001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.collect.CollectPreconditions.checkNonnegative; 021 022import com.google.common.annotations.GwtCompatible; 023import com.google.common.annotations.VisibleForTesting; 024import com.google.common.base.Function; 025 026import java.util.ArrayList; 027import java.util.Arrays; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.Comparator; 031import java.util.HashSet; 032import java.util.Iterator; 033import java.util.List; 034import java.util.Map; 035import java.util.NoSuchElementException; 036import java.util.SortedMap; 037import java.util.SortedSet; 038import java.util.TreeSet; 039import java.util.concurrent.atomic.AtomicInteger; 040 041import javax.annotation.Nullable; 042 043/** 044 * A comparator, with additional methods to support common operations. This is an "enriched" 045 * version of {@code Comparator}, in the same sense that {@link FluentIterable} is an enriched 046 * {@link Iterable}. 047 * 048 * <h3>Three types of methods</h3> 049 * 050 * Like other fluent types, there are three types of methods present: methods for <i>acquiring</i>, 051 * <i>chaining</i>, and <i>using</i>. 052 * 053 * <h4>Acquiring</h4> 054 * 055 * <p>The common ways to get an instance of {@code Ordering} are: 056 * 057 * <ul> 058 * <li>Subclass it and implement {@link #compare} instead of implementing {@link Comparator} 059 * directly 060 * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link #from(Comparator)} 061 * <li>Use the natural ordering, {@link Ordering#natural} 062 * </ul> 063 * 064 * <h4>Chaining</h4> 065 * 066 * <p>Then you can use the <i>chaining</i> methods to get an altered version of that {@code 067 * Ordering}, including: 068 * 069 * <ul> 070 * <li>{@link #reverse} 071 * <li>{@link #compound(Comparator)} 072 * <li>{@link #onResultOf(Function)} 073 * <li>{@link #nullsFirst} / {@link #nullsLast} 074 * </ul> 075 * 076 * <h4>Using</h4> 077 * 078 * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator} is required, or use 079 * any of its special operations, such as:</p> 080 * 081 * <ul> 082 * <li>{@link #immutableSortedCopy} 083 * <li>{@link #isOrdered} / {@link #isStrictlyOrdered} 084 * <li>{@link #min} / {@link #max} 085 * </ul> 086 * 087 * <h3>Understanding complex orderings</h3> 088 * 089 * <p>Complex chained orderings like the following example can be challenging to understand. 090 * <pre> {@code 091 * 092 * Ordering<Foo> ordering = 093 * Ordering.natural() 094 * .nullsFirst() 095 * .onResultOf(getBarFunction) 096 * .nullsLast();}</pre> 097 * 098 * Note that each chaining method returns a new ordering instance which is backed by the previous 099 * instance, but has the chance to act on values <i>before</i> handing off to that backing 100 * instance. As a result, it usually helps to read chained ordering expressions <i>backwards</i>. 101 * For example, when {@code compare} is called on the above ordering: 102 * 103 * <ol> 104 * <li>First, if only one {@code Foo} is null, that null value is treated as <i>greater</i> 105 * <li>Next, non-null {@code Foo} values are passed to {@code getBarFunction} (we will be 106 * comparing {@code Bar} values from now on) 107 * <li>Next, if only one {@code Bar} is null, that null value is treated as <i>lesser</i> 108 * <li>Finally, natural ordering is used (i.e. the result of {@code Bar.compareTo(Bar)} is 109 * returned) 110 * </ol> 111 * 112 * <p>Alas, {@link #reverse} is a little different. As you read backwards through a chain and 113 * encounter a call to {@code reverse}, continue working backwards until a result is determined, 114 * and then reverse that result. 115 * 116 * <h3>Additional notes</h3> 117 * 118 * <p>Except as noted, the orderings returned by the factory methods of this 119 * class are serializable if and only if the provided instances that back them 120 * are. For example, if {@code ordering} and {@code function} can themselves be 121 * serialized, then {@code ordering.onResultOf(function)} can as well. 122 * 123 * <p>See the Guava User Guide article on <a href= 124 * "https://github.com/google/guava/wiki/OrderingExplained"> 125 * {@code Ordering}</a>. 126 * 127 * @author Jesse Wilson 128 * @author Kevin Bourrillion 129 * @since 2.0 130 */ 131@GwtCompatible 132public abstract class Ordering<T> implements Comparator<T> { 133 // Natural order 134 135 /** 136 * Returns a serializable ordering that uses the natural order of the values. 137 * The ordering throws a {@link NullPointerException} when passed a null 138 * parameter. 