001/* 002 * Copyright (C) 2010 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.base.Preconditions.checkPositionIndex; 022import static com.google.common.base.Preconditions.checkState; 023import static com.google.common.collect.CollectPreconditions.checkRemove; 024 025import com.google.common.annotations.Beta; 026import com.google.common.annotations.VisibleForTesting; 027import com.google.common.math.IntMath; 028import com.google.j2objc.annotations.Weak; 029import com.google.j2objc.annotations.WeakOuter; 030 031import java.util.AbstractQueue; 032import java.util.ArrayDeque; 033import java.util.ArrayList; 034import java.util.Collection; 035import java.util.Collections; 036import java.util.Comparator; 037import java.util.ConcurrentModificationException; 038import java.util.Iterator; 039import java.util.List; 040import java.util.NoSuchElementException; 041import java.util.PriorityQueue; 042import java.util.Queue; 043 044/** 045 * A double-ended priority queue, which provides constant-time access to both 046 * its least element and its greatest element, as determined by the queue's 047 * specified comparator. If no comparator is given at creation time, the 048 * natural order of elements is used. If no maximum size is given at creation time, 049 * the queue is unbounded. 050 * 051 * <p>Usage example: <pre> {@code 052 * 053 * MinMaxPriorityQueue<User> users = MinMaxPriorityQueue.orderedBy(userComparator) 054 * .maximumSize(1000) 055 * .create();}</pre> 056 * 057 * <p>As a {@link Queue} it functions exactly as a {@link PriorityQueue}: its 058 * head element -- the implicit target of the methods {@link #peek()}, {@link 059 * #poll()} and {@link #remove()} -- is defined as the <i>least</i> element in 060 * the queue according to the queue's comparator. But unlike a regular priority 061 * queue, the methods {@link #peekLast}, {@link #pollLast} and 062 * {@link #removeLast} are also provided, to act on the <i>greatest</i> element 063 * in the queue instead. 064 * 065 * <p>A min-max priority queue can be configured with a maximum size. If so, 066 * each time the size of the queue exceeds that value, the queue automatically 067 * removes its greatest element according to its comparator (which might be the 068 * element that was just added). This is different from conventional bounded 069 * queues, which either block or reject new elements when full. 070 * 071 * <p>This implementation is based on the 072 * <a href="http://portal.acm.org/citation.cfm?id=6621">min-max heap</a> 073 * developed by Atkinson, et al. Unlike many other double-ended priority queues, 074 * it stores elements in a single array, as compact as the traditional heap data 075 * structure used in {@link PriorityQueue}. 076 * 077 * <p>This class is not thread-safe, and does not accept null elements. 078 * 079 * <p><i>Performance notes:</i> 080 * 081 * <ul> 082 * <li>If you only access one end of the queue, and do use a maximum size, 083 * this class will perform significantly worse than a {@code PriorityQueue} 084 * with manual eviction above the maximum size. In many cases 085 * {@link Ordering#leastOf} may work for your use case with significantly 086 * improved (and asymptotically superior) performance. 087 * <li>The retrieval operations {@link #peek}, {@link #peekFirst}, {@link 088 * #peekLast}, {@link #element}, and {@link #size} are constant-time. 089 * <li>The enqueing and dequeing operations ({@link #offer}, {@link #add}, and 090 * all the forms of {@link #poll} and {@link #remove()}) run in {@code 091 * O(log n) time}. 092 * <li>The {@link #remove(Object)} and {@link #contains} operations require 093 * linear ({@code O(n)}) time. 094 * <li>If you only access one end of the queue, and don't use a maximum size, 095 * this class is functionally equivalent to {@link PriorityQueue}, but 096 * significantly slower. 