001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkNotNull;
020import static com.google.common.collect.CollectPreconditions.checkNonnegative;
021
022import com.google.common.annotations.GwtCompatible;
023import com.google.common.annotations.VisibleForTesting;
024import com.google.common.base.Function;
025
026import java.util.ArrayList;
027import java.util.Arrays;
028import java.util.Collection;
029import java.util.Collections;
030import java.util.Comparator;
031import java.util.HashSet;
032import java.util.Iterator;
033import java.util.List;
034import java.util.Map;
035import java.util.NoSuchElementException;
036import java.util.SortedMap;
037import java.util.SortedSet;
038import java.util.TreeSet;
039import java.util.concurrent.atomic.AtomicInteger;
040
041import javax.annotation.Nullable;
042
043/**
044 * A comparator, with additional methods to support common operations. This is an "enriched"
045 * version of {@code Comparator}, in the same sense that {@link FluentIterable} is an enriched
046 * {@link Iterable}.
047 *
048 * <h3>Three types of methods</h3>
049 *
050 * Like other fluent types, there are three types of methods present: methods for <i>acquiring</i>,
051 * <i>chaining</i>, and <i>using</i>.
052 *
053 * <h4>Acquiring</h4>
054 *
055 * <p>The common ways to get an instance of {@code Ordering} are:
056 *
057 * <ul>
058 * <li>Subclass it and implement {@link #compare} instead of implementing {@link Comparator}
059 *     directly
060 * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link #from(Comparator)}
061 * <li>Use the natural ordering, {@link Ordering#natural}
062 * </ul>
063 *
064 * <h4>Chaining</h4>
065 *
066 * <p>Then you can use the <i>chaining</i> methods to get an altered version of that {@code
067 * Ordering}, including:
068 *
069 * <ul>
070 * <li>{@link #reverse}
071 * <li>{@link #compound(Comparator)}
072 * <li>{@link #onResultOf(Function)}
073 * <li>{@link #nullsFirst} / {@link #nullsLast}
074 * </ul>
075 *
076 * <h4>Using</h4>
077 *
078 * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator} is required, or use
079 * any of its special operations, such as:</p>
080 *
081 * <ul>
082 * <li>{@link #immutableSortedCopy}
083 * <li>{@link #isOrdered} / {@link #isStrictlyOrdered}
084 * <li>{@link #min} / {@link #max}
085 * </ul>
086 *
087 * <h3>Understanding complex orderings</h3>
088 *
089 * <p>Complex chained orderings like the following example can be challenging to understand.
090 * <pre>   {@code
091 *
092 *   Ordering<Foo> ordering =
093 *       Ordering.natural()
094 *           .nullsFirst()
095 *           .onResultOf(getBarFunction)
096 *           .nullsLast();}</pre>
097 *
098 * Note that each chaining method returns a new ordering instance which is backed by the previous
099 * instance, but has the chance to act on values <i>before</i> handing off to that backing
100 * instance. As a result, it usually helps to read chained ordering expressions <i>backwards</i>.
101 * For example, when {@code compare} is called on the above ordering:
102 *
103 * <ol>
104 * <li>First, if only one {@code Foo} is null, that null value is treated as <i>greater</i>
105 * <li>Next, non-null {@code Foo} values are passed to {@code getBarFunction} (we will be
106 *     comparing {@code Bar} values from now on)
107 * <li>Next, if only one {@code Bar} is null, that null value is treated as <i>lesser</i>
108 * <li>Finally, natural ordering is used (i.e. the result of {@code Bar.compareTo(Bar)} is
109 *     returned)
110 * </ol>
111 *
112 * <p>Alas, {@link #reverse} is a little different. As you read backwards through a chain and
113 * encounter a call to {@code reverse}, continue working backwards until a result is determined,
114 * and then reverse that result.
115 *
116 * <h3>Additional notes</h3>
117 *
118 * <p>Except as noted, the orderings returned by the factory methods of this
119 * class are serializable if and only if the provided instances that back them
120 * are. For example, if {@code ordering} and {@code function} can themselves be
121 * serialized, then {@code ordering.onResultOf(function)} can as well.
122 *
123 * <p>See the Guava User Guide article on <a href=
124 * "https://github.com/google/guava/wiki/OrderingExplained">
125 * {@code Ordering}</a>.