139 * 140 * <p>The type specification is {@code <C extends Comparable>}, instead of 141 * the technically correct {@code <C extends Comparable<? super C>>}, to 142 * support legacy types from before Java 5. 143 */ 144 @GwtCompatible(serializable = true) 145 @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this?? 146 public static <C extends Comparable> Ordering<C> natural() { 147 return (Ordering<C>) NaturalOrdering.INSTANCE; 148 } 149 150 // Static factories 151 152 /** 153 * Returns an ordering based on an <i>existing</i> comparator instance. Note 154 * that it is unnecessary to create a <i>new</i> anonymous inner class 155 * implementing {@code Comparator} just to pass it in here. Instead, simply 156 * subclass {@code Ordering} and implement its {@code compare} method 157 * directly. 158 * 159 * @param comparator the comparator that defines the order 160 * @return comparator itself if it is already an {@code Ordering}; otherwise 161 * an ordering that wraps that comparator 162 */ 163 @GwtCompatible(serializable = true) 164 public static <T> Ordering<T> from(Comparator<T> comparator) { 165 return (comparator instanceof Ordering) 166 ? (Ordering<T>) comparator 167 : new ComparatorOrdering<T>(comparator); 168 } 169 170 /** 171 * Simply returns its argument. 172 * 173 * @deprecated no need to use this 174 */ 175 @GwtCompatible(serializable = true) 176 @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) { 177 return checkNotNull(ordering); 178 } 179 180 /** 181 * Returns an ordering that compares objects according to the order in 182 * which they appear in the given list. Only objects present in the list 183 * (according to {@link Object#equals}) may be compared. This comparator 184 * imposes a "partial ordering" over the type {@code T}. Subsequent changes 185 * to the {@code valuesInOrder} list will have no effect on the returned 186 * comparator. Null values in the list are not supported. 187 * 188 * <p>The returned comparator throws an {@link ClassCastException} when it 189 * receives an input parameter that isn't among the provided values. 190 * 191 * <p>The generated comparator is serializable if all the provided values are 192 * serializable. 193 * 194 * @param valuesInOrder the values that the returned comparator will be able 195 * to compare, in the order the comparator should induce 196 * @return the comparator described above 197 * @throws NullPointerException if any of the provided values is null 198 * @throws IllegalArgumentException if {@code valuesInOrder} contains any 199 * duplicate values (according to {@link Object#equals}) 200 */ 201 @GwtCompatible(serializable = true) 202 public static <T> Ordering<T> explicit(List<T> valuesInOrder) { 203 return new ExplicitOrdering<T>(valuesInOrder); 204 } 205 206 /** 207 * Returns an ordering that compares objects according to the order in 208 * which they are given to this method. Only objects present in the argument 209 * list (according to {@link Object#equals}) may be compared. This comparator 210 * imposes a "partial ordering" over the type {@code T}. Null values in the 211 * argument list are not supported. 212 * 213 * <p>The returned comparator throws a {@link ClassCastException} when it 214 * receives an input parameter that isn't among the provided values. 215 * 216 * <p>The generated comparator is serializable if all the provided values are 217 * serializable. 218 * 219 * @param leastValue the value which the returned comparator should consider 220 * the "least" of all values 221 * @param remainingValuesInOrder the rest of the values that the returned 222 * comparator will be able to compare, in the order the comparator should 223 * follow 224 * @return the comparator described above 225 * @throws NullPointerException if any of the provided values is null 226 * @throws IllegalArgumentException if any duplicate values (according to 227 * {@link Object#equals(Object)}) are present among the method arguments 228 */ 229 @GwtCompatible(serializable = true) 230 public static <T> Ordering<T> explicit( 231 T leastValue, T... remainingValuesInOrder) { 232 return explicit(Lists.asList(leastValue, remainingValuesInOrder)); 233 } 234 235 // Ordering<Object> singletons 236 237 /** 238 * Returns an ordering which treats all values as equal, indicating "no 239 * ordering." Passing this ordering to any <i>stable</i> sort algorithm 240 * results in no change to the order of elements. Note especially that {@link 241 * #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the 242 * returned instance these are implemented by simply copying the source list. 243 * 244 * <p>Example: <pre> {@code 245 * 246 * Ordering.allEqual().nullsLast().sortedCopy( 247 * asList(t, null, e, s, null, t, null))}</pre> 248 * 249 * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns 250 * {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison 251 * order of those three values (which might not even implement {@link 252 * Comparable} at all). 