001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkNotNull;
020import static com.google.common.collect.CollectPreconditions.checkNonnegative;
021
022import com.google.common.annotations.GwtCompatible;
023import com.google.common.annotations.VisibleForTesting;
024import com.google.common.base.Function;
025
026import java.util.ArrayList;
027import java.util.Arrays;
028import java.util.Collection;
029import java.util.Collections;
030import java.util.Comparator;
031import java.util.HashSet;
032import java.util.Iterator;
033import java.util.List;
034import java.util.Map;
035import java.util.NoSuchElementException;
036import java.util.SortedMap;
037import java.util.SortedSet;
038import java.util.TreeSet;
039import java.util.concurrent.atomic.AtomicInteger;
040
041import javax.annotation.Nullable;
042
043/**
044 * A comparator, with additional methods to support common operations. This is
045 * an "enriched" version of {@code Comparator}, in the same sense that {@link
046 * FluentIterable} is an enriched {@link Iterable}.
047 *
048 * <p>The common ways to get an instance of {@code Ordering} are:
049 *
050 * <ul>
051 * <li>Subclass it and implement {@link #compare} instead of implementing
052 *     {@link Comparator} directly
053 * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link
054 *     #from(Comparator)}
055 * <li>Use the natural ordering, {@link Ordering#natural}
056 * </ul>
057 *
058 * <p>Then you can use the <i>chaining</i> methods to get an altered version of
059 * that {@code Ordering}, including:
060 *
061 * <ul>
062 * <li>{@link #reverse}
063 * <li>{@link #compound(Comparator)}
064 * <li>{@link #onResultOf(Function)}
065 * <li>{@link #nullsFirst} / {@link #nullsLast}
066 * </ul>
067 *
068 * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator}
069 * is required, or use any of its special operations, such as:</p>
070 *
071 * <ul>
072 * <li>{@link #immutableSortedCopy}
073 * <li>{@link #isOrdered} / {@link #isStrictlyOrdered}
074 * <li>{@link #min} / {@link #max}
075 * </ul>
076 *
077 * <p>Except as noted, the orderings returned by the factory methods of this
078 * class are serializable if and only if the provided instances that back them
079 * are. For example, if {@code ordering} and {@code function} can themselves be
080 * serialized, then {@code ordering.onResultOf(function)} can as well.
081 *
082 * <p>See the Guava User Guide article on <a href=
083 * "http://code.google.com/p/guava-libraries/wiki/OrderingExplained">
084 * {@code Ordering}</a>.
085 *
086 * @author Jesse Wilson
087 * @author Kevin Bourrillion
088 * @since 2.0 (imported from Google Collections Library)
089 */
090@GwtCompatible
091public abstract class Ordering<T> implements Comparator<T> {
092  // Natural order
093
094  /**
095   * Returns a serializable ordering that uses the natural order of the values.
096   * The ordering throws a {@link NullPointerException} when passed a null
097   * parameter.
098   *
099   * <p>The type specification is {@code <C extends Comparable>}, instead of
100   * the technically correct {@code <C extends Comparable<? super C>>}, to
101   * support legacy types from before Java 5.
102   */
103  @GwtCompatible(serializable = true)
104  @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
105  public static <C extends Comparable> Ordering<C> natural() {
106    return (Ordering<C>) NaturalOrdering.INSTANCE;
107  }
108
109  // Static factories
110
111  /**
112   * Returns an ordering based on an <i>existing</i> comparator instance. Note
113   * that it is unnecessary to create a <i>new</i> anonymous inner class
114   * implementing {@code Comparator} just to pass it in here. Instead, simply
115   * subclass {@code Ordering} and implement its {@code compare} method
116   * directly.
117   *
118   * @param comparator the comparator that defines the order
119   * @return comparator itself if it is already an {@code Ordering}; otherwise
120   *     an ordering that wraps that comparator
121   */
122  @GwtCompatible(serializable = true)
123  public static <T> Ordering<T> from(Comparator<T> comparator) {
124    return (comparator instanceof Ordering)
125        ? (Ordering<T>) comparator
126        : new ComparatorOrdering<T>(comparator);
127  }
128
129  /**
130   * Simply returns its argument.
131   *
132   * @deprecated no need to use this
133   */
134  @GwtCompatible(serializable = true)
135  @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) {
136    return checkNotNull(ordering);
137  }
138
139  /**
140   * Returns an ordering that compares objects according to the order in
141   * which they appear in the given list. Only objects present in the list
142   * (according to {@link Object#equals}) may be compared. This comparator
143   * imposes a "partial ordering" over the type {@code T}. Subsequent changes
144   * to the {@code valuesInOrder} list will have no effect on the returned
145   * comparator. Null values in the list are not supported.