126 *
127 * @author Jesse Wilson
128 * @author Kevin Bourrillion
129 * @since 2.0
130 */
131@GwtCompatible
132public abstract class Ordering<T> implements Comparator<T> {
133  // Natural order
134
135  /**
136   * Returns a serializable ordering that uses the natural order of the values.
137   * The ordering throws a {@link NullPointerException} when passed a null
138   * parameter.
139   *
140   * <p>The type specification is {@code <C extends Comparable>}, instead of
141   * the technically correct {@code <C extends Comparable<? super C>>}, to
142   * support legacy types from before Java 5.
143   */
144  @GwtCompatible(serializable = true)
145  @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
146  public static <C extends Comparable> Ordering<C> natural() {
147    return (Ordering<C>) NaturalOrdering.INSTANCE;
148  }
149
150  // Static factories
151
152  /**
153   * Returns an ordering based on an <i>existing</i> comparator instance. Note
154   * that it is unnecessary to create a <i>new</i> anonymous inner class
155   * implementing {@code Comparator} just to pass it in here. Instead, simply
156   * subclass {@code Ordering} and implement its {@code compare} method
157   * directly.
158   *
159   * @param comparator the comparator that defines the order
160   * @return comparator itself if it is already an {@code Ordering}; otherwise
161   *     an ordering that wraps that comparator
162   */
163  @GwtCompatible(serializable = true)
164  public static <T> Ordering<T> from(Comparator<T> comparator) {
165    return (comparator instanceof Ordering)
166        ? (Ordering<T>) comparator
167        : new ComparatorOrdering<T>(comparator);
168  }
169
170  /**
171   * Simply returns its argument.
172   *
173   * @deprecated no need to use this
174   */
175  @GwtCompatible(serializable = true)
176  @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) {
177    return checkNotNull(ordering);
178  }
179
180  /**
181   * Returns an ordering that compares objects according to the order in
182   * which they appear in the given list. Only objects present in the list
183   * (according to {@link Object#equals}) may be compared. This comparator
184   * imposes a "partial ordering" over the type {@code T}. Subsequent changes
185   * to the {@code valuesInOrder} list will have no effect on the returned
186   * comparator. Null values in the list are not supported.
187   *
188   * <p>The returned comparator throws an {@link ClassCastException} when it
189   * receives an input parameter that isn't among the provided values.
190   *
191   * <p>The generated comparator is serializable if all the provided values are
192   * serializable.
193   *
194   * @param valuesInOrder the values that the returned comparator will be able
195   *     to compare, in the order the comparator should induce
196   * @return the comparator described above
197   * @throws NullPointerException if any of the provided values is null
198   * @throws IllegalArgumentException if {@code valuesInOrder} contains any
199   *     duplicate values (according to {@link Object#equals})
200   */
201  @GwtCompatible(serializable = true)
202  public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
203    return new ExplicitOrdering<T>(valuesInOrder);
204  }
205
206  /**
207   * Returns an ordering that compares objects according to the order in
208   * which they are given to this method. Only objects present in the argument
209   * list (according to {@link Object#equals}) may be compared. This comparator
210   * imposes a "partial ordering" over the type {@code T}. Null values in the
211   * argument list are not supported.
212   *
213   * <p>The returned comparator throws a {@link ClassCastException} when it
214   * receives an input parameter that isn't among the provided values.
215   *
216   * <p>The generated comparator is serializable if all the provided values are
217   * serializable.
218   *
219   * @param leastValue the value which the returned comparator should consider
220   *     the "least" of all values
221   * @param remainingValuesInOrder the rest of the values that the returned
222   *     comparator will be able to compare, in the order the comparator should
223   *     follow
224   * @return the comparator described above
225   * @throws NullPointerException if any of the provided values is null
226   * @throws IllegalArgumentException if any duplicate values (according to
227   *     {@link Object#equals(Object)}) are present among the method arguments
228   */
229  @GwtCompatible(serializable = true)
230  public static <T> Ordering<T> explicit(
231      T leastValue, T... remainingValuesInOrder) {
232    return explicit(Lists.asList(leastValue, remainingValuesInOrder));
233  }
234
235  // Ordering<Object> singletons
236
237  /**
238   * Returns an ordering which treats all values as equal, indicating "no
239   * ordering." Passing this ordering to any <i>stable</i> sort algorithm
240   * results in no change to the order of elements. Note especially that {@link
241   * #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the
242   * returned instance these are implemented by simply copying the source list.