253 * 254 * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with 255 * equals</i> (as defined {@linkplain Comparator here}). Avoid its use in 256 * APIs, such as {@link TreeSet#TreeSet(Comparator)}, where such consistency 257 * is expected. 258 * 259 * <p>The returned comparator is serializable. 260 * 261 * @since 13.0 262 */ 263 @GwtCompatible(serializable = true) 264 @SuppressWarnings("unchecked") 265 public static Ordering<Object> allEqual() { 266 return AllEqualOrdering.INSTANCE; 267 } 268 269 /** 270 * Returns an ordering that compares objects by the natural ordering of their 271 * string representations as returned by {@code toString()}. It does not 272 * support null values. 273 * 274 * <p>The comparator is serializable. 275 */ 276 @GwtCompatible(serializable = true) 277 public static Ordering<Object> usingToString() { 278 return UsingToStringOrdering.INSTANCE; 279 } 280 281 /** 282 * Returns an arbitrary ordering over all objects, for which {@code compare(a, 283 * b) == 0} implies {@code a == b} (identity equality). There is no meaning 284 * whatsoever to the order imposed, but it is constant for the life of the VM. 285 * 286 * <p>Because the ordering is identity-based, it is not "consistent with 287 * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use 288 * caution when building a {@link SortedSet} or {@link SortedMap} from it, as 289 * the resulting collection will not behave exactly according to spec. 290 * 291 * <p>This ordering is not serializable, as its implementation relies on 292 * {@link System#identityHashCode(Object)}, so its behavior cannot be 293 * preserved across serialization. 294 * 295 * @since 2.0 296 */ 297 public static Ordering<Object> arbitrary() { 298 return ArbitraryOrderingHolder.ARBITRARY_ORDERING; 299 } 300 301 private static class ArbitraryOrderingHolder { 302 static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering(); 303 } 304 305 @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> { 306 @SuppressWarnings("deprecation") // TODO(kevinb): ? 307 private Map<Object, Integer> uids = 308 Platform.tryWeakKeys(new MapMaker()).makeComputingMap( 309 new Function<Object, Integer>() { 310 final AtomicInteger counter = new AtomicInteger(0); 311 @Override 312 public Integer apply(Object from) { 313 return counter.getAndIncrement(); 314 } 315 }); 316 317 @Override public int compare(Object left, Object right) { 318 if (left == right) { 319 return 0; 320 } else if (left == null) { 321 return -1; 322 } else if (right == null) { 323 return 1; 324 } 325 int leftCode = identityHashCode(left); 326 int rightCode = identityHashCode(right); 327 if (leftCode != rightCode) { 328 return leftCode < rightCode ? -1 : 1; 329 } 330 331 // identityHashCode collision (rare, but not as rare as you'd think) 332 int result = uids.get(left).compareTo(uids.get(right)); 333 if (result == 0) { 334 throw new AssertionError(); // extremely, extremely unlikely. 335 } 336 return result; 337 } 338 339 @Override public String toString() { 340 return "Ordering.arbitrary()"; 341 } 342 343 /* 344 * We need to be able to mock identityHashCode() calls for tests, because it 345 * can take 1-10 seconds to find colliding objects. Mocking frameworks that 346 * can do magic to mock static method calls still can't do so for a system 347 * class, so we need the indirection. In production, Hotspot should still 348 * recognize that the call is 1-morphic and should still be willing to 349 * inline it if necessary. 350 */ 351 int identityHashCode(Object object) { 352 return System.identityHashCode(object); 353 } 354 } 355 356 // Constructor 357 358 /** 359 * Constructs a new instance of this class (only invokable by the subclass 360 * constructor, typically implicit). 361 */ 362 protected Ordering() {} 363 364 // Instance-based factories (and any static equivalents) 365 366 /** 367 * Returns the reverse of this ordering; the {@code Ordering} equivalent to 368 * {@link Collections#reverseOrder(Comparator)}. 