001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021 022import com.google.common.annotations.GwtCompatible; 023import com.google.common.annotations.GwtIncompatible; 024import com.google.common.base.Predicate; 025import com.google.common.base.Predicates; 026import com.google.common.collect.Collections2.FilteredCollection; 027 028import java.io.Serializable; 029import java.util.AbstractSet; 030import java.util.Arrays; 031import java.util.Collection; 032import java.util.Collections; 033import java.util.Comparator; 034import java.util.EnumSet; 035import java.util.HashSet; 036import java.util.Iterator; 037import java.util.LinkedHashSet; 038import java.util.List; 039import java.util.Map; 040import java.util.NavigableSet; 041import java.util.NoSuchElementException; 042import java.util.Set; 043import java.util.SortedSet; 044import java.util.TreeSet; 045import java.util.concurrent.ConcurrentHashMap; 046import java.util.concurrent.CopyOnWriteArraySet; 047 048import javax.annotation.CheckReturnValue; 049import javax.annotation.Nullable; 050 051/** 052 * Static utility methods pertaining to {@link Set} instances. Also see this 053 * class's counterparts {@link Lists}, {@link Maps} and {@link Queues}. 054 * 055 * <p>See the Guava User Guide article on <a href= 056 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> 057 * {@code Sets}</a>. 058 * 059 * @author Kevin Bourrillion 060 * @author Jared Levy 061 * @author Chris Povirk 062 * @since 2.0 063 */ 064@GwtCompatible(emulated = true) 065public final class Sets { 066 private Sets() {} 067 068 /** 069 * {@link AbstractSet} substitute without the potentially-quadratic 070 * {@code removeAll} implementation. 071 */ 072 abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> { 073 @Override 074 public boolean removeAll(Collection<?> c) { 075 return removeAllImpl(this, c); 076 } 077 078 @Override 079 public boolean retainAll(Collection<?> c) { 080 return super.retainAll(checkNotNull(c)); // GWT compatibility 081 } 082 } 083 084 /** 085 * Returns an immutable set instance containing the given enum elements. 086 * Internally, the returned set will be backed by an {@link EnumSet}. 087 * 088 * <p>The iteration order of the returned set follows the enum's iteration 089 * order, not the order in which the elements are provided to the method. 090 * 091 * @param anElement one of the elements the set should contain 092 * @param otherElements the rest of the elements the set should contain 093 * @return an immutable set containing those elements, minus duplicates 094 */ 095 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 096 @GwtCompatible(serializable = true) 097 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 098 E anElement, E... otherElements) { 099 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 100 } 101 102 /** 103 * Returns an immutable set instance containing the given enum elements. 104 * Internally, the returned set will be backed by an {@link EnumSet}. 105 * 106 * <p>The iteration order of the returned set follows the enum's iteration 107 * order, not the order in which the elements appear in the given collection. 108 * 109 * @param elements the elements, all of the same {@code enum} type, that the 110 * set should contain 111 * @return an immutable set containing those elements, minus duplicates 112 */ 113 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 114 @GwtCompatible(serializable = true) 115 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 116 Iterable<E> elements) { 117 if (elements instanceof ImmutableEnumSet) { 118 return (ImmutableEnumSet<E>) elements; 119 } else if (elements instanceof Collection) { 120 Collection<E> collection = (Collection<E>) elements; 121 if (collection.isEmpty()) { 122 return ImmutableSet.of(); 123 } else { 124 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 125 } 126 } else { 127 Iterator<E> itr = elements.iterator(); 128 if (itr.hasNext()) { 129 EnumSet<E> enumSet = EnumSet.of(itr.next()); 130 Iterators.addAll(enumSet, itr); 131 return ImmutableEnumSet.asImmutable(enumSet); 132 } else { 133 return ImmutableSet.of(); 134 } 135 } 136 } 137 138 /** 139 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 140 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 141 * accepts non-{@code Collection} iterables and empty iterables. 142 */ 143 public static <E extends Enum<E>> EnumSet<E> newEnumSet(Iterable<E> iterable, 144 Class<E> elementType) { 145 EnumSet<E> set = EnumSet.noneOf(elementType); 146 Iterables.addAll(set, iterable); 147 return set; 148 } 149 150 // HashSet 151 152 /** 153 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 154 * 155 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If 156 * {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly 157 * consider using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to 158 * get deterministic iteration behavior. 159 * 160 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 161 * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new 162 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 163 */ 164 public static <E> HashSet<E> newHashSet() { 165 return new HashSet<E>(); 166 } 167 168 /** 169 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 170 * 171 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 172 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 173 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 174 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 175 * deterministic iteration behavior. 176 * 177 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 178 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 179 * This method is not actually very useful and will likely be deprecated in the future. 180 */ 181 public static <E> HashSet<E> newHashSet(E... elements) { 182 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 183 Collections.addAll(set, elements); 184 return set; 185 } 186 187 /** 188 * Creates a {@code HashSet} instance, with a high enough initial table size that it <i>should</i> 189 * hold {@code expectedSize} elements without resizing. This behavior cannot be broadly 190 * guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed that the 191 * method isn't inadvertently <i>oversizing</i> the returned set. 192 * 193 * @param expectedSize the number of elements you expect to add to the 194 * returned set 195 * @return a new, empty {@code HashSet} with enough capacity to hold {@code 196 * expectedSize} elements without resizing 197 * @throws IllegalArgumentException if {@code expectedSize} is negative 198 */ 199 public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) { 200 return new HashSet<E>(Maps.capacity(expectedSize)); 201 } 202 203 /** 204 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 205 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 206 * Iterables#addAll}. 207 * 208 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 209 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 210 * FluentIterable} and call {@code elements.toSet()}.) 211 * 212 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 213 * instead. 