byte[]> getBestComparator() { 445 try { 446 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 447 448 // yes, UnsafeComparator does implement Comparator<byte[]> 449 @SuppressWarnings("unchecked") 450 Comparator<byte[]> comparator = (Comparator<byte[]>) theClass.getEnumConstants()[0]; 451 return comparator; 452 } catch (Throwable t) { // ensure we really catch *everything* 453 return lexicographicalComparatorJavaImpl(); 454 } 455 } 456 } 457}