001/*
002 * Copyright (C) 2010 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.base.Preconditions.checkPositionIndex;
022import static com.google.common.base.Preconditions.checkState;
023import static com.google.common.collect.CollectPreconditions.checkRemove;
024
025import com.google.common.annotations.Beta;
026import com.google.common.annotations.VisibleForTesting;
027import com.google.common.math.IntMath;
028import com.google.j2objc.annotations.Weak;
029import com.google.j2objc.annotations.WeakOuter;
030
031import java.util.AbstractQueue;
032import java.util.ArrayDeque;
033import java.util.ArrayList;
034import java.util.Collection;
035import java.util.Collections;
036import java.util.Comparator;
037import java.util.ConcurrentModificationException;
038import java.util.Iterator;
039import java.util.List;
040import java.util.NoSuchElementException;
041import java.util.PriorityQueue;
042import java.util.Queue;
043
044/**
045 * A double-ended priority queue, which provides constant-time access to both
046 * its least element and its greatest element, as determined by the queue's
047 * specified comparator. If no comparator is given at creation time, the
048 * natural order of elements is used. If no maximum size is given at creation time,
049 * the queue is unbounded.
050 *
051 * <p>Usage example: <pre>   {@code
052 *
053 *   MinMaxPriorityQueue<User> users = MinMaxPriorityQueue.orderedBy(userComparator)
054 *       .maximumSize(1000)
055 *       .create();}</pre>
056 *
057 * <p>As a {@link Queue} it functions exactly as a {@link PriorityQueue}: its
058 * head element -- the implicit target of the methods {@link #peek()}, {@link
059 * #poll()} and {@link #remove()} -- is defined as the <i>least</i> element in
060 * the queue according to the queue's comparator. But unlike a regular priority
061 * queue, the methods {@link #peekLast}, {@link #pollLast} and
062 * {@link #removeLast} are also provided, to act on the <i>greatest</i> element
063 * in the queue instead.
064 *
065 * <p>A min-max priority queue can be configured with a maximum size. If so,
066 * each time the size of the queue exceeds that value, the queue automatically
067 * removes its greatest element according to its comparator (which might be the
068 * element that was just added). This is different from conventional bounded
069 * queues, which either block or reject new elements when full.
070 *
071 * <p>This implementation is based on the
072 * <a href="http://portal.acm.org/citation.cfm?id=6621">min-max heap</a>
073 * developed by Atkinson, et al. Unlike many other double-ended priority queues,
074 * it stores elements in a single array, as compact as the traditional heap data
075 * structure used in {@link PriorityQueue}.
076 *
077 * <p>This class is not thread-safe, and does not accept null elements.
078 *
079 * <p><i>Performance notes:</i>
080 *
081 * <ul>
082 * <li>If you only access one end of the queue, and do use a maximum size,
083 *     this class will perform significantly worse than a {@code PriorityQueue}
084 *     with manual eviction above the maximum size.  In many cases
085 *     {@link Ordering#leastOf} may work for your use case with significantly
086 *     improved (and asymptotically superior) performance.
087 * <li>The retrieval operations {@link #peek}, {@link #peekFirst}, {@link
088 *     #peekLast}, {@link #element}, and {@link #size} are constant-time.
089 * <li>The enqueing and dequeing operations ({@link #offer}, {@link #add}, and
090 *     all the forms of {@link #poll} and {@link #remove()}) run in {@code
091 *     O(log n) time}.
092 * <li>The {@link #remove(Object)} and {@link #contains} operations require
093 *     linear ({@code O(n)}) time.
094 * <li>If you only access one end of the queue, and don't use a maximum size,
095 *     this class is functionally equivalent to {@link PriorityQueue}, but
096 *     significantly slower.
097 * </ul>
098 *
099 * @author Sverre Sundsdal
100 * @author Torbjorn Gannholm
101 * @since 8.0
102 */
103// TODO(kevinb): GWT compatibility
104@Beta
105public final class MinMaxPriorityQueue<E> extends AbstractQueue<E> {
106
107  /**
108   * Creates a new min-max priority queue with default settings: natural order,
109   * no maximum size, no initial contents, and an initial expected size of 11.