214 * 215 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 216 * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of 217 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 218 * 219 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 220 */ 221 public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) { 222 return (elements instanceof Collection) 223 ? new HashSet<E>(Collections2.cast(elements)) 224 : newHashSet(elements.iterator()); 225 } 226 227 /** 228 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 229 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 230 * 231 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 232 * ImmutableSet#copyOf(Iterator)} instead. 233 * 234 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 235 * instead. 236 * 237 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 238 */ 239 public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) { 240 HashSet<E> set = newHashSet(); 241 Iterators.addAll(set, elements); 242 return set; 243 } 244 245 /** 246 * Creates a thread-safe set backed by a hash map. The set is backed by a 247 * {@link ConcurrentHashMap} instance, and thus carries the same concurrency 248 * guarantees. 249 * 250 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be 251 * used as an element. The set is serializable. 252 * 253 * @return a new, empty thread-safe {@code Set} 254 * @since 15.0 255 */ 256 public static <E> Set<E> newConcurrentHashSet() { 257 return newSetFromMap(new ConcurrentHashMap<E, Boolean>()); 258 } 259 260 /** 261 * Creates a thread-safe set backed by a hash map and containing the given 262 * elements. The set is backed by a {@link ConcurrentHashMap} instance, and 263 * thus carries the same concurrency guarantees. 264 * 265 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be 266 * used as an element. The set is serializable. 267 * 268 * @param elements the elements that the set should contain 269 * @return a new thread-safe set containing those elements (minus duplicates) 270 * @throws NullPointerException if {@code elements} or any of its contents is 271 * null 272 * @since 15.0 273 */ 274 public static <E> Set<E> newConcurrentHashSet( 275 Iterable<? extends E> elements) { 276 Set<E> set = newConcurrentHashSet(); 277 Iterables.addAll(set, elements); 278 return set; 279 } 280 281 // LinkedHashSet 282 283 /** 284 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 285 * 286 * <p><b>Note:</b> if mutability is not required, use {@link 287 * ImmutableSet#of()} instead. 288 * 289 * @return a new, empty {@code LinkedHashSet} 290 */ 291 public static <E> LinkedHashSet<E> newLinkedHashSet() { 292 return new LinkedHashSet<E>(); 293 } 294 295 /** 296 * Creates a {@code LinkedHashSet} instance, with a high enough "initial 297 * capacity" that it <i>should</i> hold {@code expectedSize} elements without 298 * growth. This behavior cannot be broadly guaranteed, but it is observed to 299 * be true for OpenJDK 1.6. It also can't be guaranteed that the method isn't 300 * inadvertently <i>oversizing</i> the returned set. 301 * 302 * @param expectedSize the number of elements you expect to add to the 303 * returned set 304 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold 305 * {@code expectedSize} elements without resizing 306 * @throws IllegalArgumentException if {@code expectedSize} is negative 307 * @since 11.0 308 */ 309 public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize( 310 int expectedSize) { 311 return new LinkedHashSet<E>(Maps.capacity(expectedSize)); 312 } 313 314 /** 315 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the 316 * given elements in order. 317 * 318 * <p><b>Note:</b> if mutability is not required and the elements are 319 * non-null, use {@link ImmutableSet#copyOf(Iterable)} instead. 320 * 321 * @param elements the elements that the set should contain, in order 322 * @return a new {@code LinkedHashSet} containing those elements (minus 323 * duplicates) 324 */ 325 public static <E> LinkedHashSet<E> newLinkedHashSet( 326 Iterable<? extends E> elements) { 327 if (elements instanceof Collection) { 328 return new LinkedHashSet<E>(Collections2.cast(elements)); 329 } 330 LinkedHashSet<E> set = newLinkedHashSet(); 331 Iterables.addAll(set, elements); 332 return set; 333 } 334 335 // TreeSet 336 337 /** 338 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the 339 * natural sort ordering of its elements. 340 * 341 * <p><b>Note:</b> if mutability is not required, use {@link 342 * ImmutableSortedSet#of()} instead. 343 * 344 * @return a new, empty {@code TreeSet} 345 */ 346 public static <E extends Comparable> TreeSet<E> newTreeSet() { 347 return new TreeSet<E>(); 348 } 349 350 /** 351 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given 352 * elements sorted by their natural ordering. 353 * 354 * <p><b>Note:</b> if mutability is not required, use {@link 355 * ImmutableSortedSet#copyOf(Iterable)} instead. 356 * 357 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit 358 * comparator, this method has different behavior than 359 * {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code TreeSet} with 360 * that comparator. 361 * 362 * @param elements the elements that the set should contain 363 * @return a new {@code TreeSet} containing those elements (minus duplicates) 364 */ 365 public static <E extends Comparable> TreeSet<E> newTreeSet( 366 Iterable<? extends E> elements) { 367 TreeSet<E> set = newTreeSet(); 368 Iterables.addAll(set, elements); 369 return set; 370 } 371 372 /** 373 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given 374 * comparator. 375 * 376 * <p><b>Note:</b> if mutability is not required, use {@code 377 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 378 * 379 * @param comparator the comparator to use to sort the set 380 * @return a new, empty {@code TreeSet} 381 * @throws NullPointerException if {@code comparator} is null 382 */ 383 public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) { 384 return new TreeSet<E>(checkNotNull(comparator)); 385 } 386 387 /** 388 * Creates an empty {@code Set} that uses identity to determine equality. It 389 * compares object references, instead of calling {@code equals}, to 390 * determine whether a provided object matches an element in the set. For 391 * example, {@code contains} returns {@code false} when passed an object that 392 * equals a set member, but isn't the same instance. This behavior is similar 393 * to the way {@code IdentityHashMap} handles key lookups. 394 * 395 * @since 8.0 396 */ 397 public static <E> Set<E> newIdentityHashSet() { 398 return Sets.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 399 } 400 401 /** 402 * Creates an empty {@code CopyOnWriteArraySet} instance. 403 * 404 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use 405 * {@link Collections#emptySet} instead. 406 * 407 * @return a new, empty {@code CopyOnWriteArraySet} 408 * @since 12.0 409 */ 410 @GwtIncompatible("CopyOnWriteArraySet") 411 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 412 return new CopyOnWriteArraySet<E>(); 413 } 414 415 /** 416 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 417 * 418 * @param elements the elements that the set should contain, in order 419 * @return a new {@code CopyOnWriteArraySet} containing those elements 420 * @since 12.0 421 */ 422 @GwtIncompatible("CopyOnWriteArraySet") 423 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet( 424 Iterable<? extends E> elements) { 425 // We copy elements to an ArrayList first, rather than incurring the 426 // quadratic cost of adding them to the COWAS directly. 