097 * </ul> 098 * 099 * @author Sverre Sundsdal 100 * @author Torbjorn Gannholm 101 * @since 8.0 102 */ 103// TODO(kevinb): GWT compatibility 104@Beta 105public final class MinMaxPriorityQueue<E> extends AbstractQueue<E> { 106 107 /** 108 * Creates a new min-max priority queue with default settings: natural order, 109 * no maximum size, no initial contents, and an initial expected size of 11. 110 */ 111 public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create() { 112 return new Builder<Comparable>(Ordering.natural()).create(); 113 } 114 115 /** 116 * Creates a new min-max priority queue using natural order, no maximum size, 117 * and initially containing the given elements. 118 */ 119 public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create( 120 Iterable<? extends E> initialContents) { 121 return new Builder<E>(Ordering.<E>natural()).create(initialContents); 122 } 123 124 /** 125 * Creates and returns a new builder, configured to build {@code 126 * MinMaxPriorityQueue} instances that use {@code comparator} to determine the 127 * least and greatest elements. 128 */ 129 public static <B> Builder<B> orderedBy(Comparator<B> comparator) { 130 return new Builder<B>(comparator); 131 } 132 133 /** 134 * Creates and returns a new builder, configured to build {@code 135 * MinMaxPriorityQueue} instances sized appropriately to hold {@code 136 * expectedSize} elements. 137 */ 138 public static Builder<Comparable> expectedSize(int expectedSize) { 139 return new Builder<Comparable>(Ordering.natural()) 140 .expectedSize(expectedSize); 141 } 142 143 /** 144 * Creates and returns a new builder, configured to build {@code 145 * MinMaxPriorityQueue} instances that are limited to {@code maximumSize} 146 * elements. Each time a queue grows beyond this bound, it immediately 147 * removes its greatest element (according to its comparator), which might be 148 * the element that was just added. 149 */ 150 public static Builder<Comparable> maximumSize(int maximumSize) { 151 return new Builder<Comparable>(Ordering.natural()) 152 .maximumSize(maximumSize); 153 } 154 155 /** 156 * The builder class used in creation of min-max priority queues. Instead of 157 * constructing one directly, use {@link 158 * MinMaxPriorityQueue#orderedBy(Comparator)}, {@link 159 * MinMaxPriorityQueue#expectedSize(int)} or {@link 160 * MinMaxPriorityQueue#maximumSize(int)}. 161 * 162 * @param <B> the upper bound on the eventual type that can be produced by 163 * this builder (for example, a {@code Builder<Number>} can produce a 164 * {@code Queue<Number>} or {@code Queue<Integer>} but not a {@code 165 * Queue<Object>}). 166 * @since 8.0 167 */ 168 @Beta 169 public static final class Builder<B> { 170 /* 171 * TODO(kevinb): when the dust settles, see if we still need this or can 172 * just default to DEFAULT_CAPACITY. 173 */ 174 private static final int UNSET_EXPECTED_SIZE = -1; 175 176 private final Comparator<B> comparator; 177 private int expectedSize = UNSET_EXPECTED_SIZE; 178 private int maximumSize = Integer.MAX_VALUE; 179 180 private Builder(Comparator<B> comparator) { 181 this.comparator = checkNotNull(comparator); 182 } 183 184 /** 185 * Configures this builder to build min-max priority queues with an initial 186 * expected size of {@code expectedSize}. 187 */ 188 public Builder<B> expectedSize(int expectedSize) { 189 checkArgument(expectedSize >= 0); 190 this.expectedSize = expectedSize; 191 return this; 192 } 193 194 /** 195 * Configures this builder to build {@code MinMaxPriorityQueue} instances 196 * that are limited to {@code maximumSize} elements. Each time a queue grows 197 * beyond this bound, it immediately removes its greatest element (according 198 * to its comparator), which might be the element that was just added. 199 */ 200 public Builder<B> maximumSize(int maximumSize) { 201 checkArgument(maximumSize > 0); 202 this.maximumSize = maximumSize; 203 return this; 204 } 205 206 /** 207 * Builds a new min-max priority queue using the previously specified 208 * options, and having no initial contents. 