001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkElementIndex; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkPositionIndex; 023import static com.google.common.base.Preconditions.checkPositionIndexes; 024import static com.google.common.base.Preconditions.checkState; 025import static com.google.common.collect.CollectPreconditions.checkNonnegative; 026import static com.google.common.collect.CollectPreconditions.checkRemove; 027 028import com.google.common.annotations.Beta; 029import com.google.common.annotations.GwtCompatible; 030import com.google.common.annotations.GwtIncompatible; 031import com.google.common.annotations.VisibleForTesting; 032import com.google.common.base.Function; 033import com.google.common.base.Objects; 034import com.google.common.math.IntMath; 035import com.google.common.primitives.Ints; 036 037import java.io.Serializable; 038import java.math.RoundingMode; 039import java.util.AbstractList; 040import java.util.AbstractSequentialList; 041import java.util.ArrayList; 042import java.util.Arrays; 043import java.util.Collection; 044import java.util.Collections; 045import java.util.Iterator; 046import java.util.LinkedList; 047import java.util.List; 048import java.util.ListIterator; 049import java.util.NoSuchElementException; 050import java.util.RandomAccess; 051import java.util.concurrent.CopyOnWriteArrayList; 052 053import javax.annotation.CheckReturnValue; 054import javax.annotation.Nullable; 055 056/** 057 * Static utility methods pertaining to {@link List} instances. Also see this 058 * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}. 059 * 060 * <p>See the Guava User Guide article on <a href= 061 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists"> 062 * {@code Lists}</a>. 063 * 064 * @author Kevin Bourrillion 065 * @author Mike Bostock 066 * @author Louis Wasserman 067 * @since 2.0 068 */ 069@GwtCompatible(emulated = true) 070public final class Lists { 071 private Lists() {} 072 073 // ArrayList 074 075 /** 076 * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and 077 * earlier). 078 * 079 * <p><b>Note:</b> if mutability is not required, use {@link 080 * ImmutableList#of()} instead. 081 * 082 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 083 * should be treated as deprecated. Instead, use the {@code ArrayList} 084 * {@linkplain ArrayList#ArrayList() constructor} directly, taking advantage 085 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 086 */ 087 @GwtCompatible(serializable = true) 088 public static <E> ArrayList<E> newArrayList() { 089 return new ArrayList<E>(); 090 } 091 092 /** 093 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 094 * elements. 095 * 096 * <p><b>Note:</b> essentially the only reason to use this method is when you 097 * will need to add or remove elements later. Otherwise, for non-null elements 098 * use {@link ImmutableList#of()} (for varargs) or {@link 099 * ImmutableList#copyOf(Object[])} (for an array) instead. If any elements 100 * might be null, or you need support for {@link List#set(int, Object)}, use 101 * {@link Arrays#asList}. 102 * 103 * <p>Note that even when you do need the ability to add or remove, this method 104 * provides only a tiny bit of syntactic sugar for {@code newArrayList(}{@link 105 * Arrays#asList asList}{@code (...))}, or for creating an empty list then 106 * calling {@link Collections#addAll}. This method is not actually very useful 107 * and will likely be deprecated in the future. 108 */ 109 @GwtCompatible(serializable = true) 110 public static <E> ArrayList<E> newArrayList(E... elements) { 111 checkNotNull(elements); // for GWT 112 // Avoid integer overflow when a large array is passed in 113 int capacity = computeArrayListCapacity(elements.length); 114 ArrayList<E> list = new ArrayList<E>(capacity); 115 Collections.addAll(list, elements); 116 return list; 117 } 118 119 @VisibleForTesting 120 static int computeArrayListCapacity(int arraySize) { 121 checkNonnegative(arraySize, "arraySize"); 122 123 // TODO(kevinb): Figure out the right behavior, and document it 124 return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); 125 } 126 127 /** 128 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 129 * elements; a very thin shortcut for creating an empty list then calling 130 * {@link Iterables#addAll}. 131 * 132 * <p><b>Note:</b> if mutability is not required and the elements are 133 * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change 134 * {@code elements} to be a {@link FluentIterable} and call 135 * {@code elements.toList()}.) 