146   *
147   * <p>The returned comparator throws an {@link ClassCastException} when it
148   * receives an input parameter that isn't among the provided values.
149   *
150   * <p>The generated comparator is serializable if all the provided values are
151   * serializable.
152   *
153   * @param valuesInOrder the values that the returned comparator will be able
154   *     to compare, in the order the comparator should induce
155   * @return the comparator described above
156   * @throws NullPointerException if any of the provided values is null
157   * @throws IllegalArgumentException if {@code valuesInOrder} contains any
158   *     duplicate values (according to {@link Object#equals})
159   */
160  @GwtCompatible(serializable = true)
161  public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
162    return new ExplicitOrdering<T>(valuesInOrder);
163  }
164
165  /**
166   * Returns an ordering that compares objects according to the order in
167   * which they are given to this method. Only objects present in the argument
168   * list (according to {@link Object#equals}) may be compared. This comparator
169   * imposes a "partial ordering" over the type {@code T}. Null values in the
170   * argument list are not supported.
171   *
172   * <p>The returned comparator throws a {@link ClassCastException} when it
173   * receives an input parameter that isn't among the provided values.
174   *
175   * <p>The generated comparator is serializable if all the provided values are
176   * serializable.
177   *
178   * @param leastValue the value which the returned comparator should consider
179   *     the "least" of all values
180   * @param remainingValuesInOrder the rest of the values that the returned
181   *     comparator will be able to compare, in the order the comparator should
182   *     follow
183   * @return the comparator described above
184   * @throws NullPointerException if any of the provided values is null
185   * @throws IllegalArgumentException if any duplicate values (according to
186   *     {@link Object#equals(Object)}) are present among the method arguments
187   */
188  @GwtCompatible(serializable = true)
189  public static <T> Ordering<T> explicit(
190      T leastValue, T... remainingValuesInOrder) {
191    return explicit(Lists.asList(leastValue, remainingValuesInOrder));
192  }
193
194  // Ordering<Object> singletons
195
196  /**
197   * Returns an ordering which treats all values as equal, indicating "no
198   * ordering." Passing this ordering to any <i>stable</i> sort algorithm
199   * results in no change to the order of elements. Note especially that {@link
200   * #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the
201   * returned instance these are implemented by simply copying the source list.
202   *
203   * <p>Example: <pre>   {@code
204   *
205   *   Ordering.allEqual().nullsLast().sortedCopy(
206   *       asList(t, null, e, s, null, t, null))}</pre>
207   *
208   * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns
209   * {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison
210   * order of those three values (which might not even implement {@link
211   * Comparable} at all).
212   *
213   * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with
214   * equals</i> (as defined {@linkplain Comparator here}). Avoid its use in
215   * APIs, such as {@link TreeSet#TreeSet(Comparator)}, where such consistency
216   * is expected.
217   *
218   * <p>The returned comparator is serializable.
219   *
220   * @since 13.0
221   */
222  @GwtCompatible(serializable = true)
223  @SuppressWarnings("unchecked")
224  public static Ordering<Object> allEqual() {
225    return AllEqualOrdering.INSTANCE;
226  }
227
228  /**
229   * Returns an ordering that compares objects by the natural ordering of their
230   * string representations as returned by {@code toString()}. It does not
231   * support null values.
232   *
233   * <p>The comparator is serializable.
234   */
235  @GwtCompatible(serializable = true)
236  public static Ordering<Object> usingToString() {
237    return UsingToStringOrdering.INSTANCE;
238  }
239
240  /**
241   * Returns an arbitrary ordering over all objects, for which {@code compare(a,
242   * b) == 0} implies {@code a == b} (identity equality). There is no meaning
243   * whatsoever to the order imposed, but it is constant for the life of the VM.
244   *
245   * <p>Because the ordering is identity-based, it is not "consistent with
246   * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use
247   * caution when building a {@link SortedSet} or {@link SortedMap} from it, as
248   * the resulting collection will not behave exactly according to spec.
249   *
250   * <p>This ordering is not serializable, as its implementation relies on
251   * {@link System#identityHashCode(Object)}, so its behavior cannot be
252   * preserved across serialization.
253   *
254   * @since 2.0
255   */
256  public static Ordering<Object> arbitrary() {
257    return ArbitraryOrderingHolder.ARBITRARY_ORDERING;
258  }
259
260  private static class ArbitraryOrderingHolder {
261    static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering();
262  }
263
264  @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> {
265    @SuppressWarnings("deprecation") // TODO(kevinb): ?