209 */ 210 public <T extends B> MinMaxPriorityQueue<T> create() { 211 return create(Collections.<T>emptySet()); 212 } 213 214 /** 215 * Builds a new min-max priority queue using the previously specified 216 * options, and having the given initial elements. 217 */ 218 public <T extends B> MinMaxPriorityQueue<T> create( 219 Iterable<? extends T> initialContents) { 220 MinMaxPriorityQueue<T> queue = new MinMaxPriorityQueue<T>( 221 this, initialQueueSize(expectedSize, maximumSize, initialContents)); 222 for (T element : initialContents) { 223 queue.offer(element); 224 } 225 return queue; 226 } 227 228 @SuppressWarnings("unchecked") // safe "contravariant cast" 229 private <T extends B> Ordering<T> ordering() { 230 return Ordering.from((Comparator<T>) comparator); 231 } 232 } 233 234 private final Heap minHeap; 235 private final Heap maxHeap; 236 @VisibleForTesting final int maximumSize; 237 private Object[] queue; 238 private int size; 239 private int modCount; 240 241 private MinMaxPriorityQueue(Builder<? super E> builder, int queueSize) { 242 Ordering<E> ordering = builder.ordering(); 243 this.minHeap = new Heap(ordering); 244 this.maxHeap = new Heap(ordering.reverse()); 245 minHeap.otherHeap = maxHeap; 246 maxHeap.otherHeap = minHeap; 247 248 this.maximumSize = builder.maximumSize; 249 // TODO(kevinb): pad? 250 this.queue = new Object[queueSize]; 251 } 252 253 @Override public int size() { 254 return size; 255 } 256 257 /** 258 * Adds the given element to this queue. If this queue has a maximum size, 259 * after adding {@code element} the queue will automatically evict its 260 * greatest element (according to its comparator), which may be {@code 261 * element} itself. 262 * 263 * @return {@code true} always 264 */ 265 @Override public boolean add(E element) { 266 offer(element); 267 return true; 268 } 269 270 @Override public boolean addAll(Collection<? extends E> newElements) { 271 boolean modified = false; 272 for (E element : newElements) { 273 offer(element); 274 modified = true; 275 } 276 return modified; 277 } 278 279 /** 280 * Adds the given element to this queue. If this queue has a maximum size, 281 * after adding {@code element} the queue will automatically evict its 282 * greatest element (according to its comparator), which may be {@code 283 * element} itself. 284 */ 285 @Override public boolean offer(E element) { 286 checkNotNull(element); 287 modCount++; 288 int insertIndex = size++; 289 290 growIfNeeded(); 291 292 // Adds the element to the end of the heap and bubbles it up to the correct 293 // position. 294 heapForIndex(insertIndex).bubbleUp(insertIndex, element); 295 return size <= maximumSize || pollLast() != element; 296 } 297 298 @Override public E poll() { 299 return isEmpty() ? null : removeAndGet(0); 300 } 301 302 @SuppressWarnings("unchecked") // we must carefully only allow Es to get in 303 E elementData(int index) { 304 return (E) queue[index]; 305 } 306 307 @Override public E peek() { 308 return isEmpty() ? null : elementData(0); 309 } 310 311 /** 312 * Returns the index of the max element. 313 */ 314 private int getMaxElementIndex() { 315 switch (size) { 316 case 1: 317 return 0; // The lone element in the queue is the maximum. 318 case 2: 319 return 1; // The lone element in the maxHeap is the maximum. 320 default: 321 // The max element must sit on the first level of the maxHeap. It is 322 // actually the *lesser* of the two from the maxHeap's perspective. 323 return (maxHeap.compareElements(1, 2) <= 0) ? 1 : 2; 324 } 325 } 326 327 /** 328 * Removes and returns the least element of this queue, or returns {@code 329 * null} if the queue is empty. 330 */ 331 public E pollFirst() { 332 return poll(); 333 } 334 335 /** 336 * Removes and returns the least element of this queue. 