243   *
244   * <p>Example: <pre>   {@code
245   *
246   *   Ordering.allEqual().nullsLast().sortedCopy(
247   *       asList(t, null, e, s, null, t, null))}</pre>
248   *
249   * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns
250   * {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison
251   * order of those three values (which might not even implement {@link
252   * Comparable} at all).
253   *
254   * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with
255   * equals</i> (as defined {@linkplain Comparator here}). Avoid its use in
256   * APIs, such as {@link TreeSet#TreeSet(Comparator)}, where such consistency
257   * is expected.
258   *
259   * <p>The returned comparator is serializable.
260   *
261   * @since 13.0
262   */
263  @GwtCompatible(serializable = true)
264  @SuppressWarnings("unchecked")
265  public static Ordering<Object> allEqual() {
266    return AllEqualOrdering.INSTANCE;
267  }
268
269  /**
270   * Returns an ordering that compares objects by the natural ordering of their
271   * string representations as returned by {@code toString()}. It does not
272   * support null values.
273   *
274   * <p>The comparator is serializable.
275   */
276  @GwtCompatible(serializable = true)
277  public static Ordering<Object> usingToString() {
278    return UsingToStringOrdering.INSTANCE;
279  }
280
281  /**
282   * Returns an arbitrary ordering over all objects, for which {@code compare(a,
283   * b) == 0} implies {@code a == b} (identity equality). There is no meaning
284   * whatsoever to the order imposed, but it is constant for the life of the VM.
285   *
286   * <p>Because the ordering is identity-based, it is not "consistent with
287   * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use
288   * caution when building a {@link SortedSet} or {@link SortedMap} from it, as
289   * the resulting collection will not behave exactly according to spec.
290   *
291   * <p>This ordering is not serializable, as its implementation relies on
292   * {@link System#identityHashCode(Object)}, so its behavior cannot be
293   * preserved across serialization.
294   *
295   * @since 2.0
296   */
297  public static Ordering<Object> arbitrary() {
298    return ArbitraryOrderingHolder.ARBITRARY_ORDERING;
299  }
300
301  private static class ArbitraryOrderingHolder {
302    static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering();
303  }
304
305  @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> {
306    @SuppressWarnings("deprecation") // TODO(kevinb): ?
307    private Map<Object, Integer> uids =
308        Platform.tryWeakKeys(new MapMaker()).makeComputingMap(
309            new Function<Object, Integer>() {
310              final AtomicInteger counter = new AtomicInteger(0);
311              @Override
312              public Integer apply(Object from) {
313                return counter.getAndIncrement();
314              }
315            });
316
317    @Override public int compare(Object left, Object right) {
318      if (left == right) {
319        return 0;
320      } else if (left == null) {
321        return -1;
322      } else if (right == null) {
323        return 1;
324      }
325      int leftCode = identityHashCode(left);
326      int rightCode = identityHashCode(right);
327      if (leftCode != rightCode) {
328        return leftCode < rightCode ? -1 : 1;
329      }
330
331      // identityHashCode collision (rare, but not as rare as you'd think)
332      int result = uids.get(left).compareTo(uids.get(right));
333      if (result == 0) {
334        throw new AssertionError(); // extremely, extremely unlikely.
335      }
336      return result;
337    }
338
339    @Override public String toString() {
340      return "Ordering.arbitrary()";
341    }
342
343    /*
344     * We need to be able to mock identityHashCode() calls for tests, because it
345     * can take 1-10 seconds to find colliding objects. Mocking frameworks that
346     * can do magic to mock static method calls still can't do so for a system
347     * class, so we need the indirection. In production, Hotspot should still
348     * recognize that the call is 1-morphic and should still be willing to
349     * inline it if necessary.
350     */
351    int identityHashCode(Object object) {
352      return System.identityHashCode(object);
353    }
354  }
355
356  // Constructor
357
358  /**
359   * Constructs a new instance of this class (only invokable by the subclass
360   * constructor, typically implicit).
361   */
362  protected Ordering() {}
363
364  // Instance-based factories (and any static equivalents)
365
366  /**
367   * Returns the reverse of this ordering; the {@code Ordering} equivalent to
368   * {@link Collections#reverseOrder(Comparator)}.