369 */ 370 // type parameter <S> lets us avoid the extra <String> in statements like: 371 // Ordering<String> o = Ordering.<String>natural().reverse(); 372 @GwtCompatible(serializable = true) 373 public <S extends T> Ordering<S> reverse() { 374 return new ReverseOrdering<S>(this); 375 } 376 377 /** 378 * Returns an ordering that treats {@code null} as less than all other values 379 * and uses {@code this} to compare non-null values. 380 */ 381 // type parameter <S> lets us avoid the extra <String> in statements like: 382 // Ordering<String> o = Ordering.<String>natural().nullsFirst(); 383 @GwtCompatible(serializable = true) 384 public <S extends T> Ordering<S> nullsFirst() { 385 return new NullsFirstOrdering<S>(this); 386 } 387 388 /** 389 * Returns an ordering that treats {@code null} as greater than all other 390 * values and uses this ordering to compare non-null values. 391 */ 392 // type parameter <S> lets us avoid the extra <String> in statements like: 393 // Ordering<String> o = Ordering.<String>natural().nullsLast(); 394 @GwtCompatible(serializable = true) 395 public <S extends T> Ordering<S> nullsLast() { 396 return new NullsLastOrdering<S>(this); 397 } 398 399 /** 400 * Returns a new ordering on {@code F} which orders elements by first applying 401 * a function to them, then comparing those results using {@code this}. For 402 * example, to compare objects by their string forms, in a case-insensitive 403 * manner, use: <pre> {@code 404 * 405 * Ordering.from(String.CASE_INSENSITIVE_ORDER) 406 * .onResultOf(Functions.toStringFunction())}</pre> 407 */ 408 @GwtCompatible(serializable = true) 409 public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) { 410 return new ByFunctionOrdering<F, T>(function, this); 411 } 412 413 <T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() { 414 return onResultOf(Maps.<T2>keyFunction()); 415 } 416 417 /** 418 * Returns an ordering which first uses the ordering {@code this}, but which 419 * in the event of a "tie", then delegates to {@code secondaryComparator}. 420 * For example, to sort a bug list first by status and second by priority, you 421 * might use {@code byStatus.compound(byPriority)}. For a compound ordering 422 * with three or more components, simply chain multiple calls to this method. 423 * 424 * <p>An ordering produced by this method, or a chain of calls to this method, 425 * is equivalent to one created using {@link Ordering#compound(Iterable)} on 426 * the same component comparators. 427 */ 428 @GwtCompatible(serializable = true) 429 public <U extends T> Ordering<U> compound( 430 Comparator<? super U> secondaryComparator) { 431 return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator)); 432 } 433 434 /** 435 * Returns an ordering which tries each given comparator in order until a 436 * non-zero result is found, returning that result, and returning zero only if 437 * all comparators return zero. The returned ordering is based on the state of 438 * the {@code comparators} iterable at the time it was provided to this 439 * method. 440 * 441 * <p>The returned ordering is equivalent to that produced using {@code 442 * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}. 443 * 444 * <p><b>Warning:</b> Supplying an argument with undefined iteration order, 445 * such as a {@link HashSet}, will produce non-deterministic results. 446 * 447 * @param comparators the comparators to try in order 448 */ 449 @GwtCompatible(serializable = true) 450 public static <T> Ordering<T> compound( 451 Iterable<? extends Comparator<? super T>> comparators) { 452 return new CompoundOrdering<T>(comparators); 453 } 454 455 /** 456 * Returns a new ordering which sorts iterables by comparing corresponding 457 * elements pairwise until a nonzero result is found; imposes "dictionary 458 * order". If the end of one iterable is reached, but not the other, the 459 * shorter iterable is considered to be less than the longer one. For example, 460 * a lexicographical natural ordering over integers considers {@code 461 * [] < [1] < [1, 1] < [1, 2] < [2]}. 462 * 463 * <p>Note that {@code ordering.lexicographical().reverse()} is not 464 * equivalent to {@code ordering.reverse().lexicographical()} (consider how 465 * each would order {@code [1]} and {@code [1, 1]}). 466 * 467 * @since 2.0 468 */ 469 @GwtCompatible(serializable = true) 470 // type parameter <S> lets us avoid the extra <String> in statements like: 471 // Ordering<Iterable<String>> o = 472 // Ordering.