337 * 338 * @throws NoSuchElementException if the queue is empty 339 */ 340 public E removeFirst() { 341 return remove(); 342 } 343 344 /** 345 * Retrieves, but does not remove, the least element of this queue, or returns 346 * {@code null} if the queue is empty. 347 */ 348 public E peekFirst() { 349 return peek(); 350 } 351 352 /** 353 * Removes and returns the greatest element of this queue, or returns {@code 354 * null} if the queue is empty. 355 */ 356 public E pollLast() { 357 return isEmpty() ? null : removeAndGet(getMaxElementIndex()); 358 } 359 360 /** 361 * Removes and returns the greatest element of this queue. 362 * 363 * @throws NoSuchElementException if the queue is empty 364 */ 365 public E removeLast() { 366 if (isEmpty()) { 367 throw new NoSuchElementException(); 368 } 369 return removeAndGet(getMaxElementIndex()); 370 } 371 372 /** 373 * Retrieves, but does not remove, the greatest element of this queue, or 374 * returns {@code null} if the queue is empty. 375 */ 376 public E peekLast() { 377 return isEmpty() ? null : elementData(getMaxElementIndex()); 378 } 379 380 /** 381 * Removes the element at position {@code index}. 382 * 383 * <p>Normally this method leaves the elements at up to {@code index - 1}, 384 * inclusive, untouched. Under these circumstances, it returns {@code null}. 385 * 386 * <p>Occasionally, in order to maintain the heap invariant, it must swap a 387 * later element of the list with one before {@code index}. Under these 388 * circumstances it returns a pair of elements as a {@link MoveDesc}. The 389 * first one is the element that was previously at the end of the heap and is 390 * now at some position before {@code index}. The second element is the one 391 * that was swapped down to replace the element at {@code index}. This fact is 392 * used by iterator.remove so as to visit elements during a traversal once and 393 * only once. 394 */ 395 @VisibleForTesting MoveDesc<E> removeAt(int index) { 396 checkPositionIndex(index, size); 397 modCount++; 398 size--; 399 if (size == index) { 400 queue[size] = null; 401 return null; 402 } 403 E actualLastElement = elementData(size); 404 int lastElementAt = heapForIndex(size) 405 .getCorrectLastElement(actualLastElement); 406 E toTrickle = elementData(size); 407 queue[size] = null; 408 MoveDesc<E> changes = fillHole(index, toTrickle); 409 if (lastElementAt < index) { 410 // Last element is moved to before index, swapped with trickled element. 411 if (changes == null) { 412 // The trickled element is still after index. 413 return new MoveDesc<E>(actualLastElement, toTrickle); 414 } else { 415 // The trickled element is back before index, but the replaced element 416 // has now been moved after index. 417 return new MoveDesc<E>(actualLastElement, changes.replaced); 418 } 419 } 420 // Trickled element was after index to begin with, no adjustment needed. 421 return changes; 422 } 423 424 private MoveDesc<E> fillHole(int index, E toTrickle) { 425 Heap heap = heapForIndex(index); 426 // We consider elementData(index) a "hole", and we want to fill it 427 // with the last element of the heap, toTrickle. 428 // Since the last element of the heap is from the bottom level, we 429 // optimistically fill index position with elements from lower levels, 430 // moving the hole down. In most cases this reduces the number of 431 // comparisons with toTrickle, but in some cases we will need to bubble it 432 // all the way up again. 433 int vacated = heap.fillHoleAt(index); 434 // Try to see if toTrickle can be bubbled up min levels. 435 int bubbledTo = heap.bubbleUpAlternatingLevels(vacated, toTrickle); 436 if (bubbledTo == vacated) { 437 // Could not bubble toTrickle up min levels, try moving 438 // it from min level to max level (or max to min level) and bubble up 439 // there. 