369   */
370  // type parameter <S> lets us avoid the extra <String> in statements like:
371  // Ordering<String> o = Ordering.<String>natural().reverse();
372  @GwtCompatible(serializable = true)
373  public <S extends T> Ordering<S> reverse() {
374    return new ReverseOrdering<S>(this);
375  }
376
377  /**
378   * Returns an ordering that treats {@code null} as less than all other values
379   * and uses {@code this} to compare non-null values.
380   */
381  // type parameter <S> lets us avoid the extra <String> in statements like:
382  // Ordering<String> o = Ordering.<String>natural().nullsFirst();
383  @GwtCompatible(serializable = true)
384  public <S extends T> Ordering<S> nullsFirst() {
385    return new NullsFirstOrdering<S>(this);
386  }
387
388  /**
389   * Returns an ordering that treats {@code null} as greater than all other
390   * values and uses this ordering to compare non-null values.
391   */
392  // type parameter <S> lets us avoid the extra <String> in statements like:
393  // Ordering<String> o = Ordering.<String>natural().nullsLast();
394  @GwtCompatible(serializable = true)
395  public <S extends T> Ordering<S> nullsLast() {
396    return new NullsLastOrdering<S>(this);
397  }
398
399  /**
400   * Returns a new ordering on {@code F} which orders elements by first applying
401   * a function to them, then comparing those results using {@code this}. For
402   * example, to compare objects by their string forms, in a case-insensitive
403   * manner, use: <pre>   {@code
404   *
405   *   Ordering.from(String.CASE_INSENSITIVE_ORDER)
406   *       .onResultOf(Functions.toStringFunction())}</pre>
407   */
408  @GwtCompatible(serializable = true)
409  public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
410    return new ByFunctionOrdering<F, T>(function, this);
411  }
412
413  <T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() {
414    return onResultOf(Maps.<T2>keyFunction());
415  }
416
417  /**
418   * Returns an ordering which first uses the ordering {@code this}, but which
419   * in the event of a "tie", then delegates to {@code secondaryComparator}.
420   * For example, to sort a bug list first by status and second by priority, you
421   * might use {@code byStatus.compound(byPriority)}. For a compound ordering
422   * with three or more components, simply chain multiple calls to this method.
423   *
424   * <p>An ordering produced by this method, or a chain of calls to this method,
425   * is equivalent to one created using {@link Ordering#compound(Iterable)} on
426   * the same component comparators.
427   */
428  @GwtCompatible(serializable = true)
429  public <U extends T> Ordering<U> compound(
430      Comparator<? super U> secondaryComparator) {
431    return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
432  }
433
434  /**
435   * Returns an ordering which tries each given comparator in order until a
436   * non-zero result is found, returning that result, and returning zero only if
437   * all comparators return zero. The returned ordering is based on the state of
438   * the {@code comparators} iterable at the time it was provided to this
439   * method.
440   *
441   * <p>The returned ordering is equivalent to that produced using {@code
442   * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
443   *
444   * <p><b>Warning:</b> Supplying an argument with undefined iteration order,
445   * such as a {@link HashSet}, will produce non-deterministic results.
446   *
447   * @param comparators the comparators to try in order
448   */
449  @GwtCompatible(serializable = true)
450  public static <T> Ordering<T> compound(
451      Iterable<? extends Comparator<? super T>> comparators) {
452    return new CompoundOrdering<T>(comparators);
453  }
454
455  /**
456   * Returns a new ordering which sorts iterables by comparing corresponding
457   * elements pairwise until a nonzero result is found; imposes "dictionary
458   * order". If the end of one iterable is reached, but not the other, the
459   * shorter iterable is considered to be less than the longer one. For example,
460   * a lexicographical natural ordering over integers considers {@code
461   * [] < [1] < [1, 1] < [1, 2] < [2]}.
462   *
463   * <p>Note that {@code ordering.lexicographical().reverse()} is not
464   * equivalent to {@code ordering.reverse().lexicographical()} (consider how
465   * each would order {@code [1]} and {@code [1, 1]}).
466   *
467   * @since 2.0
468   */
469  @GwtCompatible(serializable = true)
470  // type parameter <S> lets us avoid the extra <String> in statements like:
471  // Ordering<Iterable<String>> o =
472  //     Ordering.<String>natural().lexicographical();
473  public <S extends T> Ordering<Iterable<S>> lexicographical() {
474    /*
475     * Note that technically the returned ordering should be capable of
476     * handling not just {@code Iterable<S>} instances, but also any {@code
477     * Iterable<? extends S>}. However, the need for this comes up so rarely
478     * that it doesn't justify making everyone else deal with the very ugly
479     * wildcard.
