001/*
002 * Copyright (C) 2009 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.cache;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.base.Preconditions.checkState;
022
023import com.google.common.annotations.GwtCompatible;
024import com.google.common.annotations.GwtIncompatible;
025import com.google.common.base.Ascii;
026import com.google.common.base.Equivalence;
027import com.google.common.base.MoreObjects;
028import com.google.common.base.Supplier;
029import com.google.common.base.Suppliers;
030import com.google.common.base.Ticker;
031import com.google.common.cache.AbstractCache.SimpleStatsCounter;
032import com.google.common.cache.AbstractCache.StatsCounter;
033import com.google.common.cache.LocalCache.Strength;
034
035import java.lang.ref.SoftReference;
036import java.lang.ref.WeakReference;
037import java.util.ConcurrentModificationException;
038import java.util.concurrent.ConcurrentHashMap;
039import java.util.concurrent.TimeUnit;
040import java.util.logging.Level;
041import java.util.logging.Logger;
042
043import javax.annotation.CheckReturnValue;
044
045/**
046 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the
047 * following features:
048 *
049 * <ul>
050 * <li>automatic loading of entries into the cache
051 * <li>least-recently-used eviction when a maximum size is exceeded
052 * <li>time-based expiration of entries, measured since last access or last write
053 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references
054 * <li>values automatically wrapped in {@linkplain WeakReference weak} or
055 *     {@linkplain SoftReference soft} references
056 * <li>notification of evicted (or otherwise removed) entries
057 * <li>accumulation of cache access statistics
058 * </ul>
059 *
060 *
061 * <p>These features are all optional; caches can be created using all or none of them. By default
062 * cache instances created by {@code CacheBuilder} will not perform any type of eviction.
063 *
064 * <p>Usage example: <pre>   {@code
065 *
066 *   LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
067 *       .maximumSize(10000)
068 *       .expireAfterWrite(10, TimeUnit.MINUTES)
069 *       .removalListener(MY_LISTENER)
070 *       .build(
071 *           new CacheLoader<Key, Graph>() {
072 *             public Graph load(Key key) throws AnyException {
073 *               return createExpensiveGraph(key);
074 *             }
075 *           });}</pre>
076 *
077 * <p>Or equivalently, <pre>   {@code
078 *
079 *   // In real life this would come from a command-line flag or config file
080 *   String spec = "maximumSize=10000,expireAfterWrite=10m";
081 *
082 *   LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec)
083 *       .removalListener(MY_LISTENER)
084 *       .build(
085 *           new CacheLoader<Key, Graph>() {
086 *             public Graph load(Key key) throws AnyException {
087 *               return createExpensiveGraph(key);
088 *             }
089 *           });}</pre>
090 *
091 * <p>The returned cache is implemented as a hash table with similar performance characteristics to
092 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and
093 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly
094 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads
095 * modify the cache after the iterator is created, it is undefined which of these changes, if any,
096 * are reflected in that iterator. These iterators never throw {@link
097 * ConcurrentModificationException}.
098 *
099 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the
100 * {@link Object#equals equals} method) to determine equality for keys or values. However, if
101 * {@link #weakKeys} was specified, the cache uses identity ({@code ==})
102 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was
103 * specified, the cache uses identity comparisons for values.
104 *
105 * <p>Entries are automatically evicted from the cache when any of
106 * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight},
107 * {@linkplain #expireAfterWrite expireAfterWrite},
108 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys},
109 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested.
110 *
111 * <p>If {@linkplain #maximumSize(long) maximumSize} or
112 * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache
113 * modification.
114 *
115 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or
116 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each
117 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired
118 * entries may be counted by {@link Cache#size}, but will never be visible to read or write
119 * operations.
120 *
121 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or
122 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in
123 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be
124 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to
125 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be
126 * visible to read or write operations.
127 *
128 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which
129 * will be performed during write operations, or during occasional read operations in the absence of
130 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but
131 * calling it should not be necessary with a high throughput cache. Only caches built with
132 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite},
133 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys},
134 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic
135 * maintenance.