266    private Map<Object, Integer> uids =
267        Platform.tryWeakKeys(new MapMaker()).makeComputingMap(
268            new Function<Object, Integer>() {
269              final AtomicInteger counter = new AtomicInteger(0);
270              @Override
271              public Integer apply(Object from) {
272                return counter.getAndIncrement();
273              }
274            });
275
276    @Override public int compare(Object left, Object right) {
277      if (left == right) {
278        return 0;
279      } else if (left == null) {
280        return -1;
281      } else if (right == null) {
282        return 1;
283      }
284      int leftCode = identityHashCode(left);
285      int rightCode = identityHashCode(right);
286      if (leftCode != rightCode) {
287        return leftCode < rightCode ? -1 : 1;
288      }
289
290      // identityHashCode collision (rare, but not as rare as you'd think)
291      int result = uids.get(left).compareTo(uids.get(right));
292      if (result == 0) {
293        throw new AssertionError(); // extremely, extremely unlikely.
294      }
295      return result;
296    }
297
298    @Override public String toString() {
299      return "Ordering.arbitrary()";
300    }
301
302    /*
303     * We need to be able to mock identityHashCode() calls for tests, because it
304     * can take 1-10 seconds to find colliding objects. Mocking frameworks that
305     * can do magic to mock static method calls still can't do so for a system
306     * class, so we need the indirection. In production, Hotspot should still
307     * recognize that the call is 1-morphic and should still be willing to
308     * inline it if necessary.
309     */
310    int identityHashCode(Object object) {
311      return System.identityHashCode(object);
312    }
313  }
314
315  // Constructor
316
317  /**
318   * Constructs a new instance of this class (only invokable by the subclass
319   * constructor, typically implicit).
320   */
321  protected Ordering() {}
322
323  // Instance-based factories (and any static equivalents)
324
325  /**
326   * Returns the reverse of this ordering; the {@code Ordering} equivalent to
327   * {@link Collections#reverseOrder(Comparator)}.
328   */
329  // type parameter <S> lets us avoid the extra <String> in statements like:
330  // Ordering<String> o = Ordering.<String>natural().reverse();
331  @GwtCompatible(serializable = true)
332  public <S extends T> Ordering<S> reverse() {
333    return new ReverseOrdering<S>(this);
334  }
335
336  /**
337   * Returns an ordering that treats {@code null} as less than all other values
338   * and uses {@code this} to compare non-null values.
339   */
340  // type parameter <S> lets us avoid the extra <String> in statements like:
341  // Ordering<String> o = Ordering.<String>natural().nullsFirst();
342  @GwtCompatible(serializable = true)
343  public <S extends T> Ordering<S> nullsFirst() {
344    return new NullsFirstOrdering<S>(this);
345  }
346
347  /**
348   * Returns an ordering that treats {@code null} as greater than all other
349   * values and uses this ordering to compare non-null values.
350   */
351  // type parameter <S> lets us avoid the extra <String> in statements like:
352  // Ordering<String> o = Ordering.<String>natural().nullsLast();
353  @GwtCompatible(serializable = true)
354  public <S extends T> Ordering<S> nullsLast() {
355    return new NullsLastOrdering<S>(this);
356  }
357
358  /**
359   * Returns a new ordering on {@code F} which orders elements by first applying
360   * a function to them, then comparing those results using {@code this}. For
361   * example, to compare objects by their string forms, in a case-insensitive
362   * manner, use: <pre>   {@code
363   *
364   *   Ordering.from(String.CASE_INSENSITIVE_ORDER)
365   *       .onResultOf(Functions.toStringFunction())}</pre>
366   */
367  @GwtCompatible(serializable = true)
368  public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
369    return new ByFunctionOrdering<F, T>(function, this);
370  }
371
372  <T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() {
373    return onResultOf(Maps.<T2>keyFunction());
374  }
375
376  /**
377   * Returns an ordering which first uses the ordering {@code this}, but which
378   * in the event of a "tie", then delegates to {@code secondaryComparator}.
379   * For example, to sort a bug list first by status and second by priority, you
380   * might use {@code byStatus.compound(byPriority)}. For a compound ordering
381   * with three or more components, simply chain multiple calls to this method.
382   *
383   * <p>An ordering produced by this method, or a chain of calls to this method,
384   * is equivalent to one created using {@link Ordering#compound(Iterable)} on
385   * the same component comparators.