427 Collection<? extends E> elementsCollection = (elements instanceof Collection) 428 ? Collections2.cast(elements) 429 : Lists.newArrayList(elements); 430 return new CopyOnWriteArraySet<E>(elementsCollection); 431 } 432 433 /** 434 * Creates an {@code EnumSet} consisting of all enum values that are not in 435 * the specified collection. If the collection is an {@link EnumSet}, this 436 * method has the same behavior as {@link EnumSet#complementOf}. Otherwise, 437 * the specified collection must contain at least one element, in order to 438 * determine the element type. If the collection could be empty, use 439 * {@link #complementOf(Collection, Class)} instead of this method. 440 * 441 * @param collection the collection whose complement should be stored in the 442 * enum set 443 * @return a new, modifiable {@code EnumSet} containing all values of the enum 444 * that aren't present in the given collection 445 * @throws IllegalArgumentException if {@code collection} is not an 446 * {@code EnumSet} instance and contains no elements 447 */ 448 public static <E extends Enum<E>> EnumSet<E> complementOf( 449 Collection<E> collection) { 450 if (collection instanceof EnumSet) { 451 return EnumSet.complementOf((EnumSet<E>) collection); 452 } 453 checkArgument(!collection.isEmpty(), 454 "collection is empty; use the other version of this method"); 455 Class<E> type = collection.iterator().next().getDeclaringClass(); 456 return makeComplementByHand(collection, type); 457 } 458 459 /** 460 * Creates an {@code EnumSet} consisting of all enum values that are not in 461 * the specified collection. This is equivalent to 462 * {@link EnumSet#complementOf}, but can act on any input collection, as long 463 * as the elements are of enum type. 464 * 465 * @param collection the collection whose complement should be stored in the 466 * {@code EnumSet} 467 * @param type the type of the elements in the set 468 * @return a new, modifiable {@code EnumSet} initially containing all the 469 * values of the enum not present in the given collection 470 */ 471 public static <E extends Enum<E>> EnumSet<E> complementOf( 472 Collection<E> collection, Class<E> type) { 473 checkNotNull(collection); 474 return (collection instanceof EnumSet) 475 ? EnumSet.complementOf((EnumSet<E>) collection) 476 : makeComplementByHand(collection, type); 477 } 478 479 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 480 Collection<E> collection, Class<E> type) { 481 EnumSet<E> result = EnumSet.allOf(type); 482 result.removeAll(collection); 483 return result; 484 } 485 486 /** 487 * Returns a set backed by the specified map. The resulting set displays 488 * the same ordering, concurrency, and performance characteristics as the 489 * backing map. In essence, this factory method provides a {@link Set} 490 * implementation corresponding to any {@link Map} implementation. There is no 491 * need to use this method on a {@link Map} implementation that already has a 492 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} 493 * or {@link java.util.TreeMap}). 494 * 495 * <p>Each method invocation on the set returned by this method results in 496 * exactly one method invocation on the backing map or its {@code keySet} 497 * view, with one exception. The {@code addAll} method is implemented as a 498 * sequence of {@code put} invocations on the backing map. 499 * 500 * <p>The specified map must be empty at the time this method is invoked, 501 * and should not be accessed directly after this method returns. These 502 * conditions are ensured if the map is created empty, passed directly 503 * to this method, and no reference to the map is retained, as illustrated 504 * in the following code fragment: <pre> {@code 505 * 506 * Set<Object> identityHashSet = Sets.newSetFromMap( 507 * new IdentityHashMap<Object, Boolean>());}</pre> 508 * 509 * <p>The returned set is serializable if the backing map is. 510 * 511 * @param map the backing map 512 * @return the set backed by the map 513 * @throws IllegalArgumentException if {@code map} is not empty 514 * @deprecated Use {@link Collections#newSetFromMap} instead. This method 515 * will be removed in August 2017. 516 */ 517 @Deprecated 518 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { 519 return Platform.newSetFromMap(map); 520 } 521 522 /** 523 * An unmodifiable view of a set which may be backed by other sets; this view 524 * will change as the backing sets do. Contains methods to copy the data into 525 * a new set which will then remain stable. There is usually no reason to 526 * retain a reference of type {@code SetView}; typically, you either use it 527 * as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 528 * {@link #copyInto} and forget the {@code SetView} itself. 529 * 530 * @since 2.0 531 */ 532 public abstract static class SetView<E> extends AbstractSet<E> { 533 private SetView() {} // no subclasses but our own 534 535 /** 536 * Returns an immutable copy of the current contents of this set view. 537 * Does not support null elements. 538 * 539 * <p><b>Warning:</b> this may have unexpected results if a backing set of 540 * this view uses a nonstandard notion of equivalence, for example if it is 541 * a {@link TreeSet} using a comparator that is inconsistent with {@link 542 * Object#equals(Object)}. 543 */ 544 public ImmutableSet<E> immutableCopy() { 545 return ImmutableSet.copyOf(this); 546 } 547 548 /** 549 * Copies the current contents of this set view into an existing set. This 550 * method has equivalent behavior to {@code set.addAll(this)}, assuming that 551 * all the sets involved are based on the same notion of equivalence. 552 * 553 * @return a reference to {@code set}, for convenience 554 */ 555 // Note: S should logically extend Set<? super E> but can't due to either 556 // some javac bug or some weirdness in the spec, not sure which. 557 public <S extends Set<E>> S copyInto(S set) { 558 set.addAll(this); 559 return set; 560 } 561 } 562 563 /** 564 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned 565 * set contains all elements that are contained in either backing set. 566 * Iterating over the returned set iterates first over all the elements of 567 * {@code set1}, then over each element of {@code set2}, in order, that is not 568 * contained in {@code set1}. 569 * 570 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on 571 * different equivalence relations (as {@link HashSet}, {@link TreeSet}, and 572 * the {@link Map#keySet} of an {@code IdentityHashMap} all are). 573 * 574 * <p><b>Note:</b> The returned view performs better when {@code set1} is the 575 * smaller of the two sets. If you have reason to believe one of your sets 576 * will generally be smaller than the other, pass it first. 577 * 578 * <p>Further, note that the current implementation is not suitable for nested 579 * {@code union} views, i.e. the following should be avoided when in a loop: 580 * {@code union = Sets.union(union, anotherSet);}, since iterating over the resulting 581 * set has a cubic complexity to the depth of the nesting. 