110   */
111  public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create() {
112    return new Builder<Comparable>(Ordering.natural()).create();
113  }
114
115  /**
116   * Creates a new min-max priority queue using natural order, no maximum size,
117   * and initially containing the given elements.
118   */
119  public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create(
120      Iterable<? extends E> initialContents) {
121    return new Builder<E>(Ordering.<E>natural()).create(initialContents);
122  }
123
124  /**
125   * Creates and returns a new builder, configured to build {@code
126   * MinMaxPriorityQueue} instances that use {@code comparator} to determine the
127   * least and greatest elements.
128   */
129  public static <B> Builder<B> orderedBy(Comparator<B> comparator) {
130    return new Builder<B>(comparator);
131  }
132
133  /**
134   * Creates and returns a new builder, configured to build {@code
135   * MinMaxPriorityQueue} instances sized appropriately to hold {@code
136   * expectedSize} elements.
137   */
138  public static Builder<Comparable> expectedSize(int expectedSize) {
139    return new Builder<Comparable>(Ordering.natural())
140        .expectedSize(expectedSize);
141  }
142
143  /**
144   * Creates and returns a new builder, configured to build {@code
145   * MinMaxPriorityQueue} instances that are limited to {@code maximumSize}
146   * elements. Each time a queue grows beyond this bound, it immediately
147   * removes its greatest element (according to its comparator), which might be
148   * the element that was just added.
149   */
150  public static Builder<Comparable> maximumSize(int maximumSize) {
151    return new Builder<Comparable>(Ordering.natural())
152        .maximumSize(maximumSize);
153  }
154
155  /**
156   * The builder class used in creation of min-max priority queues. Instead of
157   * constructing one directly, use {@link
158   * MinMaxPriorityQueue#orderedBy(Comparator)}, {@link
159   * MinMaxPriorityQueue#expectedSize(int)} or {@link
160   * MinMaxPriorityQueue#maximumSize(int)}.
161   *
162   * @param <B> the upper bound on the eventual type that can be produced by
163   *     this builder (for example, a {@code Builder<Number>} can produce a
164   *     {@code Queue<Number>} or {@code Queue<Integer>} but not a {@code
165   *     Queue<Object>}).
166   * @since 8.0
167   */
168  @Beta
169  public static final class Builder<B> {
170    /*
171     * TODO(kevinb): when the dust settles, see if we still need this or can
172     * just default to DEFAULT_CAPACITY.
173     */
174    private static final int UNSET_EXPECTED_SIZE = -1;
175
176    private final Comparator<B> comparator;
177    private int expectedSize = UNSET_EXPECTED_SIZE;
178    private int maximumSize = Integer.MAX_VALUE;
179
180    private Builder(Comparator<B> comparator) {
181      this.comparator = checkNotNull(comparator);
182    }
183
184    /**
185     * Configures this builder to build min-max priority queues with an initial
186     * expected size of {@code expectedSize}.
187     */
188    public Builder<B> expectedSize(int expectedSize) {
189      checkArgument(expectedSize >= 0);
190      this.expectedSize = expectedSize;
191      return this;
192    }
193
194    /**
195     * Configures this builder to build {@code MinMaxPriorityQueue} instances
196     * that are limited to {@code maximumSize} elements. Each time a queue grows
197     * beyond this bound, it immediately removes its greatest element (according
198     * to its comparator), which might be the element that was just added.
199     */
200    public Builder<B> maximumSize(int maximumSize) {
201      checkArgument(maximumSize > 0);
202      this.maximumSize = maximumSize;
203      return this;
204    }
205
206    /**
207     * Builds a new min-max priority queue using the previously specified
208     * options, and having no initial contents.
209     */
210    public <T extends B> MinMaxPriorityQueue<T> create() {
211      return create(Collections.<T>emptySet());
212    }
213
214    /**
215     * Builds a new min-max priority queue using the previously specified
216     * options, and having the given initial elements.