136 *
137 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches
138 * retain all the configuration properties of the original cache. Note that the serialized form does
139 * <i>not</i> include cache contents, but only configuration.
140 *
141 * <p>See the Guava User Guide article on <a href=
142 * "https://github.com/google/guava/wiki/CachesExplained">caching</a> for a higher-level
143 * explanation.
144 *
145 * @param <K> the base key type for all caches created by this builder
146 * @param <V> the base value type for all caches created by this builder
147 * @author Charles Fry
148 * @author Kevin Bourrillion
149 * @since 10.0
150 */
151@GwtCompatible(emulated = true)
152public final class CacheBuilder<K, V> {
153  private static final int DEFAULT_INITIAL_CAPACITY = 16;
154  private static final int DEFAULT_CONCURRENCY_LEVEL = 4;
155  private static final int DEFAULT_EXPIRATION_NANOS = 0;
156  private static final int DEFAULT_REFRESH_NANOS = 0;
157
158  static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance(
159      new StatsCounter() {
160        @Override
161        public void recordHits(int count) {}
162
163        @Override
164        public void recordMisses(int count) {}
165
166        @Override
167        public void recordLoadSuccess(long loadTime) {}
168
169        @Override
170        public void recordLoadException(long loadTime) {}
171
172        @Override
173        public void recordEviction() {}
174
175        @Override
176        public CacheStats snapshot() {
177          return EMPTY_STATS;
178        }
179      });
180  static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0);
181
182  static final Supplier<StatsCounter> CACHE_STATS_COUNTER =
183      new Supplier<StatsCounter>() {
184    @Override
185    public StatsCounter get() {
186      return new SimpleStatsCounter();
187    }
188  };
189
190  enum NullListener implements RemovalListener<Object, Object> {
191    INSTANCE;
192
193    @Override
194    public void onRemoval(RemovalNotification<Object, Object> notification) {}
195  }
196
197  enum OneWeigher implements Weigher<Object, Object> {
198    INSTANCE;
199
200    @Override
201    public int weigh(Object key, Object value) {
202      return 1;
203    }
204  }
205
206  static final Ticker NULL_TICKER = new Ticker() {
207    @Override
208    public long read() {
209      return 0;
210    }
211  };
212
213  private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName());
214
215  static final int UNSET_INT = -1;
216
217  boolean strictParsing = true;
218
219  int initialCapacity = UNSET_INT;
220  int concurrencyLevel = UNSET_INT;
221  long maximumSize = UNSET_INT;
222  long maximumWeight = UNSET_INT;
223  Weigher<? super K, ? super V> weigher;
224
225  Strength keyStrength;
226  Strength valueStrength;
227
228  long expireAfterWriteNanos = UNSET_INT;
229  long expireAfterAccessNanos = UNSET_INT;
230  long refreshNanos = UNSET_INT;
231
232  Equivalence<Object> keyEquivalence;
233  Equivalence<Object> valueEquivalence;
234
235  RemovalListener<? super K, ? super V> removalListener;
236  Ticker ticker;
237
238  Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER;
239
240  // TODO(fry): make constructor private and update tests to use newBuilder
241  CacheBuilder() {}
242
243  /**
244   * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys,
245   * strong values, and no automatic eviction of any kind.
246   */
247  public static CacheBuilder<Object, Object> newBuilder() {
248    return new CacheBuilder<Object, Object>();
249  }
250
251  /**
252   * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}.
253   *
254   * @since 12.0
255   */
256  @GwtIncompatible("To be supported")
257  public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) {
258    return spec.toCacheBuilder()
259        .lenientParsing();
260  }
261
262  /**
263   * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}.
264   * This is especially useful for command-line configuration of a {@code CacheBuilder}.
265   *
266   * @param spec a String in the format specified by {@link CacheBuilderSpec}
267   * @since 12.0
268   */
269  @GwtIncompatible("To be supported")
270  public static CacheBuilder<Object, Object> from(String spec) {
271    return from(CacheBuilderSpec.parse(spec));
272  }
273
274  /**
275   * Enables lenient parsing. Useful for tests and spec parsing.