386   */
387  @GwtCompatible(serializable = true)
388  public <U extends T> Ordering<U> compound(
389      Comparator<? super U> secondaryComparator) {
390    return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
391  }
392
393  /**
394   * Returns an ordering which tries each given comparator in order until a
395   * non-zero result is found, returning that result, and returning zero only if
396   * all comparators return zero. The returned ordering is based on the state of
397   * the {@code comparators} iterable at the time it was provided to this
398   * method.
399   *
400   * <p>The returned ordering is equivalent to that produced using {@code
401   * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
402   *
403   * <p><b>Warning:</b> Supplying an argument with undefined iteration order,
404   * such as a {@link HashSet}, will produce non-deterministic results.
405   *
406   * @param comparators the comparators to try in order
407   */
408  @GwtCompatible(serializable = true)
409  public static <T> Ordering<T> compound(
410      Iterable<? extends Comparator<? super T>> comparators) {
411    return new CompoundOrdering<T>(comparators);
412  }
413
414  /**
415   * Returns a new ordering which sorts iterables by comparing corresponding
416   * elements pairwise until a nonzero result is found; imposes "dictionary
417   * order". If the end of one iterable is reached, but not the other, the
418   * shorter iterable is considered to be less than the longer one. For example,
419   * a lexicographical natural ordering over integers considers {@code
420   * [] < [1] < [1, 1] < [1, 2] < [2]}.
421   *
422   * <p>Note that {@code ordering.lexicographical().reverse()} is not
423   * equivalent to {@code ordering.reverse().lexicographical()} (consider how
424   * each would order {@code [1]} and {@code [1, 1]}).
425   *
426   * @since 2.0
427   */
428  @GwtCompatible(serializable = true)
429  // type parameter <S> lets us avoid the extra <String> in statements like:
430  // Ordering<Iterable<String>> o =
431  //     Ordering.<String>natural().lexicographical();
432  public <S extends T> Ordering<Iterable<S>> lexicographical() {
433    /*
434     * Note that technically the returned ordering should be capable of
435     * handling not just {@code Iterable<S>} instances, but also any {@code
436     * Iterable<? extends S>}. However, the need for this comes up so rarely
437     * that it doesn't justify making everyone else deal with the very ugly
438     * wildcard.
439     */
440    return new LexicographicalOrdering<S>(this);
441  }
442
443  // Regular instance methods
444
445  // Override to add @Nullable
446  @Override public abstract int compare(@Nullable T left, @Nullable T right);
447
448  /**
449   * Returns the least of the specified values according to this ordering. If
450   * there are multiple least values, the first of those is returned. The
451   * iterator will be left exhausted: its {@code hasNext()} method will return
452   * {@code false}.
453   *
454   * @param iterator the iterator whose minimum element is to be determined
455   * @throws NoSuchElementException if {@code iterator} is empty
456   * @throws ClassCastException if the parameters are not <i>mutually
457   *     comparable</i> under this ordering.
458   *
459   * @since 11.0
460   */
461  public <E extends T> E min(Iterator<E> iterator) {
462    // let this throw NoSuchElementException as necessary
463    E minSoFar = iterator.next();
464
465    while (iterator.hasNext()) {
466      minSoFar = min(minSoFar, iterator.next());
467    }
468
469    return minSoFar;
470  }
471
472  /**
473   * Returns the least of the specified values according to this ordering. If
474   * there are multiple least values, the first of those is returned.
475   *
476   * @param iterable the iterable whose minimum element is to be determined
477   * @throws NoSuchElementException if {@code iterable} is empty
478   * @throws ClassCastException if the parameters are not <i>mutually
479   *     comparable</i> under this ordering.
480   */
481  public <E extends T> E min(Iterable<E> iterable) {
482    return min(iterable.iterator());
483  }
484
485  /**
486   * Returns the lesser of the two values according to this ordering. If the
487   * values compare as 0, the first is returned.
488   *
489   * <p><b>Implementation note:</b> this method is invoked by the default
490   * implementations of the other {@code min} overloads, so overriding it will
491   * affect their behavior.
492   *
493   * @param a value to compare, returned if less than or equal to b.
494   * @param b value to compare.
495   * @throws ClassCastException if the parameters are not <i>mutually
496   *     comparable</i> under this ordering.
497   */
498  public <E extends T> E min(@Nullable E a, @Nullable E b) {
499    return (compare(a, b) <= 0) ? a : b;
500  }
501
502  /**
503   * Returns the least of the specified values according to this ordering. If
504   * there are multiple least values, the first of those is returned.