217     */
218    public <T extends B> MinMaxPriorityQueue<T> create(
219        Iterable<? extends T> initialContents) {
220      MinMaxPriorityQueue<T> queue = new MinMaxPriorityQueue<T>(
221          this, initialQueueSize(expectedSize, maximumSize, initialContents));
222      for (T element : initialContents) {
223        queue.offer(element);
224      }
225      return queue;
226    }
227
228    @SuppressWarnings("unchecked") // safe "contravariant cast"
229    private <T extends B> Ordering<T> ordering() {
230      return Ordering.from((Comparator<T>) comparator);
231    }
232  }
233
234  private final Heap minHeap;
235  private final Heap maxHeap;
236  @VisibleForTesting final int maximumSize;
237  private Object[] queue;
238  private int size;
239  private int modCount;
240
241  private MinMaxPriorityQueue(Builder<? super E> builder, int queueSize) {
242    Ordering<E> ordering = builder.ordering();
243    this.minHeap = new Heap(ordering);
244    this.maxHeap = new Heap(ordering.reverse());
245    minHeap.otherHeap = maxHeap;
246    maxHeap.otherHeap = minHeap;
247
248    this.maximumSize = builder.maximumSize;
249    // TODO(kevinb): pad?
250    this.queue = new Object[queueSize];
251  }
252
253  @Override public int size() {
254    return size;
255  }
256
257  /**
258   * Adds the given element to this queue. If this queue has a maximum size,
259   * after adding {@code element} the queue will automatically evict its
260   * greatest element (according to its comparator), which may be {@code
261   * element} itself.
262   *
263   * @return {@code true} always
264   */
265  @Override public boolean add(E element) {
266    offer(element);
267    return true;
268  }
269
270  @Override public boolean addAll(Collection<? extends E> newElements) {
271    boolean modified = false;
272    for (E element : newElements) {
273      offer(element);
274      modified = true;
275    }
276    return modified;
277  }
278
279  /**
280   * Adds the given element to this queue. If this queue has a maximum size,
281   * after adding {@code element} the queue will automatically evict its
282   * greatest element (according to its comparator), which may be {@code
283   * element} itself.
284   */
285  @Override public boolean offer(E element) {
286    checkNotNull(element);
287    modCount++;
288    int insertIndex = size++;
289
290    growIfNeeded();
291
292    // Adds the element to the end of the heap and bubbles it up to the correct
293    // position.
294    heapForIndex(insertIndex).bubbleUp(insertIndex, element);
295    return size <= maximumSize || pollLast() != element;
296  }
297
298  @Override public E poll() {
299    return isEmpty() ? null : removeAndGet(0);
300  }
301
302  @SuppressWarnings("unchecked") // we must carefully only allow Es to get in
303  E elementData(int index) {
304    return (E) queue[index];
305  }
306
307  @Override public E peek() {
308    return isEmpty() ? null : elementData(0);
309  }
310
311  /**
312   * Returns the index of the max element.
313   */
314  private int getMaxElementIndex() {
315    switch (size) {
316      case 1:
317        return 0; // The lone element in the queue is the maximum.
318      case 2:
319        return 1; // The lone element in the maxHeap is the maximum.
320      default:
321        // The max element must sit on the first level of the maxHeap. It is
322        // actually the *lesser* of the two from the maxHeap's perspective.
323        return (maxHeap.compareElements(1, 2) <= 0) ? 1 : 2;
324    }
325  }
326
327  /**
328   * Removes and returns the least element of this queue, or returns {@code
329   * null} if the queue is empty.
330   */
331  public E pollFirst() {
332    return poll();
333  }
334
335  /**
336   * Removes and returns the least element of this queue.
337   *
338   * @throws NoSuchElementException if the queue is empty
339   */
340  public E removeFirst() {
341    return remove();
342  }
343
344  /**
345   * Retrieves, but does not remove, the least element of this queue, or returns
346   * {@code null} if the queue is empty.
347   */
348  public E peekFirst() {
349    return peek();
350  }
351
352  /**
353   * Removes and returns the greatest element of this queue, or returns {@code
354   * null} if the queue is empty.