440 return heap.tryCrossOverAndBubbleUp(index, vacated, toTrickle); 441 } else { 442 return (bubbledTo < index) 443 ? new MoveDesc<E>(toTrickle, elementData(index)) 444 : null; 445 } 446 } 447 448 // Returned from removeAt() to iterator.remove() 449 static class MoveDesc<E> { 450 final E toTrickle; 451 final E replaced; 452 453 MoveDesc(E toTrickle, E replaced) { 454 this.toTrickle = toTrickle; 455 this.replaced = replaced; 456 } 457 } 458 459 /** 460 * Removes and returns the value at {@code index}. 461 */ 462 private E removeAndGet(int index) { 463 E value = elementData(index); 464 removeAt(index); 465 return value; 466 } 467 468 private Heap heapForIndex(int i) { 469 return isEvenLevel(i) ? minHeap : maxHeap; 470 } 471 472 private static final int EVEN_POWERS_OF_TWO = 0x55555555; 473 private static final int ODD_POWERS_OF_TWO = 0xaaaaaaaa; 474 475 @VisibleForTesting static boolean isEvenLevel(int index) { 476 int oneBased = index + 1; 477 checkState(oneBased > 0, "negative index"); 478 return (oneBased & EVEN_POWERS_OF_TWO) > (oneBased & ODD_POWERS_OF_TWO); 479 } 480 481 /** 482 * Returns {@code true} if the MinMax heap structure holds. This is only used 483 * in testing. 484 * 485 * TODO(kevinb): move to the test class? 486 */ 487 @VisibleForTesting boolean isIntact() { 488 for (int i = 1; i < size; i++) { 489 if (!heapForIndex(i).verifyIndex(i)) { 490 return false; 491 } 492 } 493 return true; 494 } 495 496 /** 497 * Each instance of MinMaxPriortyQueue encapsulates two instances of Heap: 498 * a min-heap and a max-heap. Conceptually, these might each have their own 499 * array for storage, but for efficiency's sake they are stored interleaved on 500 * alternate heap levels in the same array (MMPQ.queue). 501 */ 502 @WeakOuter 503 private class Heap { 504 final Ordering<E> ordering; 505 @Weak Heap otherHeap; 506 507 Heap(Ordering<E> ordering) { 508 this.ordering = ordering; 509 } 510 511 int compareElements(int a, int b) { 512 return ordering.compare(elementData(a), elementData(b)); 513 } 514 515 /** 516 * Tries to move {@code toTrickle} from a min to a max level and 517 * bubble up there. If it moved before {@code removeIndex} this method 518 * returns a pair as described in {@link #removeAt}. 519 */ 520 MoveDesc<E> tryCrossOverAndBubbleUp( 521 int removeIndex, int vacated, E toTrickle) { 522 int crossOver = crossOver(vacated, toTrickle); 523 if (crossOver == vacated) { 524 return null; 525 } 526 // Successfully crossed over from min to max. 527 // Bubble up max levels. 528 E parent; 529 // If toTrickle is moved up to a parent of removeIndex, the parent is 530 // placed in removeIndex position. We must return that to the iterator so 531 // that it knows to skip it. 532 if (crossOver < removeIndex) { 533 // We crossed over to the parent level in crossOver, so the parent 534 // has already been moved. 535 parent = elementData(removeIndex); 536 } else { 537 parent = elementData(getParentIndex(removeIndex)); 538 } 539 // bubble it up the opposite heap 540 if (otherHeap.bubbleUpAlternatingLevels(crossOver, toTrickle) 541 < removeIndex) { 542 return new MoveDesc<E>(toTrickle, parent); 543 } else { 544 return null; 545 } 546 } 547 548 /** 549 * Bubbles a value from {@code index} up the appropriate heap if required. 550 */ 551 void bubbleUp(int index, E x) { 552 int crossOver = crossOverUp(index, x); 553 554 Heap heap; 555 if (crossOver == index) { 556 heap = this; 557 } else { 558 index = crossOver; 559 heap = otherHeap; 560 } 561 heap.bubbleUpAlternatingLevels(index, x); 562 } 563 564 /** 565 * Bubbles a value from {@code index} up the levels of this heap, and 566 * returns the index the element ended up at. 567 */ 568 int bubbleUpAlternatingLevels(int index, E x) { 569 while (index > 2) { 570 int grandParentIndex = getGrandparentIndex(index); 571 E e = elementData(grandParentIndex); 572 if (ordering.compare(e, x) <= 0) { 573 break; 574 } 575 queue[index] = e; 576 index = grandParentIndex; 577 } 578 queue[index] = x; 579 return index; 580 } 581 582 /** 583 * Returns the index of minimum value between {@code index} and 584 * {@code index + len}, or {@code -1} if {@code index} is greater than 585 * {@code size}. 