582 */ 583 public static <E> SetView<E> union( 584 final Set<? extends E> set1, final Set<? extends E> set2) { 585 checkNotNull(set1, "set1"); 586 checkNotNull(set2, "set2"); 587 588 final Set<? extends E> set2minus1 = difference(set2, set1); 589 590 return new SetView<E>() { 591 @Override public int size() { 592 return set1.size() + set2minus1.size(); 593 } 594 @Override public boolean isEmpty() { 595 return set1.isEmpty() && set2.isEmpty(); 596 } 597 @Override public Iterator<E> iterator() { 598 return Iterators.unmodifiableIterator( 599 Iterators.concat(set1.iterator(), set2minus1.iterator())); 600 } 601 @Override public boolean contains(Object object) { 602 return set1.contains(object) || set2.contains(object); 603 } 604 @Override public <S extends Set<E>> S copyInto(S set) { 605 set.addAll(set1); 606 set.addAll(set2); 607 return set; 608 } 609 @Override public ImmutableSet<E> immutableCopy() { 610 return new ImmutableSet.Builder<E>() 611 .addAll(set1).addAll(set2).build(); 612 } 613 }; 614 } 615 616 /** 617 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The 618 * returned set contains all elements that are contained by both backing sets. 619 * The iteration order of the returned set matches that of {@code set1}. 620 * 621 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 622 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 623 * and the keySet of an {@code IdentityHashMap} all are). 624 * 625 * <p><b>Note:</b> The returned view performs slightly better when {@code 626 * set1} is the smaller of the two sets. If you have reason to believe one of 627 * your sets will generally be smaller than the other, pass it first. 628 * Unfortunately, since this method sets the generic type of the returned set 629 * based on the type of the first set passed, this could in rare cases force 630 * you to make a cast, for example: <pre> {@code 631 * 632 * Set<Object> aFewBadObjects = ... 633 * Set<String> manyBadStrings = ... 634 * 635 * // impossible for a non-String to be in the intersection 636 * SuppressWarnings("unchecked") 637 * Set<String> badStrings = (Set) Sets.intersection( 638 * aFewBadObjects, manyBadStrings);}</pre> 639 * 640 * <p>This is unfortunate, but should come up only very rarely. 641 */ 642 public static <E> SetView<E> intersection( 643 final Set<E> set1, final Set<?> set2) { 644 checkNotNull(set1, "set1"); 645 checkNotNull(set2, "set2"); 646 647 final Predicate<Object> inSet2 = Predicates.in(set2); 648 return new SetView<E>() { 649 @Override public Iterator<E> iterator() { 650 return Iterators.filter(set1.iterator(), inSet2); 651 } 652 @Override public int size() { 653 return Iterators.size(iterator()); 654 } 655 @Override public boolean isEmpty() { 656 return !iterator().hasNext(); 657 } 658 @Override public boolean contains(Object object) { 659 return set1.contains(object) && set2.contains(object); 660 } 661 @Override public boolean containsAll(Collection<?> collection) { 662 return set1.containsAll(collection) 663 && set2.containsAll(collection); 664 } 665 }; 666 } 667 668 /** 669 * Returns an unmodifiable <b>view</b> of the difference of two sets. The 670 * returned set contains all elements that are contained by {@code set1} and 671 * not contained by {@code set2}. {@code set2} may also contain elements not 672 * present in {@code set1}; these are simply ignored. The iteration order of 673 * the returned set matches that of {@code set1}. 674 * 675 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 676 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 677 * and the keySet of an {@code IdentityHashMap} all are). 678 */ 679 public static <E> SetView<E> difference( 680 final Set<E> set1, final Set<?> set2) { 681 checkNotNull(set1, "set1"); 682 checkNotNull(set2, "set2"); 683 684 final Predicate<Object> notInSet2 = Predicates.not(Predicates.in(set2)); 685 return new SetView<E>() { 686 @Override public Iterator<E> iterator() { 687 return Iterators.filter(set1.iterator(), notInSet2); 688 } 689 @Override public int size() { 690 return Iterators.size(iterator()); 691 } 692 @Override public boolean isEmpty() { 693 return set2.containsAll(set1); 694 } 695 @Override public boolean contains(Object element) { 696 return set1.contains(element) && !set2.contains(element); 697 } 698 }; 699 } 700 701 /** 702 * Returns an unmodifiable <b>view</b> of the symmetric difference of two 703 * sets. The returned set contains all elements that are contained in either 704 * {@code set1} or {@code set2} but not in both. The iteration order of the 705 * returned set is undefined. 706 * 707 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 708 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 709 * and the keySet of an {@code IdentityHashMap} all are). 710 * 711 * @since 3.0 712 */ 713 public static <E> SetView<E> symmetricDifference( 714 final Set<? extends E> set1, final Set<? extends E> set2) { 715 checkNotNull(set1, "set1"); 716 checkNotNull(set2, "set2"); 717 718 return new SetView<E>() { 719 @Override public Iterator<E> iterator() { 720 final Iterator<? extends E> itr1 = set1.iterator(); 721 final Iterator<? extends E> itr2 = set2.iterator(); 722 return new AbstractIterator<E>() { 723 @Override public E computeNext() { 724 while (itr1.hasNext()) { 725 E elem1 = itr1.next(); 726 if (!set2.contains(elem1)) { 727 return elem1; 728 } 729 } 730 while (itr2.hasNext()) { 731 E elem2 = itr2.next(); 732 if (!set1.contains(elem2)) { 733 return elem2; 734 } 735 } 736 return endOfData(); 737 } 738 }; 739 } 740 @Override public int size() { 741 return Iterators.size(iterator()); 742 } 743 @Override public boolean isEmpty() { 744 return set1.equals(set2); 745 } 746 @Override public boolean contains(Object element) { 747 return set1.contains(element) ^ set2.contains(element); 748 } 749 }; 750 } 751 752 /** 753 * Returns the elements of {@code unfiltered} that satisfy a predicate. The 754 * returned set is a live view of {@code unfiltered}; changes to one affect 755 * the other. 756 * 757 * <p>The resulting set's iterator does not support {@code remove()}, but all 758 * other set methods are supported. When given an element that doesn't satisfy 759 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 760 * an {@link IllegalArgumentException}. When methods such as {@code 761 * removeAll()} and {@code clear()} are called on the filtered set, only 762 * elements that satisfy the filter will be removed from the underlying set. 763 * 764 * <p>The returned set isn't threadsafe or serializable, even if 765 * {@code unfiltered} is. 766 * 767 * <p>Many of the filtered set's methods, such as {@code size()}, iterate 768 * across every element in the underlying set and determine which elements 769 * satisfy the filter. When a live view is <i>not</i> needed, it may be faster 770 * to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy. 771 * 772 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 773 * as documented at {@link Predicate#apply}. Do not provide a predicate such 774 * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent 775 * with equals. (See {@link Iterables#filter(Iterable, Class)} for related 776 * functionality.) 777 */ 778 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 779 @CheckReturnValue 780 public static <E> Set<E> filter( 781 Set<E> unfiltered, Predicate<? super E> predicate) { 782 if (unfiltered instanceof SortedSet) { 783 return filter((SortedSet<E>) unfiltered, predicate); 784 } 785 if (unfiltered instanceof FilteredSet) { 786 // Support clear(), removeAll(), and retainAll() when filtering a filtered 787 // collection. 788 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 789 Predicate<E> combinedPredicate 790 = Predicates.<E>and(filtered.predicate, predicate); 791 return new FilteredSet<E>( 792 (Set<E>) filtered.unfiltered, combinedPredicate); 793 } 794 795 return new FilteredSet<E>( 796 checkNotNull(unfiltered), checkNotNull(predicate)); 797 } 798 799 private static class FilteredSet<E> extends FilteredCollection<E> 800 implements Set<E> { 801 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 802 super(unfiltered, predicate); 803 } 804 805 @Override public boolean equals(@Nullable Object object) { 806 return equalsImpl(this, object); 807 } 808 809 @Override public int hashCode() { 810 return hashCodeImpl(this); 811 } 812 } 813 814 /** 815 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that 816 * satisfy a predicate. The returned set is a live view of {@code unfiltered}; 817 * changes to one affect the other. 818 * 819 * <p>The resulting set's iterator does not support {@code remove()}, but all 820 * other set methods are supported. When given an element that doesn't satisfy 821 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 822 * an {@link IllegalArgumentException}. When methods such as 823 * {@code removeAll()} and {@code clear()} are called on the filtered set, 824 * only elements that satisfy the filter will be removed from the underlying 825 * set. 826 * 827 * <p>The returned set isn't threadsafe or serializable, even if 828 * {@code unfiltered} is. 829 * 830 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across 831 * every element in the underlying set and determine which elements satisfy 832 * the filter. When a live view is <i>not</i> needed, it may be faster to copy 833 * {@code Iterables.filter(unfiltered, predicate)} and use the copy. 834 * 835 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 836 * as documented at {@link Predicate#apply}. Do not provide a predicate such as 837 * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with 838 * equals. (See {@link Iterables#filter(Iterable, Class)} for related 839 * functionality.) 840 * 841 * @since 11.0 842 */ 843 @CheckReturnValue 844 public static <E> SortedSet<E> filter( 845 SortedSet<E> unfiltered, Predicate<? super E> predicate) { 846 return Platform.setsFilterSortedSet(unfiltered, predicate); 847 } 848 849 static <E> SortedSet<E> filterSortedIgnoreNavigable( 850 SortedSet<E> unfiltered, Predicate<? super E> predicate) { 851 if (unfiltered instanceof FilteredSet) { 852 // Support clear(), removeAll(), and retainAll() when filtering a filtered 853 // collection. 854 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 855 Predicate<E> combinedPredicate 856 = Predicates.<E>and(filtered.predicate, predicate); 857 return new FilteredSortedSet<E>( 858 (SortedSet<E>) filtered.unfiltered, combinedPredicate); 859 } 860 861 return new FilteredSortedSet<E>( 862 checkNotNull(unfiltered), checkNotNull(predicate)); 863 } 864 865 private static class FilteredSortedSet<E> extends FilteredSet<E> 866 implements SortedSet<E> { 867 868 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 869 super(unfiltered, predicate); 870 } 871 872 @Override 873 public Comparator<? super E> comparator() { 874 return ((SortedSet<E>) unfiltered).comparator(); 875 } 876 877 @Override 878 public SortedSet<E> subSet(E fromElement, E toElement) { 879 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).subSet(fromElement, toElement), 880 predicate); 881 } 882 883 @Override 884 public SortedSet<E> headSet(E toElement) { 885 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 886 } 887 888 @Override 889 public SortedSet<E> tailSet(E fromElement) { 890 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 891 } 892 893 @Override 894 public E first() { 895 return iterator().next(); 896 } 897 898 @Override 899 public E last() { 900 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 901 while (true) { 902 E element = sortedUnfiltered.last(); 903 if (predicate.apply(element)) { 904 return element; 905 } 906 sortedUnfiltered = sortedUnfiltered.headSet(element); 907 } 908 } 909 } 910 911 /** 912 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that 913 * satisfy a predicate. The returned set is a live view of {@code unfiltered}; 914 * changes to one affect the other. 915 * 916 * <p>The resulting set's iterator does not support {@code remove()}, but all 917 * other set methods are supported. When given an element that doesn't satisfy 918 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 919 * an {@link IllegalArgumentException}. When methods such as 920 * {@code removeAll()} and {@code clear()} are called on the filtered set, 921 * only elements that satisfy the filter will be removed from the underlying 922 * set. 923 * 924 * <p>The returned set isn't threadsafe or serializable, even if 925 * {@code unfiltered} is. 926 * 927 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across 928 * every element in the underlying set and determine which elements satisfy 929 * the filter. When a live view is <i>not</i> needed, it may be faster to copy 930 * {@code Iterables.filter(unfiltered, predicate)} and use the copy. 931 * 932 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 933 * as documented at {@link Predicate#apply}. Do not provide a predicate such as 934 * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with 935 * equals. (See {@link Iterables#filter(Iterable, Class)} for related 936 * functionality.) 937 * 938 * @since 14.0 939 */ 940 @GwtIncompatible("NavigableSet") 941 @SuppressWarnings("unchecked") 942 @CheckReturnValue 943 public static <E> NavigableSet<E> filter( 944 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 945 if (unfiltered instanceof FilteredSet) { 946 // Support clear(), removeAll(), and retainAll() when filtering a filtered 947 // collection. 948 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 949 Predicate<E> combinedPredicate 950 = Predicates.<E>and(filtered.predicate, predicate); 951 return new FilteredNavigableSet<E>( 952 (NavigableSet<E>) filtered.unfiltered, combinedPredicate); 953 } 954 955 return new FilteredNavigableSet<E>( 956 checkNotNull(unfiltered), checkNotNull(predicate)); 957 } 958 959 @GwtIncompatible("NavigableSet") 960 private static class FilteredNavigableSet<E> extends FilteredSortedSet<E> 961 implements NavigableSet<E> { 962 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 963 super(unfiltered, predicate); 964 } 965 966 NavigableSet<E> unfiltered() { 967 return (NavigableSet<E>) unfiltered; 968 } 969 970 @Override 971 @Nullable 972 public E lower(E e) { 973 return Iterators.getNext(headSet(e, false).descendingIterator(), null); 974 } 975 976 @Override 977 @Nullable 978 public E floor(E e) { 979 return Iterators.getNext(headSet(e, true).descendingIterator(), null); 980 } 981 982 @Override 983 public E ceiling(E e) { 984 return Iterables.getFirst(tailSet(e, true), null); 985 } 986 987 @Override 988 public E higher(E e) { 989 return Iterables.getFirst(tailSet(e, false), null); 990 } 991 992 @Override 993 public E pollFirst() { 994 return Iterables.removeFirstMatching(unfiltered(), predicate); 995 } 996 997 @Override 998 public E pollLast() { 999 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1000 } 1001 1002 @Override 1003 public NavigableSet<E> descendingSet() { 1004 return Sets.filter(unfiltered().descendingSet(), predicate); 1005 } 1006 1007 @Override 1008 public Iterator<E> descendingIterator() { 1009 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1010 } 1011 1012 @Override 