355   */
356  public E pollLast() {
357    return isEmpty() ? null : removeAndGet(getMaxElementIndex());
358  }
359
360  /**
361   * Removes and returns the greatest element of this queue.
362   *
363   * @throws NoSuchElementException if the queue is empty
364   */
365  public E removeLast() {
366    if (isEmpty()) {
367      throw new NoSuchElementException();
368    }
369    return removeAndGet(getMaxElementIndex());
370  }
371
372  /**
373   * Retrieves, but does not remove, the greatest element of this queue, or
374   * returns {@code null} if the queue is empty.
375   */
376  public E peekLast() {
377    return isEmpty() ? null : elementData(getMaxElementIndex());
378  }
379
380  /**
381   * Removes the element at position {@code index}.
382   *
383   * <p>Normally this method leaves the elements at up to {@code index - 1},
384   * inclusive, untouched.  Under these circumstances, it returns {@code null}.
385   *
386   * <p>Occasionally, in order to maintain the heap invariant, it must swap a
387   * later element of the list with one before {@code index}. Under these
388   * circumstances it returns a pair of elements as a {@link MoveDesc}. The
389   * first one is the element that was previously at the end of the heap and is
390   * now at some position before {@code index}. The second element is the one
391   * that was swapped down to replace the element at {@code index}. This fact is
392   * used by iterator.remove so as to visit elements during a traversal once and
393   * only once.
394   */
395  @VisibleForTesting MoveDesc<E> removeAt(int index) {
396    checkPositionIndex(index, size);
397    modCount++;
398    size--;
399    if (size == index) {
400      queue[size] = null;
401      return null;
402    }
403    E actualLastElement = elementData(size);
404    int lastElementAt = heapForIndex(size)
405        .getCorrectLastElement(actualLastElement);
406    E toTrickle = elementData(size);
407    queue[size] = null;
408    MoveDesc<E> changes = fillHole(index, toTrickle);
409    if (lastElementAt < index) {
410      // Last element is moved to before index, swapped with trickled element.
411      if (changes == null) {
412        // The trickled element is still after index.
413        return new MoveDesc<E>(actualLastElement, toTrickle);
414      } else {
415        // The trickled element is back before index, but the replaced element
416        // has now been moved after index.
417        return new MoveDesc<E>(actualLastElement, changes.replaced);
418      }
419    }
420    // Trickled element was after index to begin with, no adjustment needed.
421    return changes;
422  }
423
424  private MoveDesc<E> fillHole(int index, E toTrickle) {
425    Heap heap = heapForIndex(index);
426    // We consider elementData(index) a "hole", and we want to fill it
427    // with the last element of the heap, toTrickle.
428    // Since the last element of the heap is from the bottom level, we
429    // optimistically fill index position with elements from lower levels,
430    // moving the hole down. In most cases this reduces the number of
431    // comparisons with toTrickle, but in some cases we will need to bubble it
432    // all the way up again.
433    int vacated = heap.fillHoleAt(index);
434    // Try to see if toTrickle can be bubbled up min levels.
435    int bubbledTo = heap.bubbleUpAlternatingLevels(vacated, toTrickle);
436    if (bubbledTo == vacated) {
437      // Could not bubble toTrickle up min levels, try moving
438      // it from min level to max level (or max to min level) and bubble up
439      // there.
440      return heap.tryCrossOverAndBubbleUp(index, vacated, toTrickle);
441    } else {
442      return (bubbledTo < index)
443          ? new MoveDesc<E>(toTrickle, elementData(index))
444          : null;
445    }
446  }
447
448  // Returned from removeAt() to iterator.remove()
449  static class MoveDesc<E> {
450    final E toTrickle;
451    final E replaced;
452
453    MoveDesc(E toTrickle, E replaced) {
454      this.toTrickle = toTrickle;
455      this.replaced = replaced;
456    }
457  }
458
459  /**
460   * Removes and returns the value at {@code index}.