<String>natural().lexicographical(); 473 public <S extends T> Ordering<Iterable<S>> lexicographical() { 474 /* 475 * Note that technically the returned ordering should be capable of 476 * handling not just {@code Iterable<S>} instances, but also any {@code 477 * Iterable<? extends S>}. However, the need for this comes up so rarely 478 * that it doesn't justify making everyone else deal with the very ugly 479 * wildcard. 480 */ 481 return new LexicographicalOrdering<S>(this); 482 } 483 484 // Regular instance methods 485 486 // Override to add @Nullable 487 @Override public abstract int compare(@Nullable T left, @Nullable T right); 488 489 /** 490 * Returns the least of the specified values according to this ordering. If 491 * there are multiple least values, the first of those is returned. The 492 * iterator will be left exhausted: its {@code hasNext()} method will return 493 * {@code false}. 494 * 495 * @param iterator the iterator whose minimum element is to be determined 496 * @throws NoSuchElementException if {@code iterator} is empty 497 * @throws ClassCastException if the parameters are not <i>mutually 498 * comparable</i> under this ordering. 499 * 500 * @since 11.0 501 */ 502 public <E extends T> E min(Iterator<E> iterator) { 503 // let this throw NoSuchElementException as necessary 504 E minSoFar = iterator.next(); 505 506 while (iterator.hasNext()) { 507 minSoFar = min(minSoFar, iterator.next()); 508 } 509 510 return minSoFar; 511 } 512 513 /** 514 * Returns the least of the specified values according to this ordering. If 515 * there are multiple least values, the first of those is returned. 516 * 517 * @param iterable the iterable whose minimum element is to be determined 518 * @throws NoSuchElementException if {@code iterable} is empty 519 * @throws ClassCastException if the parameters are not <i>mutually 520 * comparable</i> under this ordering. 521 */ 522 public <E extends T> E min(Iterable<E> iterable) { 523 return min(iterable.iterator()); 524 } 525 526 /** 527 * Returns the lesser of the two values according to this ordering. If the 528 * values compare as 0, the first is returned. 529 * 530 * <p><b>Implementation note:</b> this method is invoked by the default 531 * implementations of the other {@code min} overloads, so overriding it will 532 * affect their behavior. 533 * 534 * @param a value to compare, returned if less than or equal to b. 535 * @param b value to compare. 536 * @throws ClassCastException if the parameters are not <i>mutually 537 * comparable</i> under this ordering. 538 */ 539 public <E extends T> E min(@Nullable E a, @Nullable E b) { 540 return (compare(a, b) <= 0) ? a : b; 541 } 542 543 /** 544 * Returns the least of the specified values according to this ordering. If 545 * there are multiple least values, the first of those is returned. 546 * 547 * @param a value to compare, returned if less than or equal to the rest. 548 * @param b value to compare 549 * @param c value to compare 550 * @param rest values to compare 551 * @throws ClassCastException if the parameters are not <i>mutually 552 * comparable</i> under this ordering. 553 */ 554 public <E extends T> E min( 555 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 556 E minSoFar = min(min(a, b), c); 557 558 for (E r : rest) { 559 minSoFar = min(minSoFar, r); 560 } 561 562 return minSoFar; 563 } 564 565 /** 566 * Returns the greatest of the specified values according to this ordering. If 567 * there are multiple greatest values, the first of those is returned. The 568 * iterator will be left exhausted: its {@code hasNext()} method will return 569 * {@code false}. 570 * 571 * @param iterator the iterator whose maximum element is to be determined 572 * @throws NoSuchElementException if {@code iterator} is empty 573 * @throws ClassCastException if the parameters are not <i>mutually 574 * comparable</i> under this ordering. 575 * 576 * @since 11.0 577 */ 578 public <E extends T> E max(Iterator<E> iterator) { 579 // let this throw NoSuchElementException as necessary 580 E maxSoFar = iterator.next(); 581 582 while (iterator.hasNext()) { 583 maxSoFar = max(maxSoFar, iterator.next()); 584 } 585 586 return maxSoFar; 587 } 588 589 /** 590 * Returns the greatest of the specified values according to this ordering. If 591 * there are multiple greatest values, the first of those is returned. 592 * 593 * @param iterable the iterable whose maximum element is to be determined 594 * @throws NoSuchElementException if {@code iterable} is empty 595 * @throws ClassCastException if the parameters are not <i>mutually 596 * comparable</i> under this ordering. 