276   */
277  @GwtIncompatible("To be supported")
278  CacheBuilder<K, V> lenientParsing() {
279    strictParsing = false;
280    return this;
281  }
282
283  /**
284   * Sets a custom {@code Equivalence} strategy for comparing keys.
285   *
286   * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when
287   * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise.
288   */
289  @GwtIncompatible("To be supported")
290  CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) {
291    checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence);
292    keyEquivalence = checkNotNull(equivalence);
293    return this;
294  }
295
296  Equivalence<Object> getKeyEquivalence() {
297    return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence());
298  }
299
300  /**
301   * Sets a custom {@code Equivalence} strategy for comparing values.
302   *
303   * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when
304   * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()}
305   * otherwise.
306   */
307  @GwtIncompatible("To be supported")
308  CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) {
309    checkState(valueEquivalence == null,
310        "value equivalence was already set to %s", valueEquivalence);
311    this.valueEquivalence = checkNotNull(equivalence);
312    return this;
313  }
314
315  Equivalence<Object> getValueEquivalence() {
316    return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence());
317  }
318
319  /**
320   * Sets the minimum total size for the internal hash tables. For example, if the initial capacity
321   * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each
322   * having a hash table of size eight. Providing a large enough estimate at construction time
323   * avoids the need for expensive resizing operations later, but setting this value unnecessarily
324   * high wastes memory.
325   *
326   * @throws IllegalArgumentException if {@code initialCapacity} is negative
327   * @throws IllegalStateException if an initial capacity was already set
328   */
329  public CacheBuilder<K, V> initialCapacity(int initialCapacity) {
330    checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s",
331        this.initialCapacity);
332    checkArgument(initialCapacity >= 0);
333    this.initialCapacity = initialCapacity;
334    return this;
335  }
336
337  int getInitialCapacity() {
338    return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity;
339  }
340
341  /**
342   * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The
343   * table is internally partitioned to try to permit the indicated number of concurrent updates
344   * without contention. Because assignment of entries to these partitions is not necessarily
345   * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to
346   * accommodate as many threads as will ever concurrently modify the table. Using a significantly
347   * higher value than you need can waste space and time, and a significantly lower value can lead
348   * to thread contention. But overestimates and underestimates within an order of magnitude do not
349   * usually have much noticeable impact. A value of one permits only one thread to modify the cache
350   * at a time, but since read operations and cache loading computations can proceed concurrently,
351   * this still yields higher concurrency than full synchronization.
352   *
353   * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this
354   * value, you should always choose it explicitly.
355   *
356   * <p>The current implementation uses the concurrency level to create a fixed number of hashtable
357   * segments, each governed by its own write lock. The segment lock is taken once for each explicit
358   * write, and twice for each cache loading computation (once prior to loading the new value,
359   * and once after loading completes). Much internal cache management is performed at the segment
360   * granularity. For example, access queues and write queues are kept per segment when they are
361   * required by the selected eviction algorithm. As such, when writing unit tests it is not
362   * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction
363   * behavior.
364   *
365   * <p>Note that future implementations may abandon segment locking in favor of more advanced
366   * concurrency controls.
367   *
368   * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive
369   * @throws IllegalStateException if a concurrency level was already set
370   */
371  public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) {
372    checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s",
373        this.concurrencyLevel);
374    checkArgument(concurrencyLevel > 0);
375    this.concurrencyLevel = concurrencyLevel;
376    return this;
377  }
378
379  int getConcurrencyLevel() {
380    return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel;
381  }
382
383  /**
384   * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict
385   * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the
386   * cache evicts entries that are less likely to be used again. For example, the cache may evict an
387   * entry because it hasn't been used recently or very often.
388   *
389   * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the
390   * cache. This can be useful in testing, or to disable caching temporarily without a code change.