461   */
462  private E removeAndGet(int index) {
463    E value = elementData(index);
464    removeAt(index);
465    return value;
466  }
467
468  private Heap heapForIndex(int i) {
469    return isEvenLevel(i) ? minHeap : maxHeap;
470  }
471
472  private static final int EVEN_POWERS_OF_TWO = 0x55555555;
473  private static final int ODD_POWERS_OF_TWO = 0xaaaaaaaa;
474
475  @VisibleForTesting static boolean isEvenLevel(int index) {
476    int oneBased = index + 1;
477    checkState(oneBased > 0, "negative index");
478    return (oneBased & EVEN_POWERS_OF_TWO) > (oneBased & ODD_POWERS_OF_TWO);
479  }
480
481  /**
482   * Returns {@code true} if the MinMax heap structure holds. This is only used
483   * in testing.
484   *
485   * TODO(kevinb): move to the test class?
486   */
487  @VisibleForTesting boolean isIntact() {
488    for (int i = 1; i < size; i++) {
489      if (!heapForIndex(i).verifyIndex(i)) {
490        return false;
491      }
492    }
493    return true;
494  }
495
496  /**
497   * Each instance of MinMaxPriortyQueue encapsulates two instances of Heap:
498   * a min-heap and a max-heap. Conceptually, these might each have their own
499   * array for storage, but for efficiency's sake they are stored interleaved on
500   * alternate heap levels in the same array (MMPQ.queue).
501   */
502  @WeakOuter
503  private class Heap {
504    final Ordering<E> ordering;
505    @Weak Heap otherHeap;
506
507    Heap(Ordering<E> ordering) {
508      this.ordering = ordering;
509    }
510
511    int compareElements(int a, int b) {
512      return ordering.compare(elementData(a), elementData(b));
513    }
514
515    /**
516     * Tries to move {@code toTrickle} from a min to a max level and
517     * bubble up there. If it moved before {@code removeIndex} this method
518     * returns a pair as described in {@link #removeAt}.
519     */
520    MoveDesc<E> tryCrossOverAndBubbleUp(
521        int removeIndex, int vacated, E toTrickle) {
522      int crossOver = crossOver(vacated, toTrickle);
523      if (crossOver == vacated) {
524        return null;
525      }
526      // Successfully crossed over from min to max.
527      // Bubble up max levels.
528      E parent;
529      // If toTrickle is moved up to a parent of removeIndex, the parent is
530      // placed in removeIndex position. We must return that to the iterator so
531      // that it knows to skip it.
532      if (crossOver < removeIndex) {
533        // We crossed over to the parent level in crossOver, so the parent
534        // has already been moved.
535        parent = elementData(removeIndex);
536      } else {
537        parent = elementData(getParentIndex(removeIndex));
538      }
539      // bubble it up the opposite heap
540      if (otherHeap.bubbleUpAlternatingLevels(crossOver, toTrickle)
541          < removeIndex) {
542        return new MoveDesc<E>(toTrickle, parent);
543      } else {
544        return null;
545      }
546    }
547
548    /**
549     * Bubbles a value from {@code index} up the appropriate heap if required.
550     */
551    void bubbleUp(int index, E x) {
552      int crossOver = crossOverUp(index, x);
553
554      Heap heap;
555      if (crossOver == index) {
556        heap = this;
557      } else {
558        index = crossOver;
559        heap = otherHeap;
560      }
561      heap.bubbleUpAlternatingLevels(index, x);
562    }
563
564    /**
565     * Bubbles a value from {@code index} up the levels of this heap, and
566     * returns the index the element ended up at.
567     */
568    int bubbleUpAlternatingLevels(int index, E x) {
569      while (index > 2) {
570        int grandParentIndex = getGrandparentIndex(index);
571        E e = elementData(grandParentIndex);
572        if (ordering.compare(e, x) <= 0) {
573          break;
574        }
575        queue[index] = e;
576        index = grandParentIndex;
577      }
578      queue[index] = x;
579      return index;
580    }
581
582    /**
583     * Returns the index of minimum value between {@code index} and
584     * {@code index + len}, or {@code -1} if {@code index} is greater than
585     * {@code size}.