136 * 137 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link 138 * Collection}, you don't need this method. Use the {@code ArrayList} 139 * {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking 140 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 141 */ 142 @GwtCompatible(serializable = true) 143 public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) { 144 checkNotNull(elements); // for GWT 145 // Let ArrayList's sizing logic work, if possible 146 return (elements instanceof Collection) 147 ? new ArrayList<E>(Collections2.cast(elements)) 148 : newArrayList(elements.iterator()); 149 } 150 151 /** 152 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 153 * elements; a very thin shortcut for creating an empty list and then calling 154 * {@link Iterators#addAll}. 155 * 156 * <p><b>Note:</b> if mutability is not required and the elements are 157 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 158 */ 159 @GwtCompatible(serializable = true) 160 public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) { 161 ArrayList<E> list = newArrayList(); 162 Iterators.addAll(list, elements); 163 return list; 164 } 165 166 /** 167 * Creates an {@code ArrayList} instance backed by an array with the specified 168 * initial size; simply delegates to {@link ArrayList#ArrayList(int)}. 169 * 170 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 171 * should be treated as deprecated. Instead, use {@code new }{@link 172 * ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking 173 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 174 * (Unlike here, there is no risk of overload ambiguity, since the {@code 175 * ArrayList} constructors very wisely did not accept varargs.) 176 * 177 * @param initialArraySize the exact size of the initial backing array for 178 * the returned array list ({@code ArrayList} documentation calls this 179 * value the "capacity") 180 * @return a new, empty {@code ArrayList} which is guaranteed not to resize 181 * itself unless its size reaches {@code initialArraySize + 1} 182 * @throws IllegalArgumentException if {@code initialArraySize} is negative 183 */ 184 @GwtCompatible(serializable = true) 185 public static <E> ArrayList<E> newArrayListWithCapacity(int initialArraySize) { 186 checkNonnegative(initialArraySize, "initialArraySize"); // for GWT. 187 return new ArrayList<E>(initialArraySize); 188 } 189 190 /** 191 * Creates an {@code ArrayList} instance to hold {@code estimatedSize} 192 * elements, <i>plus</i> an unspecified amount of padding; you almost 193 * certainly mean to call {@link #newArrayListWithCapacity} (see that method 194 * for further advice on usage). 195 * 196 * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case 197 * that you do want some amount of padding, it's best if you choose your 198 * desired amount explicitly. 199 * 200 * @param estimatedSize an estimate of the eventual {@link List#size()} of 201 * the new list 202 * @return a new, empty {@code ArrayList}, sized appropriately to hold the 203 * estimated number of elements 204 * @throws IllegalArgumentException if {@code estimatedSize} is negative 205 */ 206 @GwtCompatible(serializable = true) 207 public static <E> ArrayList<E> newArrayListWithExpectedSize(int estimatedSize) { 208 return new ArrayList<E>(computeArrayListCapacity(estimatedSize)); 209 } 210 211 // LinkedList 212 213 /** 214 * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and 215 * earlier). 216 * 217 * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link 218 * ImmutableList#of()} instead. 219 * 220 * <p><b>Performance note:</b> {@link ArrayList} and {@link 221 * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in 222 * certain rare and specific situations. Unless you have spent a lot of time 223 * benchmarking your specific needs, use one of those instead. 224 * 225 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 226 * should be treated as deprecated. Instead, use the {@code LinkedList} 227 * {@linkplain LinkedList#LinkedList() constructor} directly, taking advantage 228 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 229 */ 230 @GwtCompatible(serializable = true) 231 public static <E> LinkedList<E> newLinkedList() { 232 return new LinkedList<E>(); 233 } 234 235 /** 236 * Creates a <i>mutable</i> {@code LinkedList} instance containing the given 237 * elements; a very thin shortcut for creating an empty list then calling 238 * {@link Iterables#addAll}. 239 * 240 * <p><b>Note:</b> if mutability is not required and the elements are 241 * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change 242 * {@code elements} to be a {@link FluentIterable} and call 243 * {@code elements.toList()}.) 244 * 245 * <p><b>Performance note:</b> {@link ArrayList} and {@link 246 * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in 247 * certain rare and specific situations. Unless you have spent a lot of time 248 * benchmarking your specific needs, use one of those instead. 