391   *
392   * <p>This feature cannot be used in conjunction with {@link #maximumWeight}.
393   *
394   * @param size the maximum size of the cache
395   * @throws IllegalArgumentException if {@code size} is negative
396   * @throws IllegalStateException if a maximum size or weight was already set
397   */
398  public CacheBuilder<K, V> maximumSize(long size) {
399    checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s",
400        this.maximumSize);
401    checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s",
402        this.maximumWeight);
403    checkState(this.weigher == null, "maximum size can not be combined with weigher");
404    checkArgument(size >= 0, "maximum size must not be negative");
405    this.maximumSize = size;
406    return this;
407  }
408
409  /**
410   * Specifies the maximum weight of entries the cache may contain. Weight is determined using the
411   * {@link Weigher} specified with {@link #weigher}, and use of this method requires a
412   * corresponding call to {@link #weigher} prior to calling {@link #build}.
413   *
414   * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache
415   * size grows close to the maximum, the cache evicts entries that are less likely to be used
416   * again. For example, the cache may evict an entry because it hasn't been used recently or very
417   * often.
418   *
419   * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into
420   * cache. This can be useful in testing, or to disable caching temporarily without a code
421   * change.
422   *
423   * <p>Note that weight is only used to determine whether the cache is over capacity; it has no
424   * effect on selecting which entry should be evicted next.
425   *
426   * <p>This feature cannot be used in conjunction with {@link #maximumSize}.
427   *
428   * @param weight the maximum total weight of entries the cache may contain
429   * @throws IllegalArgumentException if {@code weight} is negative
430   * @throws IllegalStateException if a maximum weight or size was already set
431   * @since 11.0
432   */
433  @GwtIncompatible("To be supported")
434  public CacheBuilder<K, V> maximumWeight(long weight) {
435    checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s",
436        this.maximumWeight);
437    checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s",
438        this.maximumSize);
439    this.maximumWeight = weight;
440    checkArgument(weight >= 0, "maximum weight must not be negative");
441    return this;
442  }
443
444  /**
445   * Specifies the weigher to use in determining the weight of entries. Entry weight is taken
446   * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and
447   * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to
448   * calling {@link #build}. Weights are measured and recorded when entries are inserted into the
449   * cache, and are thus effectively static during the lifetime of a cache entry.
450   *
451   * <p>When the weight of an entry is zero it will not be considered for size-based eviction
452   * (though it still may be evicted by other means).
453   *
454   * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder}
455   * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the
456   * original reference or the returned reference may be used to complete configuration and build
457   * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from
458   * building caches whose key or value types are incompatible with the types accepted by the
459   * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results,
460   * simply use the standard method-chaining idiom, as illustrated in the documentation at top,
461   * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement.
462   *
463   * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build
464   * a cache whose key or value type is incompatible with the weigher, you will likely experience
465   * a {@link ClassCastException} at some <i>undefined</i> point in the future.
466   *
467   * @param weigher the weigher to use in calculating the weight of cache entries
468   * @throws IllegalArgumentException if {@code size} is negative
469   * @throws IllegalStateException if a maximum size was already set
470   * @since 11.0
471   */
472  @GwtIncompatible("To be supported")
473  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher(
474      Weigher<? super K1, ? super V1> weigher) {
475    checkState(this.weigher == null);
476    if (strictParsing) {
477      checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size",
478          this.maximumSize);
479    }
480
481    // safely limiting the kinds of caches this can produce
482    @SuppressWarnings("unchecked")
483    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
484    me.weigher = checkNotNull(weigher);
485    return me;
486  }
487
488  long getMaximumWeight() {
489    if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) {
490      return 0;
491    }
492    return (weigher == null) ? maximumSize : maximumWeight;
493  }
494
495  // Make a safe contravariant cast now so we don't have to do it over and over.
496  @SuppressWarnings("unchecked")
497  <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() {
498    return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE);
499  }
500
501  /**
502   * Specifies that each key (not value) stored in the cache should be wrapped in a {@link
503   * WeakReference} (by default, strong references are used).