586     */
587    int findMin(int index, int len) {
588      if (index >= size) {
589        return -1;
590      }
591      checkState(index > 0);
592      int limit = Math.min(index, size - len) + len;
593      int minIndex = index;
594      for (int i = index + 1; i < limit; i++) {
595        if (compareElements(i, minIndex) < 0) {
596          minIndex = i;
597        }
598      }
599      return minIndex;
600    }
601
602    /**
603     * Returns the minimum child or {@code -1} if no child exists.
604     */
605    int findMinChild(int index) {
606      return findMin(getLeftChildIndex(index), 2);
607    }
608
609    /**
610     * Returns the minimum grand child or -1 if no grand child exists.
611     */
612    int findMinGrandChild(int index) {
613      int leftChildIndex = getLeftChildIndex(index);
614      if (leftChildIndex < 0) {
615        return -1;
616      }
617      return findMin(getLeftChildIndex(leftChildIndex), 4);
618    }
619
620    /**
621     * Moves an element one level up from a min level to a max level
622     * (or vice versa).
623     * Returns the new position of the element.
624     */
625    int crossOverUp(int index, E x) {
626      if (index == 0) {
627        queue[0] = x;
628        return 0;
629      }
630      int parentIndex = getParentIndex(index);
631      E parentElement = elementData(parentIndex);
632      if (parentIndex != 0) {
633        // This is a guard for the case of the childless uncle.
634        // Since the end of the array is actually the middle of the heap,
635        // a smaller childless uncle can become a child of x when we
636        // bubble up alternate levels, violating the invariant.
637        int grandparentIndex = getParentIndex(parentIndex);
638        int uncleIndex = getRightChildIndex(grandparentIndex);
639        if (uncleIndex != parentIndex
640            && getLeftChildIndex(uncleIndex) >= size) {
641          E uncleElement = elementData(uncleIndex);
642          if (ordering.compare(uncleElement, parentElement) < 0) {
643            parentIndex = uncleIndex;
644            parentElement = uncleElement;
645          }
646        }
647      }
648      if (ordering.compare(parentElement, x) < 0) {
649        queue[index] = parentElement;
650        queue[parentIndex] = x;
651        return parentIndex;
652      }
653      queue[index] = x;
654      return index;
655    }
656
657    /**
658     * Returns the conceptually correct last element of the heap.
659     *
660     * <p>Since the last element of the array is actually in the
661     * middle of the sorted structure, a childless uncle node could be
662     * smaller, which would corrupt the invariant if this element
663     * becomes the new parent of the uncle. In that case, we first
664     * switch the last element with its uncle, before returning.
665     */
666    int getCorrectLastElement(E actualLastElement) {
667      int parentIndex = getParentIndex(size);
668      if (parentIndex != 0) {
669        int grandparentIndex = getParentIndex(parentIndex);
670        int uncleIndex = getRightChildIndex(grandparentIndex);
671        if (uncleIndex != parentIndex
672            && getLeftChildIndex(uncleIndex) >= size) {
673          E uncleElement = elementData(uncleIndex);
674          if (ordering.compare(uncleElement, actualLastElement) < 0) {
675            queue[uncleIndex] = actualLastElement;
676            queue[size] = uncleElement;
677            return uncleIndex;
678          }
679        }
680      }
681      return size;
682    }
683
684    /**
685     * Crosses an element over to the opposite heap by moving it one level down
686     * (or up if there are no elements below it).
687     *
688     * Returns the new position of the element.
689     */
690    int crossOver(int index, E x) {
691      int minChildIndex = findMinChild(index);
692      // TODO(kevinb): split the && into two if's and move crossOverUp so it's
693      // only called when there's no child.
694      if ((minChildIndex > 0)
695          && (ordering.compare(elementData(minChildIndex), x) < 0)) {
696        queue[index] = elementData(minChildIndex);
697        queue[minChildIndex] = x;
698        return minChildIndex;
699      }
700      return crossOverUp(index, x);
701    }
702
703    /**
704     * Fills the hole at {@code index} by moving in the least of its
705     * grandchildren to this position, then recursively filling the new hole
706     * created.