597 */ 598 public <E extends T> E max(Iterable<E> iterable) { 599 return max(iterable.iterator()); 600 } 601 602 /** 603 * Returns the greater of the two values according to this ordering. If the 604 * values compare as 0, the first is returned. 605 * 606 * <p><b>Implementation note:</b> this method is invoked by the default 607 * implementations of the other {@code max} overloads, so overriding it will 608 * affect their behavior. 609 * 610 * @param a value to compare, returned if greater than or equal to b. 611 * @param b value to compare. 612 * @throws ClassCastException if the parameters are not <i>mutually 613 * comparable</i> under this ordering. 614 */ 615 public <E extends T> E max(@Nullable E a, @Nullable E b) { 616 return (compare(a, b) >= 0) ? a : b; 617 } 618 619 /** 620 * Returns the greatest of the specified values according to this ordering. If 621 * there are multiple greatest values, the first of those is returned. 622 * 623 * @param a value to compare, returned if greater than or equal to the rest. 624 * @param b value to compare 625 * @param c value to compare 626 * @param rest values to compare 627 * @throws ClassCastException if the parameters are not <i>mutually 628 * comparable</i> under this ordering. 629 */ 630 public <E extends T> E max( 631 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 632 E maxSoFar = max(max(a, b), c); 633 634 for (E r : rest) { 635 maxSoFar = max(maxSoFar, r); 636 } 637 638 return maxSoFar; 639 } 640 641 /** 642 * Returns the {@code k} least elements of the given iterable according to 643 * this ordering, in order from least to greatest. If there are fewer than 644 * {@code k} elements present, all will be included. 645 * 646 * <p>The implementation does not necessarily use a <i>stable</i> sorting 647 * algorithm; when multiple elements are equivalent, it is undefined which 648 * will come first. 649 * 650 * @return an immutable {@code RandomAccess} list of the {@code k} least 651 * elements in ascending order 652 * @throws IllegalArgumentException if {@code k} is negative 653 * @since 8.0 654 */ 655 public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) { 656 if (iterable instanceof Collection) { 657 Collection<E> collection = (Collection<E>) iterable; 658 if (collection.size() <= 2L * k) { 659 // In this case, just dumping the collection to an array and sorting is 660 // faster than using the implementation for Iterator, which is 661 // specialized for k much smaller than n. 662 663 @SuppressWarnings("unchecked") // c only contains E's and doesn't escape 664 E[] array = (E[]) collection.toArray(); 665 Arrays.sort(array, this); 666 if (array.length > k) { 667 array = ObjectArrays.arraysCopyOf(array, k); 668 } 669 return Collections.unmodifiableList(Arrays.asList(array)); 670 } 671 } 672 return leastOf(iterable.iterator(), k); 673 } 674 675 /** 676 * Returns the {@code k} least elements from the given iterator according to 677 * this ordering, in order from least to greatest. If there are fewer than 678 * {@code k} elements present, all will be included. 679 * 680 * <p>The implementation does not necessarily use a <i>stable</i> sorting 681 * algorithm; when multiple elements are equivalent, it is undefined which 682 * will come first. 683 * 684 * @return an immutable {@code RandomAccess} list of the {@code k} least 685 * elements in ascending order 686 * @throws IllegalArgumentException if {@code k} is negative 687 * @since 14.0 688 */ 689 public <E extends T> List<E> leastOf(Iterator<E> elements, int k) { 690 checkNotNull(elements); 691 checkNonnegative(k, "k"); 692 693 if (k == 0 || !elements.hasNext()) { 694 return ImmutableList.of(); 695 } else if (k >= Integer.MAX_VALUE / 2) { 696 // k is really large; just do a straightforward sorted-copy-and-sublist 697 ArrayList<E> list = Lists.newArrayList(elements); 698 Collections.sort(list, this); 699 if (list.size() > k) { 700 list.subList(k, list.size()).clear(); 701 } 702 list.trimToSize(); 703 return Collections.unmodifiableList(list); 704 } 705 706 /* 707 * Our goal is an O(n) algorithm using only one pass and O(k) additional 708 * memory. 709 * 710 * We use the following algorithm: maintain a buffer of size 2*k. Every time 711 * the buffer gets full, find the median and partition around it, keeping 712 * only the lowest k elements. This requires n/k find-median-and-partition 713 * steps, each of which take O(k) time with a traditional quickselect. 