249 * 250 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link 251 * Collection}, you don't need this method. Use the {@code LinkedList} 252 * {@linkplain LinkedList#LinkedList(Collection) constructor} directly, taking 253 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 254 */ 255 @GwtCompatible(serializable = true) 256 public static <E> LinkedList<E> newLinkedList(Iterable<? extends E> elements) { 257 LinkedList<E> list = newLinkedList(); 258 Iterables.addAll(list, elements); 259 return list; 260 } 261 262 /** 263 * Creates an empty {@code CopyOnWriteArrayList} instance. 264 * 265 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 266 * {@link Collections#emptyList} instead. 267 * 268 * @return a new, empty {@code CopyOnWriteArrayList} 269 * @since 12.0 270 */ 271 @GwtIncompatible("CopyOnWriteArrayList") 272 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() { 273 return new CopyOnWriteArrayList<E>(); 274 } 275 276 /** 277 * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. 278 * 279 * @param elements the elements that the list should contain, in order 280 * @return a new {@code CopyOnWriteArrayList} containing those elements 281 * @since 12.0 282 */ 283 @GwtIncompatible("CopyOnWriteArrayList") 284 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList( 285 Iterable<? extends E> elements) { 286 // We copy elements to an ArrayList first, rather than incurring the 287 // quadratic cost of adding them to the COWAL directly. 288 Collection<? extends E> elementsCollection = 289 (elements instanceof Collection) 290 ? Collections2.cast(elements) 291 : newArrayList(elements); 292 return new CopyOnWriteArrayList<E>(elementsCollection); 293 } 294 295 /** 296 * Returns an unmodifiable list containing the specified first element and 297 * backed by the specified array of additional elements. Changes to the {@code 298 * rest} array will be reflected in the returned list. Unlike {@link 299 * Arrays#asList}, the returned list is unmodifiable. 300 * 301 * <p>This is useful when a varargs method needs to use a signature such as 302 * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload 303 * ambiguity or to enforce a minimum argument count. 304 * 305 * <p>The returned list is serializable and implements {@link RandomAccess}. 306 * 307 * @param first the first element 308 * @param rest an array of additional elements, possibly empty 309 * @return an unmodifiable list containing the specified elements 310 */ 311 public static <E> List<E> asList(@Nullable E first, E[] rest) { 312 return new OnePlusArrayList<E>(first, rest); 313 } 314 315 /** @see Lists#asList(Object, Object[]) */ 316 private static class OnePlusArrayList<E> extends AbstractList<E> 317 implements Serializable, RandomAccess { 318 final E first; 319 final E[] rest; 320 321 OnePlusArrayList(@Nullable E first, E[] rest) { 322 this.first = first; 323 this.rest = checkNotNull(rest); 324 } 325 326 @Override 327 public int size() { 328 return rest.length + 1; 329 } 330 331 @Override 332 public E get(int index) { 333 // check explicitly so the IOOBE will have the right message 334 checkElementIndex(index, size()); 335 return (index == 0) ? first : rest[index - 1]; 336 } 337 338 private static final long serialVersionUID = 0; 339 } 340 341 /** 342 * Returns an unmodifiable list containing the specified first and second 343 * element, and backed by the specified array of additional elements. Changes 344 * to the {@code rest} array will be reflected in the returned list. Unlike 345 * {@link Arrays#asList}, the returned list is unmodifiable. 346 * 347 * <p>This is useful when a varargs method needs to use a signature such as 348 * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid 349 * overload ambiguity or to enforce a minimum argument count. 350 * 351 * <p>The returned list is serializable and implements {@link RandomAccess}. 352 * 353 * @param first the first element 354 * @param second the second element 355 * @param rest an array of additional elements, possibly empty 356 * @return an unmodifiable list containing the specified elements 357 */ 358 public static <E> List<E> asList(@Nullable E first, @Nullable E second, E[] rest) { 359 return new TwoPlusArrayList<E>(first, second, rest); 360 } 361 362 /** @see Lists#asList(Object, Object, Object[]) */ 363 private static class TwoPlusArrayList<E> extends AbstractList<E> 364 implements Serializable, RandomAccess { 365 final E first; 366 final E second; 367 final E[] rest; 368 369 TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) { 370 this.first = first; 371 this.second = second; 372 this.rest = checkNotNull(rest); 373 } 374 375 @Override 376 public int size() { 377 return rest.length + 2; 378 } 379 380 @Override 381 public E get(int index) { 382 switch (index) { 383 case 0: 384 return first; 385 case 1: 386 return second; 387 default: 388 // check explicitly so the IOOBE will have the right message 389 checkElementIndex(index, size()); 390 return rest[index - 2]; 391 } 392 } 393 394 private static final long serialVersionUID = 0; 395 } 396 397 /** 398 * Returns every possible list that can be formed by choosing one element 399 * from each of the given lists in order; the "n-ary 400 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 401 * product</a>" of the lists. For example: <pre> {@code 402 * 403 * Lists.cartesianProduct(ImmutableList.of( 404 * ImmutableList.of(1, 2), 405 * ImmutableList.of("A", "B", "C")))}</pre> 406 * 407 * <p>returns a list containing six lists in the following order: 408 * 409 * <ul> 410 * <li>{@code ImmutableList.of(1, "A")} 411 * <li>{@code ImmutableList.of(1, "B")} 412 * <li>{@code ImmutableList.of(1, "C")} 413 * <li>{@code ImmutableList.of(2, "A")} 414 * <li>{@code ImmutableList.of(2, "B")} 415 * <li>{@code ImmutableList.of(2, "C")} 416 * </ul> 417 * 418 * <p>The result is guaranteed to be in the "traditional", lexicographical 419 * order for Cartesian products that you would get from nesting for loops: 420 * <pre> {@code 421 * 422 * for (B b0 : lists.get(0)) { 423 * for (B b1 : lists.get(1)) { 424 * ... 425 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 426 * // operate on tuple 427 * } 428 * }}</pre> 429 * 430 * <p>Note that if any input list is empty, the Cartesian product will also be 431 * empty. If no lists at all are provided (an empty list), the resulting 432 * Cartesian product has one element, an empty list (counter-intuitive, but 433 * mathematically consistent). 434 * 435 * <p><i>Performance notes:</i> while the cartesian product of lists of size 436 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 437 * consumption is much smaller. When the cartesian product is constructed, the 438 * input lists are merely copied. Only as the resulting list is iterated are 439 * the individual lists created, and these are not retained after iteration. 440 * 441 * @param lists the lists to choose elements from, in the order that 442 * the elements chosen from those lists should appear in the resulting 443 * lists 444 * @param <B> any common base class shared by all axes (often just {@link 445 * Object}) 446 * @return the Cartesian product, as an immutable list containing immutable 447 * lists 448 * @throws IllegalArgumentException if the size of the cartesian product would 449 * be greater than {@link Integer#MAX_VALUE} 450 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, 451 * or any element of a provided list is null 452 * @since 19.0 453 */ 454 public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) { 455 return CartesianList.create(lists); 456 } 457 458 /** 459 * Returns every possible list that can be formed by choosing one element 460 * from each of the given lists in order; the "n-ary 461 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 462 * product</a>" of the lists. For example: <pre> {@code 463 * 464 * Lists.cartesianProduct(ImmutableList.of( 465 * ImmutableList.of(1, 2), 466 * ImmutableList.of("A", "B", "C")))}</pre> 467 * 468 * <p>returns a list containing six lists in the following order: 469 * 470 * <ul> 471 * <li>{@code ImmutableList.of(1, "A")} 472 * <li>{@code ImmutableList.of(1, "B")} 473 * <li>{@code ImmutableList.of(1, "C")} 474 * <li>{@code ImmutableList.of(2, "A")} 475 * <li>{@code ImmutableList.of(2, "B")} 476 * <li>{@code ImmutableList.of(2, "C")} 477 * </ul> 478 * 479 * <p>The result is guaranteed to be in the "traditional", lexicographical 480 * order for Cartesian products that you would get from nesting for loops: 481 * <pre> {@code 482 * 483 * for (B b0 : lists.get(0)) { 484 * for (B b1 : lists.get(1)) { 485 * ... 486 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 487 * // operate on tuple 488 * } 489 * }}</pre> 490 * 491 * <p>Note that if any input list is empty, the Cartesian product will also be 492 * empty. If no lists at all are provided (an empty list), the resulting 493 * Cartesian product has one element, an empty list (counter-intuitive, but 494 * mathematically consistent). 495 * 496 * <p><i>Performance notes:</i> while the cartesian product of lists of size 497 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 498 * consumption is much smaller. When the cartesian product is constructed, the 499 * input lists are merely copied. Only as the resulting list is iterated are 500 * the individual lists created, and these are not retained after iteration. 501 * 502 * @param lists the lists to choose elements from, in the order that 503 * the elements chosen from those lists should appear in the resulting 504 * lists 505 * @param <B> any common base class shared by all axes (often just {@link 506 * Object}) 507 * @return the Cartesian product, as an immutable list containing immutable 508 * lists 509 * @throws IllegalArgumentException if the size of the cartesian product would 510 * be greater than {@link Integer#MAX_VALUE} 511 * @throws NullPointerException if {@code lists}, any one of the 512 * {@code lists}, or any element of a provided list is null 513 * @since 19.0 514 */ 515 public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) { 516 return cartesianProduct(Arrays.asList(lists)); 517 } 518 519 /** 520 * Returns a list that applies {@code function} to each element of {@code 521 * fromList}. The returned list is a transformed view of {@code fromList}; 522 * changes to {@code fromList} will be reflected in the returned list and vice 523 * versa. 