480     */
481    return new LexicographicalOrdering<S>(this);
482  }
483
484  // Regular instance methods
485
486  // Override to add @Nullable
487  @Override public abstract int compare(@Nullable T left, @Nullable T right);
488
489  /**
490   * Returns the least of the specified values according to this ordering. If
491   * there are multiple least values, the first of those is returned. The
492   * iterator will be left exhausted: its {@code hasNext()} method will return
493   * {@code false}.
494   *
495   * @param iterator the iterator whose minimum element is to be determined
496   * @throws NoSuchElementException if {@code iterator} is empty
497   * @throws ClassCastException if the parameters are not <i>mutually
498   *     comparable</i> under this ordering.
499   *
500   * @since 11.0
501   */
502  public <E extends T> E min(Iterator<E> iterator) {
503    // let this throw NoSuchElementException as necessary
504    E minSoFar = iterator.next();
505
506    while (iterator.hasNext()) {
507      minSoFar = min(minSoFar, iterator.next());
508    }
509
510    return minSoFar;
511  }
512
513  /**
514   * Returns the least of the specified values according to this ordering. If
515   * there are multiple least values, the first of those is returned.
516   *
517   * @param iterable the iterable whose minimum element is to be determined
518   * @throws NoSuchElementException if {@code iterable} is empty
519   * @throws ClassCastException if the parameters are not <i>mutually
520   *     comparable</i> under this ordering.
521   */
522  public <E extends T> E min(Iterable<E> iterable) {
523    return min(iterable.iterator());
524  }
525
526  /**
527   * Returns the lesser of the two values according to this ordering. If the
528   * values compare as 0, the first is returned.
529   *
530   * <p><b>Implementation note:</b> this method is invoked by the default
531   * implementations of the other {@code min} overloads, so overriding it will
532   * affect their behavior.
533   *
534   * @param a value to compare, returned if less than or equal to b.
535   * @param b value to compare.
536   * @throws ClassCastException if the parameters are not <i>mutually
537   *     comparable</i> under this ordering.
538   */
539  public <E extends T> E min(@Nullable E a, @Nullable E b) {
540    return (compare(a, b) <= 0) ? a : b;
541  }
542
543  /**
544   * Returns the least of the specified values according to this ordering. If
545   * there are multiple least values, the first of those is returned.
546   *
547   * @param a value to compare, returned if less than or equal to the rest.
548   * @param b value to compare
549   * @param c value to compare
550   * @param rest values to compare
551   * @throws ClassCastException if the parameters are not <i>mutually
552   *     comparable</i> under this ordering.
553   */
554  public <E extends T> E min(
555      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
556    E minSoFar = min(min(a, b), c);
557
558    for (E r : rest) {
559      minSoFar = min(minSoFar, r);
560    }
561
562    return minSoFar;
563  }
564
565  /**
566   * Returns the greatest of the specified values according to this ordering. If
567   * there are multiple greatest values, the first of those is returned. The
568   * iterator will be left exhausted: its {@code hasNext()} method will return
569   * {@code false}.
570   *
571   * @param iterator the iterator whose maximum element is to be determined
572   * @throws NoSuchElementException if {@code iterator} is empty
573   * @throws ClassCastException if the parameters are not <i>mutually
574   *     comparable</i> under this ordering.
575   *
576   * @since 11.0
577   */
578  public <E extends T> E max(Iterator<E> iterator) {
579    // let this throw NoSuchElementException as necessary
580    E maxSoFar = iterator.next();
581
582    while (iterator.hasNext()) {
583      maxSoFar = max(maxSoFar, iterator.next());
584    }
585
586    return maxSoFar;
587  }
588
589  /**
590   * Returns the greatest of the specified values according to this ordering. If
591   * there are multiple greatest values, the first of those is returned.
592   *
593   * @param iterable the iterable whose maximum element is to be determined
594   * @throws NoSuchElementException if {@code iterable} is empty
595   * @throws ClassCastException if the parameters are not <i>mutually
596   *     comparable</i> under this ordering.