505   *
506   * @param a value to compare, returned if less than or equal to the rest.
507   * @param b value to compare
508   * @param c value to compare
509   * @param rest values to compare
510   * @throws ClassCastException if the parameters are not <i>mutually
511   *     comparable</i> under this ordering.
512   */
513  public <E extends T> E min(
514      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
515    E minSoFar = min(min(a, b), c);
516
517    for (E r : rest) {
518      minSoFar = min(minSoFar, r);
519    }
520
521    return minSoFar;
522  }
523
524  /**
525   * Returns the greatest of the specified values according to this ordering. If
526   * there are multiple greatest values, the first of those is returned. The
527   * iterator will be left exhausted: its {@code hasNext()} method will return
528   * {@code false}.
529   *
530   * @param iterator the iterator whose maximum element is to be determined
531   * @throws NoSuchElementException if {@code iterator} is empty
532   * @throws ClassCastException if the parameters are not <i>mutually
533   *     comparable</i> under this ordering.
534   *
535   * @since 11.0
536   */
537  public <E extends T> E max(Iterator<E> iterator) {
538    // let this throw NoSuchElementException as necessary
539    E maxSoFar = iterator.next();
540
541    while (iterator.hasNext()) {
542      maxSoFar = max(maxSoFar, iterator.next());
543    }
544
545    return maxSoFar;
546  }
547
548  /**
549   * Returns the greatest of the specified values according to this ordering. If
550   * there are multiple greatest values, the first of those is returned.
551   *
552   * @param iterable the iterable whose maximum element is to be determined
553   * @throws NoSuchElementException if {@code iterable} is empty
554   * @throws ClassCastException if the parameters are not <i>mutually
555   *     comparable</i> under this ordering.
556   */
557  public <E extends T> E max(Iterable<E> iterable) {
558    return max(iterable.iterator());
559  }
560
561  /**
562   * Returns the greater of the two values according to this ordering. If the
563   * values compare as 0, the first is returned.
564   *
565   * <p><b>Implementation note:</b> this method is invoked by the default
566   * implementations of the other {@code max} overloads, so overriding it will
567   * affect their behavior.
568   *
569   * @param a value to compare, returned if greater than or equal to b.
570   * @param b value to compare.
571   * @throws ClassCastException if the parameters are not <i>mutually
572   *     comparable</i> under this ordering.
573   */
574  public <E extends T> E max(@Nullable E a, @Nullable E b) {
575    return (compare(a, b) >= 0) ? a : b;
576  }
577
578  /**
579   * Returns the greatest of the specified values according to this ordering. If
580   * there are multiple greatest values, the first of those is returned.
581   *
582   * @param a value to compare, returned if greater than or equal to the rest.
583   * @param b value to compare
584   * @param c value to compare
585   * @param rest values to compare
586   * @throws ClassCastException if the parameters are not <i>mutually
587   *     comparable</i> under this ordering.
588   */
589  public <E extends T> E max(
590      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
591    E maxSoFar = max(max(a, b), c);
592
593    for (E r : rest) {
594      maxSoFar = max(maxSoFar, r);
595    }
596
597    return maxSoFar;
598  }
599
600  /**
601   * Returns the {@code k} least elements of the given iterable according to
602   * this ordering, in order from least to greatest.  If there are fewer than
603   * {@code k} elements present, all will be included.
604   *
605   * <p>The implementation does not necessarily use a <i>stable</i> sorting
606   * algorithm; when multiple elements are equivalent, it is undefined which
607   * will come first.
608   *
609   * @return an immutable {@code RandomAccess} list of the {@code k} least
610   *     elements in ascending order
611   * @throws IllegalArgumentException if {@code k} is negative
612   * @since 8.0
613   */
614  public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
615    if (iterable instanceof Collection) {
616      Collection<E> collection = (Collection<E>) iterable;
617      if (collection.size() <= 2L * k) {
618        // In this case, just dumping the collection to an array and sorting is
619        // faster than using the implementation for Iterator, which is
620        // specialized for k much smaller than n.
621
622        @SuppressWarnings("unchecked") // c only contains E's and doesn't escape
623        E[] array = (E[]) collection.toArray();
624        Arrays.sort(array, this);
625        if (array.length > k) {
626          array = ObjectArrays.arraysCopyOf(array, k);
627        }
628        return Collections.unmodifiableList(Arrays.asList(array));
629      }
630    }
631    return leastOf(iterable.iterator(), k);
632  }
633
634  /**
635   * