001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.math; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.math.DoubleUtils.IMPLICIT_BIT; 021import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS; 022import static com.google.common.math.DoubleUtils.getSignificand; 023import static com.google.common.math.DoubleUtils.isFinite; 024import static com.google.common.math.DoubleUtils.isNormal; 025import static com.google.common.math.DoubleUtils.scaleNormalize; 026import static com.google.common.math.MathPreconditions.checkInRange; 027import static com.google.common.math.MathPreconditions.checkNonNegative; 028import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 029import static java.lang.Math.abs; 030import static java.lang.Math.copySign; 031import static java.lang.Math.getExponent; 032import static java.lang.Math.log; 033import static java.lang.Math.rint; 034 035import com.google.common.annotations.GwtCompatible; 036import com.google.common.annotations.GwtIncompatible; 037import com.google.common.annotations.VisibleForTesting; 038import com.google.common.primitives.Booleans; 039 040import java.math.BigInteger; 041import java.math.RoundingMode; 042import java.util.Iterator; 043 044/** 045 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}. 046 * 047 * @author Louis Wasserman 048 * @since 11.0 049 */ 050@GwtCompatible(emulated = true) 051public final class DoubleMath { 052 /* 053 * This method returns a value y such that rounding y DOWN (towards zero) gives the same result 054 * as rounding x according to the specified mode. 055 */ 056 @GwtIncompatible("#isMathematicalInteger, com.google.common.math.DoubleUtils") 057 static double roundIntermediate(double x, RoundingMode mode) { 058 if (!isFinite(x)) { 059 throw new ArithmeticException("input is infinite or NaN"); 060 } 061 switch (mode) { 062 case UNNECESSARY: 063 checkRoundingUnnecessary(isMathematicalInteger(x)); 064 return x; 065 066 case FLOOR: 067 if (x >= 0.0 || isMathematicalInteger(x)) { 068 return x; 069 } else { 070 return x - 1.0; 071 } 072 073 case CEILING: 074 if (x <= 0.0 || isMathematicalInteger(x)) { 075 return x; 076 } else { 077 return x + 1.0; 078 } 079 080 case DOWN: 081 return x; 082 083 case UP: 084 if (isMathematicalInteger(x)) { 085 return x; 086 } else { 087 return x + Math.copySign(1.0, x); 088 } 089 090 case HALF_EVEN: 091 return rint(x); 092 093 case HALF_UP: { 094 double z = rint(x); 095 if (abs(x - z) == 0.5) { 096 return x + copySign(0.5, x); 097 } else { 098 return z; 099 } 100 } 101 102 case HALF_DOWN: { 103 double z = rint(x); 104 if (abs(x - z) == 0.5) { 105 return x; 106 } else { 107 return z; 108 } 109 } 110 111 default: 112 throw new AssertionError(); 113 } 114 } 115 116 /** 117 * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding 118 * mode, if possible. 119 * 120 * @throws ArithmeticException if 121 * <ul> 122 * <li>{@code x} is infinite or NaN 123 * <li>{@code x}, after being rounded to a mathematical integer using the specified 124 * rounding mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code 125 * Integer.MAX_VALUE} 126 * <li>{@code x} is not a mathematical integer and {@code mode} is 127 * {@link RoundingMode#UNNECESSARY} 128 * </ul> 129 */ 130 @GwtIncompatible("#roundIntermediate") 131 public static int roundToInt(double x, RoundingMode mode) { 132 double z = roundIntermediate(x, mode); 133 checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0); 134 return (int) z; 135 } 136 137 private static final double MIN_INT_AS_DOUBLE = -0x1p31; 138 private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0; 139 140 /** 141 * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding 142 * mode, if possible. 143 * 144 * @throws ArithmeticException if 145 * <ul> 146 * <li>{@code x} is infinite or NaN 147 * <li>{@code x}, after being rounded to a mathematical integer using the specified 148 * rounding mode, is either less than {@code Long.MIN_VALUE} or greater than {@code 149 * Long.MAX_VALUE} 150 * <li>{@code x} is not a mathematical integer and {@code mode} is 151 * {@link RoundingMode#UNNECESSARY} 152 * </ul> 153 */ 154 @GwtIncompatible("#roundIntermediate") 155 public static long roundToLong(double x, RoundingMode mode) { 156 double z = roundIntermediate(x, mode); 157 checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE); 158 return (long) z; 159 } 160 161 private static final double MIN_LONG_AS_DOUBLE = -0x1p63; 162 /* 163 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store 164 * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1. 165 */ 166 private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63; 167 168 /** 169 * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified 170 * rounding mode, if possible. 