597   */
598  public <E extends T> E max(Iterable<E> iterable) {
599    return max(iterable.iterator());
600  }
601
602  /**
603   * Returns the greater of the two values according to this ordering. If the
604   * values compare as 0, the first is returned.
605   *
606   * <p><b>Implementation note:</b> this method is invoked by the default
607   * implementations of the other {@code max} overloads, so overriding it will
608   * affect their behavior.
609   *
610   * @param a value to compare, returned if greater than or equal to b.
611   * @param b value to compare.
612   * @throws ClassCastException if the parameters are not <i>mutually
613   *     comparable</i> under this ordering.
614   */
615  public <E extends T> E max(@Nullable E a, @Nullable E b) {
616    return (compare(a, b) >= 0) ? a : b;
617  }
618
619  /**
620   * Returns the greatest of the specified values according to this ordering. If
621   * there are multiple greatest values, the first of those is returned.
622   *
623   * @param a value to compare, returned if greater than or equal to the rest.
624   * @param b value to compare
625   * @param c value to compare
626   * @param rest values to compare
627   * @throws ClassCastException if the parameters are not <i>mutually
628   *     comparable</i> under this ordering.
629   */
630  public <E extends T> E max(
631      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
632    E maxSoFar = max(max(a, b), c);
633
634    for (E r : rest) {
635      maxSoFar = max(maxSoFar, r);
636    }
637
638    return maxSoFar;
639  }
640
641  /**
642   * Returns the {@code k} least elements of the given iterable according to
643   * this ordering, in order from least to greatest.  If there are fewer than
644   * {@code k} elements present, all will be included.
645   *
646   * <p>The implementation does not necessarily use a <i>stable</i> sorting
647   * algorithm; when multiple elements are equivalent, it is undefined which
648   * will come first.
649   *
650   * @return an immutable {@code RandomAccess} list of the {@code k} least
651   *     elements in ascending order
652   * @throws IllegalArgumentException if {@code k} is negative
653   * @since 8.0
654   */
655  public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
656    if (iterable instanceof Collection) {
657      Collection<E> collection = (Collection<E>) iterable;
658      if (collection.size() <= 2L * k) {
659        // In this case, just dumping the collection to an array and sorting is
660        // faster than using the implementation for Iterator, which is
661        // specialized for k much smaller than n.
662
663        @SuppressWarnings("unchecked") // c only contains E's and doesn't escape
664        E[] array = (E[]) collection.toArray();
665        Arrays.sort(array, this);
666        if (array.length > k) {
667          array = ObjectArrays.arraysCopyOf(array, k);
668        }
669        return Collections.unmodifiableList(Arrays.asList(array));
670      }
671    }
672    return leastOf(iterable.iterator(), k);
673  }
674
675  /**
676   * Returns the {@code k} least elements from the given iterator according to
677   * this ordering, in order from least to greatest.  If there are fewer than
678   * {@code k} elements present, all will be included.
679   *
680   * <p>The implementation does not necessarily use a <i>stable</i> sorting
681   * algorithm; when multiple elements are equivalent, it is undefined which
682   * will come first.
683   *
684   * @return an immutable {@code RandomAccess} list of the {@code k} least
685   *     elements in ascending order
686   * @throws IllegalArgumentException if {@code k} is negative
687   * @since 14.0
688   */
689  public <E extends T> List<E> leastOf(Iterator<E> elements, int k) {
690    checkNotNull(elements);
691    checkNonnegative(k, "k");
692
693    if (k == 0 || !elements.hasNext()) {
694      return ImmutableList.of();
695    } else if (k >= Integer.MAX_VALUE / 2) {
696      // k is really large; just do a straightforward sorted-copy-and-sublist
697      ArrayList<E> list = Lists.newArrayList(elements);
698      Collections.sort(list, this);
699      if (list.size() > k) {
700        list.subList(k, list.size()).clear();
701      }
702      list.trimToSize();
703      return Collections.unmodifiableList(list);
704    }
705
706    /*
707     * Our goal is an O(n) algorithm using only one pass and O(k) additional
708     * memory.
709     *
710     * We use the following algorithm: maintain a buffer of size 2*k. Every time
711     * the buffer gets full, find the median and partition around it, keeping
712     * only the lowest k elements.  This requires n/k find-median-and-partition
713     * steps, each of which take O(k) time with a traditional quickselect.
714     *
715     * After sorting the output, the whole algorithm is O(n + k log k). It
716     * degrades gracefully for worst-case input (descending order), performs
717     * competitively or wins outright for randomly ordered input, and doesn't
718     * require the whole collection to fit into memory.
719     */
720    int bufferCap = k * 2;
721    @SuppressWarnings("unchecked") // we'll only put E's in
722    E[] buffer = (E[]) new Object[bufferCap];
723    E threshold = elements.next();
724    buffer[0] = threshold;
725    int bufferSize = 1;
726    // threshold is the kth smallest element seen so far.  Once bufferSize >= k,
727    // anything larger than threshold can be ignored immediately.
728
729    while (bufferSize < k && elements.hasNext()) {
730      E e = elements.next();
731      buffer[bufferSize++] = e;
732      threshold = max(threshold, e);
733    }
734
735    while (elements.hasNext()) {
736      E e = elements.next();
737      if (compare(e, threshold) >= 0) {
738        continue;
739      }
740
741      buffer[bufferSize++] = e;
742      if (bufferSize == bufferCap) {
743        // We apply the quickselect algorithm to partition about the median,
744        // and then ignore the last k elements.
745        int left = 0;
746        int right = bufferCap - 1;
747
748        int minThresholdPosition = 0;
749        // The leftmost position at which the greatest of the k lower elements
750        // -- the new value of threshold -- might be found.
751
752        while (left < right) {
753          int pivotIndex = (left + right + 1) >>> 1;
754          int pivotNewIndex = partition(buffer, left, right, pivotIndex);
755          if (pivotNewIndex > k) {
756            right = pivotNewIndex - 1;
757          } else if (pivotNewIndex < k) {
758            left = Math.max(pivotNewIndex, left + 1);
759            minThresholdPosition = pivotNewIndex;
760          } else {
761            break;
762          }
763        }
764        bufferSize = k;
765
766        threshold = buffer[minThresholdPosition];
767        for (int i = minThresholdPosition + 1; i < bufferSize; i++) {
768          threshold = max(threshold, buffer[i]);
769        }
770      }
771    }
772
773    Arrays.sort(buffer, 0, bufferSize, this);
774
775    bufferSize = Math.min(bufferSize, k);
776    return Collections.unmodifiableList(
777        Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize)));
778    // We can't use ImmutableList; we have to be null-friendly!
779  }
780
781  private <E extends T> int partition(
782      E[] values, int left, int right, int pivotIndex) {
783    E pivotValue = values[pivotIndex];
784
785    values[pivotIndex] = values[right];
786    values[right] = pivotValue;
787
788    int storeIndex = left;
789    for (int i = left; i < right; i++) {
790      if (compare(values[i], pivotValue) < 0) {
791        ObjectArrays.swap(values, storeIndex, i);
792        storeIndex++;
793      }
794    }
795    ObjectArrays.swap(values, right, storeIndex);
796    return storeIndex;
797  }
798
799  /**
800   * Returns the {@code k} greatest elements of the given iterable according to
801   * this ordering, in order from greatest to least. If there are fewer than
802   * {@code k} elements present, all will be included.
803   *
804   * <p>The implementation does not necessarily use a <i>stable</i> sorting
805   * algorithm; when multiple elements are equivalent, it is undefined which
806   * will come first.
807   *
808   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
809   *     elements in <i>descending order</i>
810   * @throws IllegalArgumentException if {@code k} is negative
811   * @since 8.0
812   */
813  public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
814    // TODO(kevinb): see if delegation is hurting performance noticeably
815    // TODO(kevinb): if we change this implementation, add full unit tests.
816    return reverse().leastOf(iterable, k);
817  }
818
819  /**
820   * Returns the {@code k} greatest elements from the given iterator according to
821   * this ordering, in order from greatest to least. If there are fewer than
822   * {@code k} elements present, all will be included.
823   *
824   * <p>The implementation does not necessarily use a <i>stable</i> sorting
825   * algorithm; when multiple elements are equivalent, it is undefined which
826   * will come first.
827   *
828   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
829   *     elements in <i>descending order</i>
830   * @throws IllegalArgumentException if {@code k} is negative
831   * @since 14.0
832   */
833  public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) {
834    return reverse().leastOf(iterator, k);
835  }
836
837  /**
838   * Returns a <b>mutable</b> list containing {@code elements} sorted by this
839   * ordering; use this only when the resulting list may need further
840   * modification, or may contain {@code null}. The input is not modified. The
841   * returned list is serializable and has random access.