504   *
505   * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==})
506   * comparison to determine equality of keys.
507   *
508   * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size},
509   * but will never be visible to read or write operations; such entries are cleaned up as part of
510   * the routine maintenance described in the class javadoc.
511   *
512   * @throws IllegalStateException if the key strength was already set
513   */
514  @GwtIncompatible("java.lang.ref.WeakReference")
515  public CacheBuilder<K, V> weakKeys() {
516    return setKeyStrength(Strength.WEAK);
517  }
518
519  CacheBuilder<K, V> setKeyStrength(Strength strength) {
520    checkState(keyStrength == null, "Key strength was already set to %s", keyStrength);
521    keyStrength = checkNotNull(strength);
522    return this;
523  }
524
525  Strength getKeyStrength() {
526    return MoreObjects.firstNonNull(keyStrength, Strength.STRONG);
527  }
528
529  /**
530   * Specifies that each value (not key) stored in the cache should be wrapped in a
531   * {@link WeakReference} (by default, strong references are used).
532   *
533   * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor
534   * candidate for caching; consider {@link #softValues} instead.
535   *
536   * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==})
537   * comparison to determine equality of values.
538   *
539   * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size},
540   * but will never be visible to read or write operations; such entries are cleaned up as part of
541   * the routine maintenance described in the class javadoc.
542   *
543   * @throws IllegalStateException if the value strength was already set
544   */
545  @GwtIncompatible("java.lang.ref.WeakReference")
546  public CacheBuilder<K, V> weakValues() {
547    return setValueStrength(Strength.WEAK);
548  }
549
550  /**
551   * Specifies that each value (not key) stored in the cache should be wrapped in a
552   * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will
553   * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory
554   * demand.
555   *
556   * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain
557   * #maximumSize(long) maximum size} instead of using soft references. You should only use this
558   * method if you are well familiar with the practical consequences of soft references.
559   *
560   * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==})
561   * comparison to determine equality of values.
562   *
563   * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size},
564   * but will never be visible to read or write operations; such entries are cleaned up as part of
565   * the routine maintenance described in the class javadoc.
566   *
567   * @throws IllegalStateException if the value strength was already set
568   */
569  @GwtIncompatible("java.lang.ref.SoftReference")
570  public CacheBuilder<K, V> softValues() {
571    return setValueStrength(Strength.SOFT);
572  }
573
574  CacheBuilder<K, V> setValueStrength(Strength strength) {
575    checkState(valueStrength == null, "Value strength was already set to %s", valueStrength);
576    valueStrength = checkNotNull(strength);
577    return this;
578  }
579
580  Strength getValueStrength() {
581    return MoreObjects.firstNonNull(valueStrength, Strength.STRONG);
582  }
583
584  /**
585   * Specifies that each entry should be automatically removed from the cache once a fixed duration
586   * has elapsed after the entry's creation, or the most recent replacement of its value.
587   *
588   * <p>When {@code duration} is zero, this method hands off to
589   * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum
590   * size or weight. This can be useful in testing, or to disable caching temporarily without a code
591   * change.
592   *
593   * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
594   * write operations. Expired entries are cleaned up as part of the routine maintenance described
595   * in the class javadoc.
596   *
597   * @param duration the length of time after an entry is created that it should be automatically
598   *     removed
599   * @param unit the unit that {@code duration} is expressed in
600   * @throws IllegalArgumentException if {@code duration} is negative
601   * @throws IllegalStateException if the time to live or time to idle was already set
602   */
603  public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) {
604    checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns",
605        expireAfterWriteNanos);
606    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
607    this.expireAfterWriteNanos = unit.toNanos(duration);
608    return this;
609  }
610
611  long getExpireAfterWriteNanos() {
612    return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos;
613  }
614
615  /**
616   * Specifies that each entry should be automatically removed from the cache once a fixed duration
617   * has elapsed after the entry's creation, the most recent replacement of its value, or its last
618   * access. Access time is reset by all cache read and write operations (including
619   * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations
620   * on the collection-views of {@link Cache#asMap}.