524 * 525 * <p>Since functions are not reversible, the transform is one-way and new 526 * items cannot be stored in the returned list. The {@code add}, 527 * {@code addAll} and {@code set} methods are unsupported in the returned 528 * list. 529 * 530 * <p>The function is applied lazily, invoked when needed. This is necessary 531 * for the returned list to be a view, but it means that the function will be 532 * applied many times for bulk operations like {@link List#contains} and 533 * {@link List#hashCode}. For this to perform well, {@code function} should be 534 * fast. To avoid lazy evaluation when the returned list doesn't need to be a 535 * view, copy the returned list into a new list of your choosing. 536 * 537 * <p>If {@code fromList} implements {@link RandomAccess}, so will the 538 * returned list. The returned list is threadsafe if the supplied list and 539 * function are. 540 * 541 * <p>If only a {@code Collection} or {@code Iterable} input is available, use 542 * {@link Collections2#transform} or {@link Iterables#transform}. 543 * 544 * <p><b>Note:</b> serializing the returned list is implemented by serializing 545 * {@code fromList}, its contents, and {@code function} -- <i>not</i> by 546 * serializing the transformed values. This can lead to surprising behavior, 547 * so serializing the returned list is <b>not recommended</b>. Instead, 548 * copy the list using {@link ImmutableList#copyOf(Collection)} (for example), 549 * then serialize the copy. Other methods similar to this do not implement 550 * serialization at all for this reason. 551 */ 552 @CheckReturnValue 553 public static <F, T> List<T> transform( 554 List<F> fromList, Function<? super F, ? extends T> function) { 555 return (fromList instanceof RandomAccess) 556 ? new TransformingRandomAccessList<F, T>(fromList, function) 557 : new TransformingSequentialList<F, T>(fromList, function); 558 } 559 560 /** 561 * Implementation of a sequential transforming list. 562 * 563 * @see Lists#transform 564 */ 565 private static class TransformingSequentialList<F, T> extends AbstractSequentialList<T> 566 implements Serializable { 567 final List<F> fromList; 568 final Function<? super F, ? extends T> function; 569 570 TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) { 571 this.fromList = checkNotNull(fromList); 572 this.function = checkNotNull(function); 573 } 574 /** 575 * The default implementation inherited is based on iteration and removal of 576 * each element which can be overkill. That's why we forward this call 577 * directly to the backing list. 578 */ 579 @Override 580 public void clear() { 581 fromList.clear(); 582 } 583 584 @Override 585 public int size() { 586 return fromList.size(); 587 } 588 589 @Override 590 public ListIterator<T> listIterator(final int index) { 591 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 592 @Override 593 T transform(F from) { 594 return function.apply(from); 595 } 596 }; 597 } 598 599 private static final long serialVersionUID = 0; 600 } 601 602 /** 603 * Implementation of a transforming random access list. We try to make as many 604 * of these methods pass-through to the source list as possible so that the 605 * performance characteristics of the source list and transformed list are 606 * similar. 607 * 608 * @see Lists#transform 609 */ 610 private static class TransformingRandomAccessList<F, T> extends AbstractList<T> 611 implements RandomAccess, Serializable { 612 final List<F> fromList; 613 final Function<? super F, ? extends T> function; 614 615 TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) { 616 this.fromList = checkNotNull(fromList); 617 this.function = checkNotNull(function); 618 } 619 620 @Override 621 public void clear() { 622 fromList.clear(); 623 } 624 625 @Override 626 public T get(int index) { 627 return function.apply(fromList.get(index)); 628 } 629 630 @Override 631 public Iterator<T> iterator() { 632 return listIterator(); 633 } 634 635 @Override 636 public ListIterator<T> listIterator(int index) { 637 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 638 @Override 639 T transform(F from) { 640 return function.apply(from); 641 } 642 }; 643 } 644 645 @Override 646 public boolean isEmpty() { 647 return fromList.isEmpty(); 648 } 649 650 @Override 651 public T remove(int index) { 652 return function.apply(fromList.remove(index)); 653 } 654 655 @Override 656 public int size() { 657 return fromList.size(); 658 } 659 660 private static final long serialVersionUID = 0; 661 } 662 663 /** 664 * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, 665 * each of the same size (the final list may be smaller). For example, 666 * partitioning a list containing {@code [a, b, c, d, e]} with a partition 667 * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing 668 * two inner lists of three and two elements, all in the original order. 669 * 670 * <p>The outer list is unmodifiable, but reflects the latest state of the 671 * source list. The inner lists are sublist views of the original list, 672 * produced on demand using {@link List#subList(int, int)}, and are subject 673 * to all the usual caveats about modification as explained in that API. 674 * 675 * @param list the list to return consecutive sublists of 676 * @param size the desired size of each sublist (the last may be 677 * smaller) 678 * @return a list of consecutive sublists 679 * @throws IllegalArgumentException if {@code partitionSize} is nonpositive 680 */ 681 public static <T> List<List<T>> partition(List<T> list, int size) { 682 checkNotNull(list); 683 checkArgument(size > 0); 684 return (list instanceof RandomAccess) 685 ? new RandomAccessPartition<T>(list, size) 686 : new Partition<T>(list, size); 687 } 688 689 private static class Partition<T> extends AbstractList<List<T>> { 690 final List<T> list; 691 final int size; 692 693 Partition(List<T> list, int size) { 694 this.list = list; 695 this.size = size; 696 } 697 698 @Override 699 public List<T> get(int index) { 700 checkElementIndex(index, size()); 701 int start = index * size; 702 int end = Math.min(start + size, list.size()); 703 return list.subList(start, end); 704 } 705 706 @Override 707 public int size() { 708 return IntMath.divide(list.size(), size, RoundingMode.CEILING); 709 } 710 711 @Override 712 public boolean isEmpty() { 713 return list.isEmpty(); 714 } 715 } 716 717 private static class RandomAccessPartition<T> extends Partition<T> implements RandomAccess { 718 RandomAccessPartition(List<T> list, int size) { 719 super(list, size); 720 } 721 } 722 723 /** 724 * Returns a view of the specified string as an immutable list of {@code 725 * Character} values. 726 * 727 * @since 7.0 728 */ 729 @Beta 730 public static ImmutableList<Character> charactersOf(String string) { 731 return new StringAsImmutableList(checkNotNull(string)); 732 } 733 734 @SuppressWarnings("serial") // serialized using ImmutableList serialization 735 private static final class StringAsImmutableList extends ImmutableList<Character> { 736 737 private final String string; 738 739 StringAsImmutableList(String string) { 740 this.string = string; 741 } 742 743 @Override 744 public int indexOf(@Nullable Object object) { 745 return (object instanceof Character) ? string.indexOf((Character) object) : -1; 746 } 747 748 @Override 749 public int lastIndexOf(@Nullable Object object) { 750 return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1; 751 } 752 753 @Override 754 public ImmutableList<Character> subList(int fromIndex, int toIndex) { 755 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 756 return charactersOf(string.substring(fromIndex, toIndex)); 757 } 758 759 @Override 760 boolean isPartialView() { 761 return false; 762 } 763 764 @Override 765 public Character get(int index) { 766 checkElementIndex(index, size()); // for GWT 767 return string.charAt(index); 768 } 769 770 @Override 771 public int size() { 772 return string.length(); 773 } 774 } 775 776 /** 777 * Returns a view of the specified {@code CharSequence} as a {@code 778 * List<Character>}, viewing {@code sequence} as a sequence of Unicode code 779 * units. The view does not support any modification operations, but reflects 780 * any changes to the underlying character sequence. 781 * 782 * @param sequence the character sequence to view as a {@code List} of 783 * characters 784 * @return an {@code List<Character>} view of the character sequence 785 * @since 7.0 786 */ 787 @Beta 788 public static List<Character> charactersOf(CharSequence sequence) { 789 return new CharSequenceAsList(checkNotNull(sequence)); 790 } 791 792 private static final class CharSequenceAsList extends AbstractList<Character> { 793 private final CharSequence sequence; 794 795 CharSequenceAsList(CharSequence sequence) { 796 this.sequence = sequence; 797 } 798 799 @Override 800 public Character get(int index) { 801 checkElementIndex(index, size()); // for GWT 802 return sequence.charAt(index); 803 } 804 805 @Override 806 public int size() { 807 return sequence.length(); 808 } 809 } 810 811 /** 812 * Returns a reversed view of the specified list. For example, {@code 813 * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 814 * 2, 1}. The returned list is backed by this list, so changes in the returned 815 * list are reflected in this list, and vice-versa. The returned list supports 816 * all of the optional list operations supported by this list. 817 * 818 * <p>The returned list is random-access if the specified list is random 819 * access. 