586 */ 587 int findMin(int index, int len) { 588 if (index >= size) { 589 return -1; 590 } 591 checkState(index > 0); 592 int limit = Math.min(index, size - len) + len; 593 int minIndex = index; 594 for (int i = index + 1; i < limit; i++) { 595 if (compareElements(i, minIndex) < 0) { 596 minIndex = i; 597 } 598 } 599 return minIndex; 600 } 601 602 /** 603 * Returns the minimum child or {@code -1} if no child exists. 604 */ 605 int findMinChild(int index) { 606 return findMin(getLeftChildIndex(index), 2); 607 } 608 609 /** 610 * Returns the minimum grand child or -1 if no grand child exists. 611 */ 612 int findMinGrandChild(int index) { 613 int leftChildIndex = getLeftChildIndex(index); 614 if (leftChildIndex < 0) { 615 return -1; 616 } 617 return findMin(getLeftChildIndex(leftChildIndex), 4); 618 } 619 620 /** 621 * Moves an element one level up from a min level to a max level 622 * (or vice versa). 623 * Returns the new position of the element. 624 */ 625 int crossOverUp(int index, E x) { 626 if (index == 0) { 627 queue[0] = x; 628 return 0; 629 } 630 int parentIndex = getParentIndex(index); 631 E parentElement = elementData(parentIndex); 632 if (parentIndex != 0) { 633 // This is a guard for the case of the childless uncle. 634 // Since the end of the array is actually the middle of the heap, 635 // a smaller childless uncle can become a child of x when we 636 // bubble up alternate levels, violating the invariant. 637 int grandparentIndex = getParentIndex(parentIndex); 638 int uncleIndex = getRightChildIndex(grandparentIndex); 639 if (uncleIndex != parentIndex 640 && getLeftChildIndex(uncleIndex) >= size) { 641 E uncleElement = elementData(uncleIndex); 642 if (ordering.compare(uncleElement, parentElement) < 0) { 643 parentIndex = uncleIndex; 644 parentElement = uncleElement; 645 } 646 } 647 } 648 if (ordering.compare(parentElement, x) < 0) { 649 queue[index] = parentElement; 650 queue[parentIndex] = x; 651 return parentIndex; 652 } 653 queue[index] = x; 654 return index; 655 } 656 657 /** 658 * Returns the conceptually correct last element of the heap. 659 * 660 * <p>Since the last element of the array is actually in the 661 * middle of the sorted structure, a childless uncle node could be 662 * smaller, which would corrupt the invariant if this element 663 * becomes the new parent of the uncle. In that case, we first 664 * switch the last element with its uncle, before returning. 665 */ 666 int getCorrectLastElement(E actualLastElement) { 667 int parentIndex = getParentIndex(size); 668 if (parentIndex != 0) { 669 int grandparentIndex = getParentIndex(parentIndex); 670 int uncleIndex = getRightChildIndex(grandparentIndex); 671 if (uncleIndex != parentIndex 672 && getLeftChildIndex(uncleIndex) >= size) { 673 E uncleElement = elementData(uncleIndex); 674 if (ordering.compare(uncleElement, actualLastElement) < 0) { 675 queue[uncleIndex] = actualLastElement; 676 queue[size] = uncleElement; 677 return uncleIndex; 678 } 679 } 680 } 681 return size; 682 } 683 684 /** 685 * Crosses an element over to the opposite heap by moving it one level down 686 * (or up if there are no elements below it). 687 * 688 * Returns the new position of the element. 689 */ 690 int crossOver(int index, E x) { 691 int minChildIndex = findMinChild(index); 692 // TODO(kevinb): split the && into two if's and move crossOverUp so it's 693 // only called when there's no child. 694 if ((minChildIndex > 0) 695 && (ordering.compare(elementData(minChildIndex), x) < 0)) { 696 queue[index] = elementData(minChildIndex); 697 queue[minChildIndex] = x; 698 return minChildIndex; 699 } 700 return crossOverUp(index, x); 701 } 702 703 /** 704 * Fills the hole at {@code index} by moving in the least of its 705 * grandchildren to this position, then recursively filling the new hole 706 * created. 707 * 708 * @return the position of the new hole (where the lowest grandchild moved 709 * from, that had no grandchild to replace it) 710 */ 711 int fillHoleAt(int index) { 712 int minGrandchildIndex; 713 while ((minGrandchildIndex = findMinGrandChild(index)) > 0) { 714 queue[index] = elementData(minGrandchildIndex); 715 index = minGrandchildIndex; 716 } 717 return index; 718 } 719 720 private boolean verifyIndex(int i) { 721 if ((getLeftChildIndex(i) < size) 722 && (compareElements(i, getLeftChildIndex(i)) > 0)) { 723 return false; 724 } 725 if ((getRightChildIndex(i) < size) 726 && (compareElements(i, getRightChildIndex(i)) > 0)) { 727 return false; 728 } 729 if ((i > 0) && (compareElements(i, getParentIndex(i)) > 0)) { 730 return false; 731 } 732 if ((i > 2) && (compareElements(getGrandparentIndex(i), i) > 0)) { 733 return false; 734 } 735 return true; 736 } 737 738 // These would be static if inner classes could have static members. 739 740 private int getLeftChildIndex(int i) { 741 return i * 2 + 1; 742 } 743 744 private int getRightChildIndex(int i) { 745 return i * 2 + 2; 746 } 747 748 private int getParentIndex(int i) { 749 return (i - 1) / 2; 750 } 751 752 private int getGrandparentIndex(int i) { 753 return getParentIndex(getParentIndex(i)); // (i - 3) / 4 754 } 755 } 756 757 /** 758 * Iterates the elements of the queue in no particular order. 759 * 760 * If the underlying queue is modified during iteration an exception will be 761 * thrown. 762 */ 763 private class QueueIterator implements Iterator<E> { 764 private int cursor = -1; 765 private int expectedModCount = modCount; 766 private Queue<E> forgetMeNot; 767 private List<E> skipMe; 768 private E lastFromForgetMeNot; 769 private boolean canRemove; 770 771 @Override public boolean hasNext() { 772 checkModCount(); 773 return (nextNotInSkipMe(cursor + 1) < size()) 774 || ((forgetMeNot != null) && !forgetMeNot.isEmpty()); 775 } 776 777 @Override public E next() { 778 checkModCount(); 779 int tempCursor = nextNotInSkipMe(cursor + 1); 780 if (tempCursor < size()) { 781 cursor = tempCursor; 782 canRemove = true; 783 return elementData(cursor); 784 } else if (forgetMeNot != null) { 785 cursor = size(); 786 lastFromForgetMeNot = forgetMeNot.poll(); 787 if (lastFromForgetMeNot != null) { 788 canRemove = true; 789 return lastFromForgetMeNot; 790 } 791 } 792 throw new NoSuchElementException( 793 "iterator moved past last element in queue."); 794 } 795 796 @Override public void remove() { 797 checkRemove(canRemove); 798 checkModCount(); 799 canRemove = false; 800 expectedModCount++; 801 if (cursor < size()) { 802 MoveDesc<E> moved = removeAt(cursor); 803 if (moved != null) { 804 if (forgetMeNot == null) { 805 forgetMeNot = new ArrayDeque<E>(); 806 skipMe = new ArrayList<E>(3); 807 } 808 forgetMeNot.add(moved.toTrickle); 809 skipMe.add(moved.replaced); 810 } 811 cursor--; 812 } else { // we must have set lastFromForgetMeNot in next() 813 checkState(removeExact(lastFromForgetMeNot)); 814 lastFromForgetMeNot = null; 815 } 816 } 817 818 // Finds only this exact instance, not others that are equals() 819 private boolean containsExact(Iterable<E> elements, E target) { 820 for (E element : elements) { 821 if (element == target) { 822 return true; 823 } 824 } 825 return false; 826 } 827 828 // Removes only this exact instance, not others that are equals() 829 boolean removeExact(Object target) { 830 for (int i = 0; i < size; i++) { 831 if (queue[i] == target) { 832 removeAt(i); 833 return true; 834 } 835 } 836 return false; 837 } 838 839 void checkModCount() { 840 if (modCount != expectedModCount) { 841 throw new ConcurrentModificationException(); 842 } 843 } 844 845 /** 846 * Returns the index of the first element after {@code c} that is not in 847 * {@code skipMe} and returns {@code size()} if there is no such element. 