1013 public E last() { 1014 return descendingIterator().next(); 1015 } 1016 1017 @Override 1018 public NavigableSet<E> subSet( 1019 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1020 return filter( 1021 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1022 } 1023 1024 @Override 1025 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1026 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1027 } 1028 1029 @Override 1030 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1031 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1032 } 1033 } 1034 1035 /** 1036 * Returns every possible list that can be formed by choosing one element 1037 * from each of the given sets in order; the "n-ary 1038 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1039 * product</a>" of the sets. For example: <pre> {@code 1040 * 1041 * Sets.cartesianProduct(ImmutableList.of( 1042 * ImmutableSet.of(1, 2), 1043 * ImmutableSet.of("A", "B", "C")))}</pre> 1044 * 1045 * <p>returns a set containing six lists: 1046 * 1047 * <ul> 1048 * <li>{@code ImmutableList.of(1, "A")} 1049 * <li>{@code ImmutableList.of(1, "B")} 1050 * <li>{@code ImmutableList.of(1, "C")} 1051 * <li>{@code ImmutableList.of(2, "A")} 1052 * <li>{@code ImmutableList.of(2, "B")} 1053 * <li>{@code ImmutableList.of(2, "C")} 1054 * </ul> 1055 * 1056 * <p>The result is guaranteed to be in the "traditional", lexicographical 1057 * order for Cartesian products that you would get from nesting for loops: 1058 * <pre> {@code 1059 * 1060 * for (B b0 : sets.get(0)) { 1061 * for (B b1 : sets.get(1)) { 1062 * ... 1063 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1064 * // operate on tuple 1065 * } 1066 * }}</pre> 1067 * 1068 * <p>Note that if any input set is empty, the Cartesian product will also be 1069 * empty. If no sets at all are provided (an empty list), the resulting 1070 * Cartesian product has one element, an empty list (counter-intuitive, but 1071 * mathematically consistent). 1072 * 1073 * <p><i>Performance notes:</i> while the cartesian product of sets of size 1074 * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory 1075 * consumption is much smaller. When the cartesian set is constructed, the 1076 * input sets are merely copied. Only as the resulting set is iterated are the 1077 * individual lists created, and these are not retained after iteration. 1078 * 1079 * @param sets the sets to choose elements from, in the order that 1080 * the elements chosen from those sets should appear in the resulting 1081 * lists 1082 * @param <B> any common base class shared by all axes (often just {@link 1083 * Object}) 1084 * @return the Cartesian product, as an immutable set containing immutable 1085 * lists 1086 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, 1087 * or any element of a provided set is null 1088 * @since 2.0 1089 */ 1090 public static <B> Set<List<B>> cartesianProduct( 1091 List<? extends Set<? extends B>> sets) { 1092 return CartesianSet.create(sets); 1093 } 1094 1095 /** 1096 * Returns every possible list that can be formed by choosing one element 1097 * from each of the given sets in order; the "n-ary 1098 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1099 * product</a>" of the sets. For example: <pre> {@code 1100 * 1101 * Sets.cartesianProduct( 1102 * ImmutableSet.of(1, 2), 1103 * ImmutableSet.of("A", "B", "C"))}</pre> 1104 * 1105 * <p>returns a set containing six lists: 1106 * 1107 * <ul> 1108 * <li>{@code ImmutableList.of(1, "A")} 1109 * <li>{@code ImmutableList.of(1, "B")} 1110 * <li>{@code ImmutableList.of(1, "C")} 1111 * <li>{@code ImmutableList.of(2, "A")} 1112 * <li>{@code ImmutableList.of(2, "B")} 1113 * <li>{@code ImmutableList.of(2, "C")} 1114 * </ul> 1115 * 1116 * <p>The result is guaranteed to be in the "traditional", lexicographical 1117 * order for Cartesian products that you would get from nesting for loops: 1118 * <pre> {@code 1119 * 1120 * for (B b0 : sets.get(0)) { 1121 * for (B b1 : sets.get(1)) { 1122 * ... 1123 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1124 * // operate on tuple 1125 * } 1126 * }}</pre> 1127 * 1128 * <p>Note that if any input set is empty, the Cartesian product will also be 1129 * empty. If no sets at all are provided (an empty list), the resulting 1130 * Cartesian product has one element, an empty list (counter-intuitive, but 1131 * mathematically consistent). 1132 * 1133 * <p><i>Performance notes:</i> while the cartesian product of sets of size 1134 * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory 1135 * consumption is much smaller. When the cartesian set is constructed, the 1136 * input sets are merely copied. Only as the resulting set is iterated are the 1137 * individual lists created, and these are not retained after iteration. 1138 * 1139 * @param sets the sets to choose elements from, in the order that 1140 * the elements chosen from those sets should appear in the resulting 1141 * lists 1142 * @param <B> any common base class shared by all axes (often just {@link 1143 * Object}) 1144 * @return the Cartesian product, as an immutable set containing immutable 1145 * lists 1146 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, 1147 * or any element of a provided set is null 1148 * @since 2.0 1149 */ 1150 public static <B> Set<List<B>> cartesianProduct( 1151 Set<? extends B>... sets) { 1152 return cartesianProduct(Arrays.asList(sets)); 1153 } 1154 1155 private static final class CartesianSet<E> 1156 extends ForwardingCollection<List<E>> implements Set<List<E>> { 1157 private transient final ImmutableList<ImmutableSet<E>> axes; 1158 private transient final CartesianList<E> delegate; 1159 1160 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1161 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = 1162 new ImmutableList.Builder<ImmutableSet<E>>(sets.size()); 1163 for (Set<? extends E> set : sets) { 1164 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1165 if (copy.isEmpty()) { 1166 return ImmutableSet.of(); 1167 } 1168 axesBuilder.add(copy); 1169 } 1170 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1171 ImmutableList<List<E>> listAxes = new ImmutableList<List<E>>() { 1172 1173 @Override 1174 public int size() { 1175 return axes.size(); 1176 } 1177 1178 @Override 1179 public List<E> get(int index) { 1180 return axes.get(index).asList(); 1181 } 1182 1183 @Override 1184 boolean isPartialView() { 1185 return true; 1186 } 1187 }; 1188 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1189 } 1190 1191 private CartesianSet( 1192 ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1193 this.axes = axes; 1194 this.delegate = delegate; 1195 } 1196 1197 @Override 1198 protected Collection<List<E>> delegate() { 1199 return delegate; 1200 } 1201 1202 @Override public boolean equals(@Nullable Object object) { 1203 // Warning: this is broken if size() == 0, so it is critical that we 1204 // substitute an empty ImmutableSet to the user in place of this 1205 if (object instanceof CartesianSet) { 1206 CartesianSet<?> that = (CartesianSet<?>) object; 1207 return this.axes.equals(that.axes); 1208 } 1209 return super.equals(object); 1210 } 1211 1212 @Override 1213 public int hashCode() { 1214 // Warning: this is broken if size() == 0, so it is critical that we 1215 // substitute an empty ImmutableSet to the user in place of this 1216 1217 // It's a weird formula, but tests prove it works. 