171 * 172 * @throws ArithmeticException if 173 * <ul> 174 * <li>{@code x} is infinite or NaN 175 * <li>{@code x} is not a mathematical integer and {@code mode} is 176 * {@link RoundingMode#UNNECESSARY} 177 * </ul> 178 */ 179 @GwtIncompatible("#roundIntermediate, java.lang.Math.getExponent, " 180 + "com.google.common.math.DoubleUtils") 181 public static BigInteger roundToBigInteger(double x, RoundingMode mode) { 182 x = roundIntermediate(x, mode); 183 if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { 184 return BigInteger.valueOf((long) x); 185 } 186 int exponent = getExponent(x); 187 long significand = getSignificand(x); 188 BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); 189 return (x < 0) ? result.negate() : result; 190 } 191 192 /** 193 * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer 194 * {@code k}. 195 */ 196 @GwtIncompatible("com.google.common.math.DoubleUtils") 197 public static boolean isPowerOfTwo(double x) { 198 return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x)); 199 } 200 201 /** 202 * Returns the base 2 logarithm of a double value. 203 * 204 * <p>Special cases: 205 * <ul> 206 * <li>If {@code x} is NaN or less than zero, the result is NaN. 207 * <li>If {@code x} is positive infinity, the result is positive infinity. 208 * <li>If {@code x} is positive or negative zero, the result is negative infinity. 209 * </ul> 210 * 211 * <p>The computed result is within 1 ulp of the exact result. 212 * 213 * <p>If the result of this method will be immediately rounded to an {@code int}, 214 * {@link #log2(double, RoundingMode)} is faster. 215 */ 216 public static double log2(double x) { 217 return log(x) / LN_2; // surprisingly within 1 ulp according to tests 218 } 219 220 private static final double LN_2 = log(2); 221 222 /** 223 * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an 224 * {@code int}. 225 * 226 * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. 227 * 228 * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is 229 * infinite 230 */ 231 @GwtIncompatible("java.lang.Math.getExponent, com.google.common.math.DoubleUtils") 232 @SuppressWarnings("fallthrough") 233 public static int log2(double x, RoundingMode mode) { 234 checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); 235 int exponent = getExponent(x); 236 if (!isNormal(x)) { 237 return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; 238 // Do the calculation on a normal value. 239 } 240 // x is positive, finite, and normal 241 boolean increment; 242 switch (mode) { 243 case UNNECESSARY: 244 checkRoundingUnnecessary(isPowerOfTwo(x)); 245 // fall through 246 case FLOOR: 247 increment = false; 248 break; 249 case CEILING: 250 increment = !isPowerOfTwo(x); 251 break; 252 case DOWN: 253 increment = exponent < 0 & !isPowerOfTwo(x); 254 break; 255 case UP: 256 increment = exponent >= 0 & !isPowerOfTwo(x); 257 break; 258 case HALF_DOWN: 259 case HALF_EVEN: 260 case HALF_UP: 261 double xScaled = scaleNormalize(x); 262 // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," 263 // so log2(x) is never exactly exponent + 0.5. 264 increment = (xScaled * xScaled) > 2.0; 265 break; 266 default: 267 throw new AssertionError(); 268 } 269 return increment ? exponent + 1 : exponent; 270 } 271 272 /** 273 * Returns {@code true} if {@code x} represents a mathematical integer. 274 * 275 * <p>This is equivalent to, but not necessarily implemented as, the expression {@code 276 * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. 277 */ 278 @GwtIncompatible("java.lang.Math.getExponent, com.google.common.math.DoubleUtils") 279 public static boolean isMathematicalInteger(double x) { 280 return isFinite(x) 281 && (x == 0.0 || 282 SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x)); 283 } 284 285 /** 286 * Returns {@code n!}, that is, the product of the first {@code n} positive 287 * integers, {@code 1} if {@code n == 0}, or {@code n!}, or 288 * {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}. 289 * 290 * <p>The result is within 1 ulp of the true value. 291 * 292 * @throws IllegalArgumentException if {@code n < 0} 293 */ 294 public static double factorial(int n) { 295 checkNonNegative("n", n); 296 if (n > MAX_FACTORIAL) { 297 return Double.POSITIVE_INFINITY; 298 } else { 299 // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate 300 // result than multiplying by everySixteenthFactorial[n >> 4] directly. 301 double accum = 1.0; 302 for (int i = 1 + (n & ~0xf); i <= n; i++) { 303 accum *= i; 304 } 305 return accum * everySixteenthFactorial[n >> 4]; 306 } 307 } 308 309 @VisibleForTesting 310 static final int MAX_FACTORIAL = 170; 311 312 @VisibleForTesting 313 static final double[] everySixteenthFactorial = { 314 0x1.0p0, 315 0x1.30777758p44, 316 0x1.956ad0aae33a4p117, 317 0x1.ee69a78d72cb6p202, 318 0x1.fe478ee34844ap295, 319 0x1.c619094edabffp394, 320 0x1.3638dd7bd6347p498, 321 0x1.7cac197cfe503p605, 322 0x1.1e5dfc140e1e5p716, 323 0x1.8ce85fadb707ep829, 324 0x1.95d5f3d928edep945}; 325 326 /** 327 * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other. 328 * 329 * <p>Technically speaking, this is equivalent to 330 * {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}. 