820 * 821 * @since 7.0 822 */ 823 @CheckReturnValue 824 public static <T> List<T> reverse(List<T> list) { 825 if (list instanceof ImmutableList) { 826 return ((ImmutableList<T>) list).reverse(); 827 } else if (list instanceof ReverseList) { 828 return ((ReverseList<T>) list).getForwardList(); 829 } else if (list instanceof RandomAccess) { 830 return new RandomAccessReverseList<T>(list); 831 } else { 832 return new ReverseList<T>(list); 833 } 834 } 835 836 private static class ReverseList<T> extends AbstractList<T> { 837 private final List<T> forwardList; 838 839 ReverseList(List<T> forwardList) { 840 this.forwardList = checkNotNull(forwardList); 841 } 842 843 List<T> getForwardList() { 844 return forwardList; 845 } 846 847 private int reverseIndex(int index) { 848 int size = size(); 849 checkElementIndex(index, size); 850 return (size - 1) - index; 851 } 852 853 private int reversePosition(int index) { 854 int size = size(); 855 checkPositionIndex(index, size); 856 return size - index; 857 } 858 859 @Override 860 public void add(int index, @Nullable T element) { 861 forwardList.add(reversePosition(index), element); 862 } 863 864 @Override 865 public void clear() { 866 forwardList.clear(); 867 } 868 869 @Override 870 public T remove(int index) { 871 return forwardList.remove(reverseIndex(index)); 872 } 873 874 @Override 875 protected void removeRange(int fromIndex, int toIndex) { 876 subList(fromIndex, toIndex).clear(); 877 } 878 879 @Override 880 public T set(int index, @Nullable T element) { 881 return forwardList.set(reverseIndex(index), element); 882 } 883 884 @Override 885 public T get(int index) { 886 return forwardList.get(reverseIndex(index)); 887 } 888 889 @Override 890 public int size() { 891 return forwardList.size(); 892 } 893 894 @Override 895 public List<T> subList(int fromIndex, int toIndex) { 896 checkPositionIndexes(fromIndex, toIndex, size()); 897 return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex))); 898 } 899 900 @Override 901 public Iterator<T> iterator() { 902 return listIterator(); 903 } 904 905 @Override 906 public ListIterator<T> listIterator(int index) { 907 int start = reversePosition(index); 908 final ListIterator<T> forwardIterator = forwardList.listIterator(start); 909 return new ListIterator<T>() { 910 911 boolean canRemoveOrSet; 912 913 @Override 914 public void add(T e) { 915 forwardIterator.add(e); 916 forwardIterator.previous(); 917 canRemoveOrSet = false; 918 } 919 920 @Override 921 public boolean hasNext() { 922 return forwardIterator.hasPrevious(); 923 } 924 925 @Override 926 public boolean hasPrevious() { 927 return forwardIterator.hasNext(); 928 } 929 930 @Override 931 public T next() { 932 if (!hasNext()) { 933 throw new NoSuchElementException(); 934 } 935 canRemoveOrSet = true; 936 return forwardIterator.previous(); 937 } 938 939 @Override 940 public int nextIndex() { 941 return reversePosition(forwardIterator.nextIndex()); 942 } 943 944 @Override 945 public T previous() { 946 if (!hasPrevious()) { 947 throw new NoSuchElementException(); 948 } 949 canRemoveOrSet = true; 950 return forwardIterator.next(); 951 } 952 953 @Override 954 public int previousIndex() { 955 return nextIndex() - 1; 956 } 957 958 @Override 959 public void remove() { 960 checkRemove(canRemoveOrSet); 961 forwardIterator.remove(); 962 canRemoveOrSet = false; 963 } 964 965 @Override 966 public void set(T e) { 967 checkState(canRemoveOrSet); 968 forwardIterator.set(e); 969 } 970 }; 971 } 972 } 973 974 private static class RandomAccessReverseList<T> extends ReverseList<T> implements RandomAccess { 975 RandomAccessReverseList(List<T> forwardList) { 976 super(forwardList); 977 } 978 } 979 980 /** 981 * An implementation of {@link List#hashCode()}. 982 */ 983 static int hashCodeImpl(List<?> list) { 984 // TODO(lowasser): worth optimizing for RandomAccess? 985 int hashCode = 1; 986 for (Object o : list) { 987 hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); 988 989 hashCode = ~~hashCode; 990 // needed to deal with GWT integer overflow 991 } 992 return hashCode; 993 } 994 995 /** 996 * An implementation of {@link List#equals(Object)}. 997 */ 998 static boolean equalsImpl(List<?> thisList, @Nullable Object other) { 999 if (other == checkNotNull(thisList)) { 1000 return true; 1001 } 1002 if (!(other instanceof List)) { 1003 return false; 1004 } 1005 List<?> otherList = (List<?