621   *
622   * <p>When {@code duration} is zero, this method hands off to
623   * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum
624   * size or weight. This can be useful in testing, or to disable caching temporarily without a code
625   * change.
626   *
627   * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
628   * write operations. Expired entries are cleaned up as part of the routine maintenance described
629   * in the class javadoc.
630   *
631   * @param duration the length of time after an entry is last accessed that it should be
632   *     automatically removed
633   * @param unit the unit that {@code duration} is expressed in
634   * @throws IllegalArgumentException if {@code duration} is negative
635   * @throws IllegalStateException if the time to idle or time to live was already set
636   */
637  public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) {
638    checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns",
639        expireAfterAccessNanos);
640    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
641    this.expireAfterAccessNanos = unit.toNanos(duration);
642    return this;
643  }
644
645  long getExpireAfterAccessNanos() {
646    return (expireAfterAccessNanos == UNSET_INT)
647        ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos;
648  }
649
650  /**
651   * Specifies that active entries are eligible for automatic refresh once a fixed duration has
652   * elapsed after the entry's creation, or the most recent replacement of its value. The semantics
653   * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling
654   * {@link CacheLoader#reload}.
655   *
656   * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is
657   * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous
658   * implementation; otherwise refreshes will be performed during unrelated cache read and write
659   * operations.
660   *
661   * <p>Currently automatic refreshes are performed when the first stale request for an entry
662   * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload}
663   * and immediately return the new value if the returned future is complete, and the old value
664   * otherwise.
665   *
666   * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>.
667   *
668   * @param duration the length of time after an entry is created that it should be considered
669   *     stale, and thus eligible for refresh
670   * @param unit the unit that {@code duration} is expressed in
671   * @throws IllegalArgumentException if {@code duration} is negative
672   * @throws IllegalStateException if the refresh interval was already set
673   * @since 11.0
674   */
675  @GwtIncompatible("To be supported (synchronously).")
676  public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) {
677    checkNotNull(unit);
678    checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos);
679    checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit);
680    this.refreshNanos = unit.toNanos(duration);
681    return this;
682  }
683
684  long getRefreshNanos() {
685    return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos;
686  }
687
688  /**
689   * Specifies a nanosecond-precision time source for this cache. By default,
690   * {@link System#nanoTime} is used.
691   *
692   * <p>The primary intent of this method is to facilitate testing of caches with a fake or mock
693   * time source.
694   *
695   * @throws IllegalStateException if a ticker was already set
696   */
697  public CacheBuilder<K, V> ticker(Ticker ticker) {
698    checkState(this.ticker == null);
699    this.ticker = checkNotNull(ticker);
700    return this;
701  }
702
703  Ticker getTicker(boolean recordsTime) {
704    if (ticker != null) {
705      return ticker;
706    }
707    return recordsTime ? Ticker.systemTicker() : NULL_TICKER;
708  }
709
710  /**
711   * Specifies a listener instance that caches should notify each time an entry is removed for any
712   * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener
713   * as part of the routine maintenance described in the class documentation above.
714   *
715   * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache
716   * builder reference; instead use the reference this method <i>returns</i>. At runtime, these
717   * point to the same instance, but only the returned reference has the correct generic type
718   * information so as to ensure type safety. For best results, use the standard method-chaining
719   * idiom illustrated in the class documentation above, configuring a builder and building your
720   * cache in a single statement. Failure to heed this advice can result in a {@link
721   * ClassCastException} being thrown by a cache operation at some <i>undefined</i> point in the
722   * future.
723   *
724   * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to
725   * the {@code Cache} user, only logged via a {@link Logger}.
726   *
727   * @return the cache builder reference that should be used instead of {@code this} for any
728   *     remaining configuration and cache building
729   * @throws IllegalStateException if a removal listener was already set
730   */
731  @CheckReturnValue
732  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener(
733      RemovalListener<? super K1, ? super V1> listener) {
734    checkState(this.removalListener == null);
735
736    // safely limiting the kinds of caches this can produce
737    @SuppressWarnings("unchecked")
738    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
739    me.removalListener = checkNotNull(listener);
740    return me;
741  }
742
743  // Make a safe contravariant cast now so we don't have to do it over and over.