714 * 715 * After sorting the output, the whole algorithm is O(n + k log k). It 716 * degrades gracefully for worst-case input (descending order), performs 717 * competitively or wins outright for randomly ordered input, and doesn't 718 * require the whole collection to fit into memory. 719 */ 720 int bufferCap = k * 2; 721 @SuppressWarnings("unchecked") // we'll only put E's in 722 E[] buffer = (E[]) new Object[bufferCap]; 723 E threshold = elements.next(); 724 buffer[0] = threshold; 725 int bufferSize = 1; 726 // threshold is the kth smallest element seen so far. Once bufferSize >= k, 727 // anything larger than threshold can be ignored immediately. 728 729 while (bufferSize < k && elements.hasNext()) { 730 E e = elements.next(); 731 buffer[bufferSize++] = e; 732 threshold = max(threshold, e); 733 } 734 735 while (elements.hasNext()) { 736 E e = elements.next(); 737 if (compare(e, threshold) >= 0) { 738 continue; 739 } 740 741 buffer[bufferSize++] = e; 742 if (bufferSize == bufferCap) { 743 // We apply the quickselect algorithm to partition about the median, 744 // and then ignore the last k elements. 745 int left = 0; 746 int right = bufferCap - 1; 747 748 int minThresholdPosition = 0; 749 // The leftmost position at which the greatest of the k lower elements 750 // -- the new value of threshold -- might be found. 751 752 while (left < right) { 753 int pivotIndex = (left + right + 1) >>> 1; 754 int pivotNewIndex = partition(buffer, left, right, pivotIndex); 755 if (pivotNewIndex > k) { 756 right = pivotNewIndex - 1; 757 } else if (pivotNewIndex < k) { 758 left = Math.max(pivotNewIndex, left + 1); 759 minThresholdPosition = pivotNewIndex; 760 } else { 761 break; 762 } 763 } 764 bufferSize = k; 765 766 threshold = buffer[minThresholdPosition]; 767 for (int i = minThresholdPosition + 1; i < bufferSize; i++) { 768 threshold = max(threshold, buffer[i]); 769 } 770 } 771 } 772 773 Arrays.sort(buffer, 0, bufferSize, this); 774 775 bufferSize = Math.min(bufferSize, k); 776 return Collections.unmodifiableList( 777 Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize))); 778 // We can't use ImmutableList; we have to be null-friendly! 779 } 780 781 private <E extends T> int partition( 782 E[] values, int left, int right, int pivotIndex) { 783 E pivotValue = values[pivotIndex]; 784 785 values[pivotIndex] = values[right]; 786 values[right] = pivotValue; 787 788 int storeIndex = left; 789 for (int i = left; i < right; i++) { 790 if (compare(values[i], pivotValue) < 0) { 791 ObjectArrays.swap(values, storeIndex, i); 792 storeIndex++; 793 } 794 } 795 ObjectArrays.swap(values, right, storeIndex); 796 return storeIndex; 797 } 798 799 /** 800 * Returns the {@code k} greatest elements of the given iterable according to 801 * this ordering, in order from greatest to least. If there are fewer than 802 * {@code k} elements present, all will be included. 803 * 804 * <p>The implementation does not necessarily use a <i>stable</i> sorting 805 * algorithm; when multiple elements are equivalent, it is undefined which 806 * will come first. 807 * 808 * @return an immutable {@code RandomAccess} list of the {@code k} greatest 809 * elements in <i>descending order</i> 810 * @throws IllegalArgumentException if {@code k} is negative 811 * @since 8.0 812 */ 813 public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) { 814 // TODO(kevinb): see if delegation is hurting performance noticeably 815 // TODO(kevinb): if we change this implementation, add full unit tests. 816 return reverse().leastOf(iterable, k); 817 } 818 819 /** 820 * Returns the {@code k} greatest elements from the given iterator according to 821 * this ordering, in order from greatest to least. If there are fewer than 822 * {@code k} elements present, all will be included. 823 * 824 * <p>The implementation does not necessarily use a <i>stable</i> sorting 825 * algorithm; when multiple elements are equivalent, it is undefined which 826 * will come first. 827 * 828 * @return an immutable {@code RandomAccess} list of the {@code k} greatest 829 * elements in <i>descending order</i> 830 * @throws IllegalArgumentException if {@code k} is negative 831 * @since 14.0 832 */ 833 public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) { 834 return reverse().leastOf(iterator, k); 835 } 836 837 /** 838 * Returns a <b>mutable</b> list containing {@code elements} sorted by this 839 * ordering; use this only when the resulting list may need further 840 * modification, or may contain {@code null}. The input is not modified. The 841 * returned list is serializable and has random access. 