>) other; 1006 int size = thisList.size(); 1007 if (size != otherList.size()) { 1008 return false; 1009 } 1010 if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) { 1011 // avoid allocation and use the faster loop 1012 for (int i = 0; i < size; i++) { 1013 if (!Objects.equal(thisList.get(i), otherList.get(i))) { 1014 return false; 1015 } 1016 } 1017 return true; 1018 } else { 1019 return Iterators.elementsEqual(thisList.iterator(), otherList.iterator()); 1020 } 1021 } 1022 1023 /** 1024 * An implementation of {@link List#addAll(int, Collection)}. 1025 */ 1026 static <E> boolean addAllImpl(List<E> list, int index, Iterable<? extends E> elements) { 1027 boolean changed = false; 1028 ListIterator<E> listIterator = list.listIterator(index); 1029 for (E e : elements) { 1030 listIterator.add(e); 1031 changed = true; 1032 } 1033 return changed; 1034 } 1035 1036 /** 1037 * An implementation of {@link List#indexOf(Object)}. 1038 */ 1039 static int indexOfImpl(List<?> list, @Nullable Object element) { 1040 if (list instanceof RandomAccess) { 1041 return indexOfRandomAccess(list, element); 1042 } else { 1043 ListIterator<?> listIterator = list.listIterator(); 1044 while (listIterator.hasNext()) { 1045 if (Objects.equal(element, listIterator.next())) { 1046 return listIterator.previousIndex(); 1047 } 1048 } 1049 return -1; 1050 } 1051 } 1052 1053 private static int indexOfRandomAccess(List<?> list, @Nullable Object element) { 1054 int size = list.size(); 1055 if (element == null) { 1056 for (int i = 0; i < size; i++) { 1057 if (list.get(i) == null) { 1058 return i; 1059 } 1060 } 1061 } else { 1062 for (int i = 0; i < size; i++) { 1063 if (element.equals(list.get(i))) { 1064 return i; 1065 } 1066 } 1067 } 1068 return -1; 1069 } 1070 1071 /** 1072 * An implementation of {@link List#lastIndexOf(Object)}. 1073 */ 1074 static int lastIndexOfImpl(List<?> list, @Nullable Object element) { 1075 if (list instanceof RandomAccess) { 1076 return lastIndexOfRandomAccess(list, element); 1077 } else { 1078 ListIterator<?> listIterator = list.listIterator(list.size()); 1079 while (listIterator.hasPrevious()) { 1080 if (Objects.equal(element, listIterator.previous())) { 1081 return listIterator.nextIndex(); 1082 } 1083 } 1084 return -1; 1085 } 1086 } 1087 1088 private static int lastIndexOfRandomAccess(List<?> list, @Nullable Object element) { 1089 if (element == null) { 1090 for (int i = list.size() - 1; i >= 0; i--) { 1091 if (list.get(i) == null) { 1092 return i; 1093 } 1094 } 1095 } else { 1096 for (int i = list.size() - 1; i >= 0; i--) { 1097 if (element.equals(list.get(i))) { 1098 return i; 1099 } 1100 } 1101 } 1102 return -1; 1103 } 1104 1105 /** 1106 * Returns an implementation of {@link List#listIterator(int)}. 1107 */ 1108 static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) { 1109 return new AbstractListWrapper<E>(list).listIterator(index); 1110 } 1111 1112 /** 1113 * An implementation of {@link List#subList(int, int)}. 1114 */ 1115 static <E> List<E> subListImpl(final List<E> list, int fromIndex, int toIndex) { 1116 List<E> wrapper; 1117 if (list instanceof RandomAccess) { 1118 wrapper = new RandomAccessListWrapper<E>(list) { 1119 @Override 1120 public ListIterator<E> listIterator(int index) { 1121 return backingList.listIterator(index); 1122 } 1123 1124 private static final long serialVersionUID = 0; 1125 }; 1126 } else { 1127 wrapper = new AbstractListWrapper<E>(list) { 1128 @Override 1129 public ListIterator<E> listIterator(int index) { 1130 return backingList.listIterator(index); 1131 } 1132 1133 private static final long serialVersionUID = 0; 1134 }; 1135 } 1136 return wrapper.subList(fromIndex, toIndex); 1137 } 1138 1139 private static class AbstractListWrapper<E> extends AbstractList<E> { 1140 final List<E> backingList; 1141 1142 AbstractListWrapper(List<E> backingList) { 1143 this.backingList = checkNotNull(backingList); 1144 } 1145 1146 @Override 1147 public void add(int index, E element) { 1148 backingList.add(index, element); 1149 } 1150 1151 @Override 1152 public boolean addAll(int index, Collection<? extends E> c) { 1153 return backingList.addAll(index, c); 1154 } 1155 1156 @Override 1157 public E get(int index) { 1158 return backingList.get(index); 1159 } 1160 1161 @Override 1162 public E remove(int index) { 1163 return backingList.remove(index); 1164 } 1165 1166 @Override 1167 public E set(int index, E element) { 1168 return backingList.set(index, element); 1169 } 1170 1171 @Override 1172 public boolean contains(Object o) { 1173 return backingList.contains(o); 1174 } 1175 1176 @Override 1177 public int size() { 1178 return backingList.size(); 1179 } 1180 } 1181 1182 private static class RandomAccessListWrapper<E> extends AbstractListWrapper<E> 1183 implements RandomAccess { 1184 RandomAccessListWrapper(List<E> backingList) { 1185 super(backingList); 1186 } 1187 } 1188 1189 /** 1190 * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 1191 */ 1192 static <T> List<T> cast(Iterable<T> iterable) { 1193 return (List<T>) iterable; 1194 } 1195}