744  @SuppressWarnings("unchecked")
745  <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() {
746    return (RemovalListener<K1, V1>)
747        MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE);
748  }
749
750  /**
751   * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this
752   * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires
753   * bookkeeping to be performed with each operation, and thus imposes a performance penalty on
754   * cache operation.
755   *
756   * @since 12.0 (previously, stats collection was automatic)
757   */
758  public CacheBuilder<K, V> recordStats() {
759    statsCounterSupplier = CACHE_STATS_COUNTER;
760    return this;
761  }
762
763  boolean isRecordingStats() {
764    return statsCounterSupplier == CACHE_STATS_COUNTER;
765  }
766
767  Supplier<? extends StatsCounter> getStatsCounterSupplier() {
768    return statsCounterSupplier;
769  }
770
771  /**
772   * Builds a cache, which either returns an already-loaded value for a given key or atomically
773   * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently
774   * loading the value for this key, simply waits for that thread to finish and returns its
775   * loaded value. Note that multiple threads can concurrently load values for distinct keys.
776   *
777   * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
778   * invoked again to create multiple independent caches.
779   *
780   * @param loader the cache loader used to obtain new values
781   * @return a cache having the requested features
782   */
783  public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build(
784          CacheLoader<? super K1, V1> loader) {
785    checkWeightWithWeigher();
786    return new LocalCache.LocalLoadingCache<K1, V1>(this, loader);
787  }
788
789  /**
790   * Builds a cache which does not automatically load values when keys are requested.
791   *
792   * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a
793   * {@code CacheLoader}.
794   *
795   * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
796   * invoked again to create multiple independent caches.
797   *
798   * @return a cache having the requested features
799   * @since 11.0
800   */
801  public <K1 extends K, V1 extends V> Cache<K1, V1> build() {
802    checkWeightWithWeigher();
803    checkNonLoadingCache();
804    return new LocalCache.LocalManualCache<K1, V1>(this);
805  }
806
807  private void checkNonLoadingCache() {
808    checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache");
809  }
810
811  private void checkWeightWithWeigher() {
812    if (weigher == null) {
813      checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher");
814    } else {
815      if (strictParsing) {
816        checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight");
817      } else {
818        if (maximumWeight == UNSET_INT) {
819          logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight");
820        }
821      }
822    }
823  }
824
825  /**
826   * Returns a string representation for this CacheBuilder instance. The exact form of the returned
827   * string is not specified.
828   */
829  @Override
830  public String toString() {
831    MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this);
832    if (initialCapacity != UNSET_INT) {
833      s.add("initialCapacity", initialCapacity);
834    }
835    if (concurrencyLevel != UNSET_INT) {
836      s.add("concurrencyLevel", concurrencyLevel);
837    }
838    if (maximumSize != UNSET_INT) {
839      s.add("maximumSize", maximumSize);
840    }
841    if (maximumWeight != UNSET_INT) {
842      s.add("maximumWeight", maximumWeight);
843    }
844    if (expireAfterWriteNanos != UNSET_INT) {
845      s.add("expireAfterWrite", expireAfterWriteNanos + "ns");
846    }
847    if (expireAfterAccessNanos != UNSET_INT) {
848      s.add("expireAfterAccess", expireAfterAccessNanos + "ns");
849    }
850    if (keyStrength != null) {
851      s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString()));
852    }
853    if (valueStrength != null) {
854      s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString()));
855    }
856    if (keyEquivalence != null) {
857      s.addValue("keyEquivalence");
858    }
859    if (valueEquivalence != null) {
860      s.addValue("valueEquivalence");
861    }
862    if (removalListener != null) {
863      s.addValue("removalListener");
864    }
865    return s.toString();
866  }
867}