842 * 843 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard 844 * elements that are duplicates according to the comparator. The sort 845 * performed is <i>stable</i>, meaning that such elements will appear in the 846 * returned list in the same order they appeared in {@code elements}. 847 * 848 * <p><b>Performance note:</b> According to our 849 * benchmarking 850 * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in 851 * both time and space) than this method, and this method in turn generally 852 * performs better than copying the list and calling {@link 853 * Collections#sort(List)}. 854 */ 855 public <E extends T> List<E> sortedCopy(Iterable<E> elements) { 856 @SuppressWarnings("unchecked") // does not escape, and contains only E's 857 E[] array = (E[]) Iterables.toArray(elements); 858 Arrays.sort(array, this); 859 return Lists.newArrayList(Arrays.asList(array)); 860 } 861 862 /** 863 * Returns an <b>immutable</b> list containing {@code elements} sorted by this 864 * ordering. The input is not modified. 865 * 866 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard 867 * elements that are duplicates according to the comparator. The sort 868 * performed is <i>stable</i>, meaning that such elements will appear in the 869 * returned list in the same order they appeared in {@code elements}. 870 * 871 * <p><b>Performance note:</b> According to our 872 * benchmarking 873 * on Open JDK 7, this method is the most efficient way to make a sorted copy 874 * of a collection. 875 * 876 * @throws NullPointerException if any of {@code elements} (or {@code 877 * elements} itself) is null 878 * @since 3.0 879 */ 880 public <E extends T> ImmutableList<E> immutableSortedCopy( 881 Iterable<E> elements) { 882 @SuppressWarnings("unchecked") // we'll only ever have E's in here 883 E[] array = (E[]) Iterables.toArray(elements); 884 for (E e : array) { 885 checkNotNull(e); 886 } 887 Arrays.sort(array, this); 888 return ImmutableList.asImmutableList(array); 889 } 890 891 /** 892 * Returns {@code true} if each element in {@code iterable} after the first is 893 * greater than or equal to the element that preceded it, according to this 894 * ordering. Note that this is always true when the iterable has fewer than 895 * two elements. 896 */ 897 public boolean isOrdered(Iterable<? extends T> iterable) { 898 Iterator<? extends T> it = iterable.iterator(); 899 if (it.hasNext()) { 900 T prev = it.next(); 901 while (it.hasNext()) { 902 T next = it.next(); 903 if (compare(prev, next) > 0) { 904 return false; 905 } 906 prev = next; 907 } 908 } 909 return true; 910 } 911 912 /** 913 * Returns {@code true} if each element in {@code iterable} after the first is 914 * <i>strictly</i> greater than the element that preceded it, according to 915 * this ordering. Note that this is always true when the iterable has fewer 916 * than two elements. 917 */ 918 public boolean isStrictlyOrdered(Iterable<? extends T> iterable) { 919 Iterator<? extends T> it = iterable.iterator(); 920 if (it.hasNext()) { 921 T prev = it.next(); 922 while (it.hasNext()) { 923 T next = it.next(); 924 if (compare(prev, next) >= 0) { 925 return false; 926 } 927 prev = next; 928 } 929 } 930 return true; 931 } 932 933 /** 934 * {@link Collections#binarySearch(List, Object, Comparator) Searches} 935 * {@code sortedList} for {@code key} using the binary search algorithm. The 936 * list must be sorted using this ordering. 937 * 938 * @param sortedList the list to be searched 939 * @param key the key to be searched for 940 */ 941 public int binarySearch(List<? extends T> sortedList, @Nullable T key) { 942 return Collections.binarySearch(sortedList, key, this); 943 } 944 945 /** 946 * Exception thrown by a {@link Ordering#explicit(List)} or {@link 947 * Ordering#explicit(Object, Object[])} comparator when comparing a value 948 * outside the set of values it can compare. Extending {@link 949 * ClassCastException} may seem odd, but it is required. 950 */ 951 // TODO(kevinb): make this public, document it right 952 @VisibleForTesting 953 static class IncomparableValueException extends ClassCastException { 954 final Object value; 955 956 IncomparableValueException(Object value) { 957 super("Cannot compare value: " + value); 958 this.value = value; 959 } 960 961 private static final long serialVersionUID = 0; 962 } 963 964 // Never make these public 965 static final int LEFT_IS_GREATER = 1; 966 static final int RIGHT_IS_GREATER = -1; 967}