842   *
843   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
844   * elements that are duplicates according to the comparator. The sort
845   * performed is <i>stable</i>, meaning that such elements will appear in the
846   * returned list in the same order they appeared in {@code elements}.
847   *
848   * <p><b>Performance note:</b> According to our
849   * benchmarking
850   * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in
851   * both time and space) than this method, and this method in turn generally
852   * performs better than copying the list and calling {@link
853   * Collections#sort(List)}.
854   */
855  public <E extends T> List<E> sortedCopy(Iterable<E> elements) {
856    @SuppressWarnings("unchecked") // does not escape, and contains only E's
857    E[] array = (E[]) Iterables.toArray(elements);
858    Arrays.sort(array, this);
859    return Lists.newArrayList(Arrays.asList(array));
860  }
861
862  /**
863   * Returns an <b>immutable</b> list containing {@code elements} sorted by this
864   * ordering. The input is not modified.
865   *
866   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
867   * elements that are duplicates according to the comparator. The sort
868   * performed is <i>stable</i>, meaning that such elements will appear in the
869   * returned list in the same order they appeared in {@code elements}.
870   *
871   * <p><b>Performance note:</b> According to our
872   * benchmarking
873   * on Open JDK 7, this method is the most efficient way to make a sorted copy
874   * of a collection.
875   *
876   * @throws NullPointerException if any of {@code elements} (or {@code
877   *     elements} itself) is null
878   * @since 3.0
879   */
880  public <E extends T> ImmutableList<E> immutableSortedCopy(
881      Iterable<E> elements) {
882    @SuppressWarnings("unchecked") // we'll only ever have E's in here
883    E[] array = (E[]) Iterables.toArray(elements);
884    for (E e : array) {
885      checkNotNull(e);
886    }
887    Arrays.sort(array, this);
888    return ImmutableList.asImmutableList(array);
889  }
890
891  /**
892   * Returns {@code true} if each element in {@code iterable} after the first is
893   * greater than or equal to the element that preceded it, according to this
894   * ordering. Note that this is always true when the iterable has fewer than
895   * two elements.
896   */
897  public boolean isOrdered(Iterable<? extends T> iterable) {
898    Iterator<? extends T> it = iterable.iterator();
899    if (it.hasNext()) {
900      T prev = it.next();
901      while (it.hasNext()) {
902        T next = it.next();
903        if (compare(prev, next) > 0) {
904          return false;
905        }
906        prev = next;
907      }
908    }
909    return true;
910  }
911
912  /**
913   * Returns {@code true} if each element in {@code iterable} after the first is
914   * <i>strictly</i> greater than the element that preceded it, according to
915   * this ordering. Note that this is always true when the iterable has fewer
916   * than two elements.
917   */
918  public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
919    Iterator<? extends T> it = iterable.iterator();
920    if (it.hasNext()) {
921      T prev = it.next();
922      while (it.hasNext()) {
923        T next = it.next();
924        if (compare(prev, next) >= 0) {
925          return false;
926        }
927        prev = next;
928      }
929    }
930    return true;
931  }
932
933  /**
934   * {@link Collections#binarySearch(List, Object, Comparator) Searches}
935   * {@code sortedList} for {@code key} using the binary search algorithm. The
936   * list must be sorted using this ordering.
937   *
938   * @param sortedList the list to be searched
939   * @param key the key to be searched for
940   */
941  public int binarySearch(List<? extends T> sortedList, @Nullable T key) {
942    return Collections.binarySearch(sortedList, key, this);
943  }
944
945  /**
946   * Exception thrown by a {@link Ordering#explicit(List)} or {@link
947   * Ordering#explicit(Object, Object[])} comparator when comparing a value
948   * outside the set of values it can compare. Extending {@link
949   * ClassCastException} may seem odd, but it is required.
950   */
951  // TODO(kevinb): make this public, document it right
952  @VisibleForTesting
953  static class IncomparableValueException extends ClassCastException {
954    final Object value;
955
956    IncomparableValueException(Object value) {
957      super("Cannot compare value: " + value);
958      this.value = value;
959    }
960
961    private static final long serialVersionUID = 0;
962  }
963
964  // Never make these public
965  static final int LEFT_IS_GREATER = 1;
966  static final int RIGHT_IS_GREATER = -1;
967}