1218 int adjust = size() - 1; 1219 for (int i = 0; i < axes.size(); i++) { 1220 adjust *= 31; 1221 adjust = ~~adjust; 1222 // in GWT, we have to deal with integer overflow carefully 1223 } 1224 int hash = 1; 1225 for (Set<E> axis : axes) { 1226 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1227 1228 hash = ~~hash; 1229 } 1230 hash += adjust; 1231 return ~~hash; 1232 } 1233 } 1234 1235 /** 1236 * Returns the set of all possible subsets of {@code set}. For example, 1237 * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, 1238 * {1}, {2}, {1, 2}}}. 1239 * 1240 * <p>Elements appear in these subsets in the same iteration order as they 1241 * appeared in the input set. The order in which these subsets appear in the 1242 * outer set is undefined. Note that the power set of the empty set is not the 1243 * empty set, but a one-element set containing the empty set. 1244 * 1245 * <p>The returned set and its constituent sets use {@code equals} to decide 1246 * whether two elements are identical, even if the input set uses a different 1247 * concept of equivalence. 1248 * 1249 * <p><i>Performance notes:</i> while the power set of a set with size {@code 1250 * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the 1251 * power set is constructed, the input set is merely copied. Only as the 1252 * power set is iterated are the individual subsets created, and these subsets 1253 * themselves occupy only a small constant amount of memory. 1254 * 1255 * @param set the set of elements to construct a power set from 1256 * @return the power set, as an immutable set of immutable sets 1257 * @throws IllegalArgumentException if {@code set} has more than 30 unique 1258 * elements (causing the power set size to exceed the {@code int} range) 1259 * @throws NullPointerException if {@code set} is or contains {@code null} 1260 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at 1261 * Wikipedia</a> 1262 * @since 4.0 1263 */ 1264 @GwtCompatible(serializable = false) 1265 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1266 return new PowerSet<E>(set); 1267 } 1268 1269 private static final class SubSet<E> extends AbstractSet<E> { 1270 private final ImmutableMap<E, Integer> inputSet; 1271 private final int mask; 1272 1273 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1274 this.inputSet = inputSet; 1275 this.mask = mask; 1276 } 1277 1278 @Override 1279 public Iterator<E> iterator() { 1280 return new UnmodifiableIterator<E>() { 1281 final ImmutableList<E> elements = inputSet.keySet().asList(); 1282 int remainingSetBits = mask; 1283 1284 @Override 1285 public boolean hasNext() { 1286 return remainingSetBits != 0; 1287 } 1288 1289 @Override 1290 public E next() { 1291 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1292 if (index == 32) { 1293 throw new NoSuchElementException(); 1294 } 1295 remainingSetBits &= ~(1 << index); 1296 return elements.get(index); 1297 } 1298 }; 1299 } 1300 1301 @Override 1302 public int size() { 1303 return Integer.bitCount(mask); 1304 } 1305 1306 @Override 1307 public boolean contains(@Nullable Object o) { 1308 Integer index = inputSet.get(o); 1309 return index != null && (mask & (1 << index)) != 0; 1310 } 1311 } 1312 1313 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1314 final ImmutableMap<E, Integer> inputSet; 1315 1316 PowerSet(Set<E> input) { 1317 this.inputSet = Maps.indexMap(input); 1318 checkArgument(inputSet.size() <= 30, 1319 "Too many elements to create power set: %s > 30", inputSet.size()); 1320 } 1321 1322 @Override public int size() { 1323 return 1 << inputSet.size(); 1324 } 1325 1326 @Override public boolean isEmpty() { 1327 return false; 1328 } 1329 1330 @Override public Iterator<Set<E>> iterator() { 1331 return new AbstractIndexedListIterator<Set<E>>(size()) { 1332 @Override protected Set<E> get(final int setBits) { 1333 return new SubSet<E>(inputSet, setBits); 1334 } 1335 }; 1336 } 1337 1338 @Override public boolean contains(@Nullable Object obj) { 1339 if (obj instanceof Set) { 1340 Set<?> set = (Set<?>) obj; 1341 return inputSet.keySet().containsAll(set); 1342 } 1343 return false; 1344 } 1345 1346 @Override public boolean equals(@Nullable Object obj) { 1347 if (obj instanceof PowerSet) { 1348 PowerSet<?> that = (PowerSet<?>) obj; 1349 return inputSet.equals(that.inputSet); 1350 } 1351 return super.equals(obj); 1352 } 1353 1354 @Override public int hashCode() { 1355 /* 1356 * The sum of the sums of the hash codes in each subset is just the sum of 1357 * each input element's hash code times the number of sets that element 1358 * appears in. Each element appears in exactly half of the 2^n sets, so: 1359 */ 1360 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1361 } 1362 1363 @Override public String toString() { 1364 return "powerSet(" + inputSet + ")"; 1365 } 1366 } 1367 1368 /** 1369 * An implementation for {@link Set#hashCode()}. 1370 */ 1371 static int hashCodeImpl(Set<?> s) { 1372 int hashCode = 0; 1373 for (Object o : s) { 1374 hashCode += o != null ? o.hashCode() : 0; 1375 1376 hashCode = ~~hashCode; 1377 // Needed to deal with unusual integer overflow in GWT. 1378 } 1379 return hashCode; 1380 } 1381 1382 /** 1383 * An implementation for {@link Set#equals(Object)}. 1384 */ 1385 static boolean equalsImpl(Set<?> s, @Nullable Object object) { 1386 if (s == object) { 1387 return true; 1388 } 1389 if (object instanceof Set) { 1390 Set<?> o = (Set<?>) object; 1391 1392 try { 1393 return s.size() == o.size() && s.containsAll(o); 1394 } catch (NullPointerException ignored) { 1395 return false; 1396 } catch (ClassCastException ignored) { 1397 return false; 1398 } 1399 } 1400 return false; 1401 } 1402 1403 /** 1404 * Returns an unmodifiable view of the specified navigable set. This method 1405 * allows modules to provide users with "read-only" access to internal 1406 * navigable sets. Query operations on the returned set "read through" to the 1407 * specified set, and attempts to modify the returned set, whether direct or 1408 * via its collection views, result in an 1409 * {@code UnsupportedOperationException}. 1410 * 1411 * <p>The returned navigable set will be serializable if the specified 1412 * navigable set is serializable. 1413 * 1414 * @param set the navigable set for which an unmodifiable view is to be 1415 * returned 1416 * @return an unmodifiable view of the specified navigable set 1417 * @since 12.0 1418 */ 1419 @GwtIncompatible("NavigableSet") 1420 public static <E> NavigableSet<E> unmodifiableNavigableSet( 1421 NavigableSet<E> set) { 1422 if (set instanceof ImmutableSortedSet 1423 || set instanceof UnmodifiableNavigableSet) { 1424 return set; 1425 } 1426 return new UnmodifiableNavigableSet<E>(set); 1427 } 1428 1429 @GwtIncompatible("NavigableSet") 1430 static final class UnmodifiableNavigableSet<E> 1431 extends ForwardingSortedSet<E> implements NavigableSet<E>, Serializable { 1432 private final NavigableSet<E> delegate; 1433 1434 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1435 this.delegate = checkNotNull(delegate); 1436 } 1437 1438 @Override 1439 protected SortedSet<E> delegate() { 1440 return Collections.unmodifiableSortedSet(delegate); 1441 } 1442 1443 @Override 1444 public E lower(E e) { 1445 return delegate.lower(e); 1446 } 1447 1448 @Override 1449 public E floor(E e) { 1450 return delegate.floor(e); 1451 } 1452 1453 @Override 1454 public E ceiling(E e) { 1455 return delegate.ceiling(e); 1456 } 1457 1458 @Override 1459 public E higher(E e) { 1460 return delegate.higher(e); 1461 } 1462 1463 @Override 1464 public E pollFirst() { 1465 throw new UnsupportedOperationException(); 1466 } 1467 1468 @Override 1469 public E pollLast() { 1470 throw new UnsupportedOperationException(); 1471 } 1472 1473 private transient UnmodifiableNavigableSet<E> descendingSet; 1474 1475 @Override 1476 public NavigableSet<E> descendingSet() { 1477 UnmodifiableNavigableSet<E> result = descendingSet; 1478 if (result == null) { 1479 result = descendingSet = new UnmodifiableNavigableSet<E>( 1480 delegate.descendingSet()); 1481 result.descendingSet = this; 1482 } 1483 return result; 1484 } 1485 1486 @Override 1487 public Iterator<E> descendingIterator() { 1488 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1489 } 1490 1491 @Override 1492 public NavigableSet<E> subSet( 1493 E fromElement, 1494 boolean fromInclusive, 1495 E toElement, 1496 boolean toInclusive) { 1497 return unmodifiableNavigableSet(delegate.subSet( 1498 fromElement, 1499 fromInclusive, 1500 toElement, 1501 toInclusive)); 1502 } 1503 1504 @Override 1505 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1506 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1507 } 1508 1509 @Override 1510 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1511 return unmodifiableNavigableSet( 1512 delegate.tailSet(fromElement, inclusive)); 1513 } 1514 1515 private static final long serialVersionUID = 0; 1516 } 1517 1518 /** 1519 * Returns a synchronized (thread-safe) navigable set backed by the specified 1520 * navigable set. In order to guarantee serial access, it is critical that 1521 * <b>all</b> access to the backing navigable set is accomplished 1522 * through the returned navigable set (or its views). 1523 * 1524 * <p>It is imperative that the user manually synchronize on the returned 1525 * sorted set when iterating over it or any of its {@code descendingSet}, 1526 * {@code subSet}, {@code headSet}, or {@code tailSet} views. <pre> {@code 1527 * 1528 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1529 * ... 1530 * synchronized (set) { 1531 * // Must be in the synchronized block 1532 * Iterator<E> it = set.iterator(); 1533 * while (it.hasNext()) { 1534 * foo(it.next()); 1535 * } 1536 * }}</pre> 1537 * 1538 * <p>or: <pre> {@code 1539 * 1540 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1541 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 1542 * ... 1543 * synchronized (set) { // Note: set, not set2!!! 1544 * // Must be in the synchronized block 1545 * Iterator<E> it = set2.descendingIterator(); 1546 * while (it.hasNext()) 1547 * foo(it.next()); 1548 * } 1549 * }}</pre> 1550 * 1551 * <p>Failure to follow this advice may result in non-deterministic behavior. 1552 * 1553 * <p>The returned navigable set will be serializable if the specified 1554 * navigable set is serializable. 1555 * 1556 * @param navigableSet the navigable set to be "wrapped" in a synchronized 1557 * navigable set. 1558 * @return a synchronized view of the specified navigable set. 1559 * @since 13.0 1560 */ 1561 @GwtIncompatible("NavigableSet") 1562 public static <E> NavigableSet<E> synchronizedNavigableSet( 1563 NavigableSet<E> navigableSet) { 1564 return Synchronized.navigableSet(navigableSet); 1565 } 1566 1567 /** 1568 * Remove each element in an iterable from a set. 1569 */ 1570 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 1571 boolean changed = false; 1572 while (iterator.hasNext()) { 1573 changed |= set.remove(iterator.next()); 1574 } 1575 return changed; 1576 } 1577 1578 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 1579 checkNotNull(collection); // for GWT 1580 if (collection instanceof Multiset) { 1581 collection = ((Multiset<?>) collection).elementSet(); 1582 } 1583 /* 1584 * AbstractSet.removeAll(List) has quadratic behavior if the list size 1585 * is just less than the set's size. We augment the test by 1586 * assuming that sets have fast contains() performance, and other 1587 * collections don't. See 1588 * http://code.google.com/p/guava-libraries/issues/detail?id=1013 1589 */ 1590 if (collection instanceof Set && collection.size() > set.size()) { 1591 return Iterators.removeAll(set.iterator(), collection); 1592 } else { 1593 return removeAllImpl(set, collection.iterator()); 1594 } 1595 } 1596 1597 @GwtIncompatible("NavigableSet") 1598 static class DescendingSet<E> extends ForwardingNavigableSet<E> { 1599 private final NavigableSet<E> forward; 1600 1601 DescendingSet(NavigableSet<E> forward) { 1602 this.forward = forward; 1603 } 1604 1605 @Override 1606 protected NavigableSet<E> delegate() { 1607 return forward; 1608 } 1609 1610 @Override 1611 public E lower(E e) { 1612 return forward.higher(e); 1613 } 1614 1615 @Override 1616 public E floor(E e) { 1617 return forward.ceiling(e); 1618 } 1619 1620 @Override 1621 public E ceiling(E e) { 1622 return forward.floor(e); 1623 } 1624 1625 @Override 1626 public E higher(E e) { 1627 return forward.lower(e); 1628 } 1629 1630 @Override 1631 public E pollFirst() { 1632 return forward.pollLast(); 1633 } 1634 1635 @Override 1636 public E pollLast() { 1637 return forward.pollFirst(); 1638 } 1639 1640 @Override 1641 public NavigableSet<E> descendingSet() { 1642 return forward; 1643 } 1644 1645 @Override 1646 public Iterator<E> descendingIterator() { 1647 return forward.iterator(); 1648 } 1649 1650 @Override 1651 public NavigableSet<E> subSet( 1652 E fromElement, 1653 boolean fromInclusive, 1654 E toElement, 1655 boolean toInclusive) { 1656 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 1657 } 1658 1659 @Override 1660 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1661 return forward.tailSet(toElement, inclusive).descendingSet(); 1662 } 1663 1664 @Override 1665 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1666 return forward.headSet(fromElement, inclusive).descendingSet(); 1667 } 1668 1669 @SuppressWarnings("unchecked") 1670 @Override 1671 public Comparator<? super E> comparator() { 1672 Comparator<? super E> forwardComparator = forward.comparator(); 1673 if (forwardComparator == null) { 1674 return (Comparator) Ordering.natural().reverse(); 1675 } else { 1676 return reverse(forwardComparator); 1677 } 1678 } 1679 1680 // If we inline this, we get a javac error. 1681 private static <T> Ordering<T> reverse(Comparator<T> forward) { 1682 return Ordering.from(forward).reverse(); 1683 } 1684 1685 @Override 1686 public E first() { 1687 return forward.last(); 1688 } 1689 1690 @Override 1691 public SortedSet<E> headSet(E toElement) { 1692 return standardHeadSet(toElement); 1693 } 1694 1695 @Override 1696 public E last() { 1697 return forward.first(); 1698 } 1699 1700 @Override 1701 public SortedSet<E> subSet(E fromElement, E toElement) { 1702 return standardSubSet(fromElement, toElement); 1703 } 1704 1705 @Override 1706 public SortedSet<E> tailSet(E fromElement) { 1707 return standardTailSet(fromElement); 1708 } 1709 1710 @Override 1711 public Iterator<E> iterator() { 1712 return forward.descendingIterator(); 1713 } 1714 1715 @Override 1716 public Object[] toArray() { 1717 return standardToArray(); 1718 } 1719 1720 @Override 1721 public <T> T[] toArray(T[] array) { 1722 return standardToArray(array); 1723 } 1724 1725 @Override 1726 public String toString() { 1727 return standardToString(); 1728 } 1729 } 1730}