707     *
708     * @return the position of the new hole (where the lowest grandchild moved
709     *     from, that had no grandchild to replace it)
710     */
711    int fillHoleAt(int index) {
712      int minGrandchildIndex;
713      while ((minGrandchildIndex = findMinGrandChild(index)) > 0) {
714        queue[index] = elementData(minGrandchildIndex);
715        index = minGrandchildIndex;
716      }
717      return index;
718    }
719
720    private boolean verifyIndex(int i) {
721      if ((getLeftChildIndex(i) < size)
722          && (compareElements(i, getLeftChildIndex(i)) > 0)) {
723        return false;
724      }
725      if ((getRightChildIndex(i) < size)
726          && (compareElements(i, getRightChildIndex(i)) > 0)) {
727        return false;
728      }
729      if ((i > 0) && (compareElements(i, getParentIndex(i)) > 0)) {
730        return false;
731      }
732      if ((i > 2) && (compareElements(getGrandparentIndex(i), i) > 0)) {
733        return false;
734      }
735      return true;
736    }
737
738    // These would be static if inner classes could have static members.
739
740    private int getLeftChildIndex(int i) {
741      return i * 2 + 1;
742    }
743
744    private int getRightChildIndex(int i) {
745      return i * 2 + 2;
746    }
747
748    private int getParentIndex(int i) {
749      return (i - 1) / 2;
750    }
751
752    private int getGrandparentIndex(int i) {
753      return getParentIndex(getParentIndex(i)); // (i - 3) / 4
754    }
755  }
756
757  /**
758   * Iterates the elements of the queue in no particular order.
759   *
760   * If the underlying queue is modified during iteration an exception will be
761   * thrown.
762   */
763  private class QueueIterator implements Iterator<E> {
764    private int cursor = -1;
765    private int expectedModCount = modCount;
766    private Queue<E> forgetMeNot;
767    private List<E> skipMe;
768    private E lastFromForgetMeNot;
769    private boolean canRemove;
770
771    @Override public boolean hasNext() {
772      checkModCount();
773      return (nextNotInSkipMe(cursor + 1) < size())
774          || ((forgetMeNot != null) && !forgetMeNot.isEmpty());
775    }
776
777    @Override public E next() {
778      checkModCount();
779      int tempCursor = nextNotInSkipMe(cursor + 1);
780      if (tempCursor < size()) {
781        cursor = tempCursor;
782        canRemove = true;
783        return elementData(cursor);
784      } else if (forgetMeNot != null) {
785        cursor = size();
786        lastFromForgetMeNot = forgetMeNot.poll();
787        if (lastFromForgetMeNot != null) {
788          canRemove = true;
789          return lastFromForgetMeNot;
790        }
791      }
792      throw new NoSuchElementException(
793          "iterator moved past last element in queue.");
794    }
795
796    @Override public void remove() {
797      checkRemove(canRemove);
798      checkModCount();
799      canRemove = false;
800      expectedModCount++;
801      if (cursor < size()) {
802        MoveDesc<E> moved = removeAt(cursor);
803        if (moved != null) {
804          if (forgetMeNot == null) {
805            forgetMeNot = new ArrayDeque<E>();
806            skipMe = new ArrayList<E>(3);
807          }
808          forgetMeNot.add(moved.toTrickle);
809          skipMe.add(moved.replaced);
810        }
811        cursor--;
812      } else { // we must have set lastFromForgetMeNot in next()
813        checkState(removeExact(lastFromForgetMeNot));
814        lastFromForgetMeNot = null;
815      }
816    }
817
818    // Finds only this exact instance, not others that are equals()
819    private boolean containsExact(Iterable<E> elements, E target) {
820      for (E element : elements) {
821        if (element == target) {
822          return true;
823        }
824      }
825      return false;
826    }
827
828    // Removes only this exact instance, not others that are equals()
829    boolean removeExact(Object target) {
830      for (int i = 0; i < size; i++) {
831        if (queue[i] == target) {
832          removeAt(i);
833          return true;
834        }
835      }
836      return false;
837    }
838
839    void checkModCount() {
840      if (modCount != expectedModCount) {
841        throw new ConcurrentModificationException();
842      }
843    }
844
845    /**
846     * Returns the index of the first element after {@code c} that is not in
847     * {@code skipMe} and returns {@code size()} if there is no such element.
848     */
849    private int nextNotInSkipMe(int c) {
850      if (skipMe != null) {
851        while (c < size() && containsExact(skipMe, elementData(c))) {
852          c++;
853        }
854      }
855      return c;
856    }
857  }
858
859  /**
860   * Returns an iterator over the elements contained in this collection,
861   * <i>in no particular order</i>.
862   *
863   * <p>The iterator is <i>fail-fast</i>: If the MinMaxPriorityQueue is modified
864   * at any time after the iterator is created, in any way except through the
865   * iterator's own remove method, the iterator will generally throw a
866   * {@link ConcurrentModificationException}. Thus, in the face of concurrent
867   * modification, the iterator fails quickly and cleanly, rather than risking
868   * arbitrary, non-deterministic behavior at an undetermined time in the
869   * future.
870   *
871   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
872   * as it is, generally speaking, impossible to make any hard guarantees in the
873   * presence of unsynchronized concurrent modification.  Fail-fast iterators
874   * throw {@code ConcurrentModificationException} on a best-effort basis.
875   * Therefore, it would be wrong to write a program that depended on this
876   * exception for its correctness: <i>the fail-fast behavior of iterators
877   * should be used only to detect bugs.</i>
878   *
879   * @return an iterator over the elements contained in this collection
880   */
881  @Override public Iterator<E> iterator() {
882    return new QueueIterator();
883  }
884
885  @Override public void clear() {
886    for (int i = 0; i < size; i++) {
887      queue[i] = null;
888    }
889    size = 0;
890  }
891
892  @Override public Object[] toArray() {
893    Object[] copyTo = new Object[size];
894    System.arraycopy(queue, 0, copyTo, 0, size);
895    return copyTo;
896  }
897
898  /**
899   * Returns the comparator used to order the elements in this queue. Obeys the
900   * general contract of {@link PriorityQueue#comparator}, but returns {@link
901   * Ordering#natural} instead of {@code null} to indicate natural ordering.
902   */
903  public Comparator<? super E> comparator() {
904    return minHeap.ordering;
905  }
906
907  @VisibleForTesting int capacity() {
908    return queue.length;
909  }
910
911  // Size/capacity-related methods
912
913  private static final int DEFAULT_CAPACITY = 11;
914
915  @VisibleForTesting static int initialQueueSize(int configuredExpectedSize,
916      int maximumSize, Iterable<?> initialContents) {
917    // Start with what they said, if they said it, otherwise DEFAULT_CAPACITY
918    int result = (configuredExpectedSize == Builder.UNSET_EXPECTED_SIZE)
919        ? DEFAULT_CAPACITY
920        : configuredExpectedSize;
921
922    // Enlarge to contain initial contents
923    if (initialContents instanceof Collection) {
924      int initialSize = ((Collection<?>) initialContents).size();
925      result = Math.max(result, initialSize);
926    }
927
928    // Now cap it at maxSize + 1
929    return capAtMaximumSize(result, maximumSize);
930  }
931
932  private void growIfNeeded() {
933    if (size > queue.length) {
934      int newCapacity = calculateNewCapacity();
935      Object[] newQueue = new Object[newCapacity];
936      System.arraycopy(queue, 0, newQueue, 0, queue.length);
937      queue = newQueue;
938    }
939  }
940
941  /** Returns ~2x the old capacity if small; ~1.5x otherwise. */
942  private int calculateNewCapacity() {
943    int oldCapacity = queue.length;
944    int newCapacity = (oldCapacity < 64)
945        ? (oldCapacity + 1) * 2
946        : IntMath.checkedMultiply(oldCapacity / 2, 3);
947    return capAtMaximumSize(newCapacity, maximumSize);
948  }
949
950  /** There's no reason for the queueSize to ever be more than maxSize + 1 */
951  private static int capAtMaximumSize(int queueSize, int maximumSize) {
952    return Math.min(queueSize - 1, maximumSize) + 1; // don't overflow
953  }
954}