848 */ 849 private int nextNotInSkipMe(int c) { 850 if (skipMe != null) { 851 while (c < size() && containsExact(skipMe, elementData(c))) { 852 c++; 853 } 854 } 855 return c; 856 } 857 } 858 859 /** 860 * Returns an iterator over the elements contained in this collection, 861 * <i>in no particular order</i>. 862 * 863 * <p>The iterator is <i>fail-fast</i>: If the MinMaxPriorityQueue is modified 864 * at any time after the iterator is created, in any way except through the 865 * iterator's own remove method, the iterator will generally throw a 866 * {@link ConcurrentModificationException}. Thus, in the face of concurrent 867 * modification, the iterator fails quickly and cleanly, rather than risking 868 * arbitrary, non-deterministic behavior at an undetermined time in the 869 * future. 870 * 871 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed 872 * as it is, generally speaking, impossible to make any hard guarantees in the 873 * presence of unsynchronized concurrent modification. Fail-fast iterators 874 * throw {@code ConcurrentModificationException} on a best-effort basis. 875 * Therefore, it would be wrong to write a program that depended on this 876 * exception for its correctness: <i>the fail-fast behavior of iterators 877 * should be used only to detect bugs.</i> 878 * 879 * @return an iterator over the elements contained in this collection 880 */ 881 @Override public Iterator<E> iterator() { 882 return new QueueIterator(); 883 } 884 885 @Override public void clear() { 886 for (int i = 0; i < size; i++) { 887 queue[i] = null; 888 } 889 size = 0; 890 } 891 892 @Override public Object[] toArray() { 893 Object[] copyTo = new Object[size]; 894 System.arraycopy(queue, 0, copyTo, 0, size); 895 return copyTo; 896 } 897 898 /** 899 * Returns the comparator used to order the elements in this queue. Obeys the 900 * general contract of {@link PriorityQueue#comparator}, but returns {@link 901 * Ordering#natural} instead of {@code null} to indicate natural ordering. 902 */ 903 public Comparator<? super E> comparator() { 904 return minHeap.ordering; 905 } 906 907 @VisibleForTesting int capacity() { 908 return queue.length; 909 } 910 911 // Size/capacity-related methods 912 913 private static final int DEFAULT_CAPACITY = 11; 914 915 @VisibleForTesting static int initialQueueSize(int configuredExpectedSize, 916 int maximumSize, Iterable<?> initialContents) { 917 // Start with what they said, if they said it, otherwise DEFAULT_CAPACITY 918 int result = (configuredExpectedSize == Builder.UNSET_EXPECTED_SIZE) 919 ? DEFAULT_CAPACITY 920 : configuredExpectedSize; 921 922 // Enlarge to contain initial contents 923 if (initialContents instanceof Collection) { 924 int initialSize = ((Collection<?>) initialContents).size(); 925 result = Math.max(result, initialSize); 926 } 927 928 // Now cap it at maxSize + 1 929 return capAtMaximumSize(result, maximumSize); 930 } 931 932 private void growIfNeeded() { 933 if (size > queue.length) { 934 int newCapacity = calculateNewCapacity(); 935 Object[] newQueue = new Object[newCapacity]; 936 System.arraycopy(queue, 0, newQueue, 0, queue.length); 937 queue = newQueue; 938 } 939 } 940 941 /** Returns ~2x the old capacity if small; ~1.5x otherwise. */ 942 private int calculateNewCapacity() { 943 int oldCapacity = queue.length; 944 int newCapacity = (oldCapacity < 64) 945 ? (oldCapacity + 1) * 2 946 : IntMath.checkedMultiply(oldCapacity / 2, 3); 947 return capAtMaximumSize(newCapacity, maximumSize); 948 } 949 950 /** There's no reason for the queueSize to ever be more than maxSize + 1 */ 951 private static int capAtMaximumSize(int queueSize, int maximumSize) { 952 return Math.min(queueSize - 1, maximumSize) + 1; // don't overflow 953 } 954}