331 * 332 * <p>Notable special cases include: 333 * <ul> 334 * <li>All NaNs are fuzzily equal. 335 * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal. 336 * <li>Positive and negative zero are always fuzzily equal. 337 * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then 338 * {@code a} and {@code b} are fuzzily equal if and only if {@code a == b}. 339 * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal. 340 * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code 341 * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves. 342 * </li> 343 * 344 * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an 345 * equivalence relation and <em>not</em> suitable for use in {@link Object#equals} 346 * implementations. 347 * 348 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 349 * @since 13.0 350 */ 351 public static boolean fuzzyEquals(double a, double b, double tolerance) { 352 MathPreconditions.checkNonNegative("tolerance", tolerance); 353 return 354 Math.copySign(a - b, 1.0) <= tolerance 355 // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics 356 || (a == b) // needed to ensure that infinities equal themselves 357 || (Double.isNaN(a) && Double.isNaN(b)); 358 } 359 360 /** 361 * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values. 362 * 363 * <p>This method is equivalent to 364 * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like 365 * {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all 366 * other values (including {@link Double#POSITIVE_INFINITY}). 367 * 368 * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in 369 * {@link Comparable#compareTo} implementations. In particular, it is not transitive. 370 * 371 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 372 * @since 13.0 373 */ 374 public static int fuzzyCompare(double a, double b, double tolerance) { 375 if (fuzzyEquals(a, b, tolerance)) { 376 return 0; 377 } else if (a < b) { 378 return -1; 379 } else if (a > b) { 380 return 1; 381 } else { 382 return Booleans.compare(Double.isNaN(a), Double.isNaN(b)); 383 } 384 } 385 386 @GwtIncompatible("com.google.common.math.DoubleUtils") 387 private static final class MeanAccumulator { 388 389 private long count = 0; 390 private double mean = 0.0; 391 392 void add(double value) { 393 checkArgument(isFinite(value)); 394 ++count; 395 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 396 mean += (value - mean) / count; 397 } 398 399 double mean() { 400 checkArgument(count > 0, "Cannot take mean of 0 values"); 401 return mean; 402 } 403 } 404 405 /** 406 * Returns the arithmetic mean of the values. There must be at least one value, and they must all 407 * be finite. 408 */ 409 @GwtIncompatible("MeanAccumulator") 410 public static double mean(double... values) { 411 MeanAccumulator accumulator = new MeanAccumulator(); 412 for (double value : values) { 413 accumulator.add(value); 414 } 415 return accumulator.mean(); 416 } 417 418 /** 419 * Returns the arithmetic mean of the values. There must be at least one value. The values will 420 * be converted to doubles, which does not cause any loss of precision for ints. 421 */ 422 @GwtIncompatible("MeanAccumulator") 423 public static double mean(int... values) { 424 MeanAccumulator accumulator = new MeanAccumulator(); 425 for (int value : values) { 426 accumulator.add(value); 427 } 428 return accumulator.mean(); 429 } 430 431 /** 432 * Returns the arithmetic mean of the values. There must be at least one value. The values will 433 * be converted to doubles, which causes loss of precision for longs of magnitude over 2^53 434 * (slightly over 9e15). 435 */ 436 @GwtIncompatible("MeanAccumulator") 437 public static double mean(long... values) { 438 MeanAccumulator accumulator = new MeanAccumulator(); 439 for (long value : values) { 440 accumulator.add(value); 441 } 442 return accumulator.mean(); 443 } 444 445 /** 446 * Returns the arithmetic mean of the values. There must be at least one value, and they must all 447 * be finite. The values will be converted to doubles, which may cause loss of precision for some 448 * numeric types. 449 */ 450 @GwtIncompatible("MeanAccumulator") 451 public static double mean(Iterable<? extends Number> values) { 452 MeanAccumulator accumulator = new MeanAccumulator(); 453 for (Number value : values) { 454 accumulator.add(value.doubleValue()); 455 } 456 return accumulator.mean(); 457 } 458 459 /** 460 * Returns the arithmetic mean of the values. There must be at least one value, and they must all 461 * be finite. The values will be converted to doubles, which may cause loss of precision for some 462 * numeric types. 463 */ 464 @GwtIncompatible("MeanAccumulator") 465 public static double mean(Iterator<? extends Number> values) { 466 MeanAccumulator accumulator = new MeanAccumulator(); 467 while (values.hasNext()) { 468 accumulator.add(values.next().doubleValue()); 469 } 470 return accumulator.mean(); 471 } 472 473 private DoubleMath() {} 474}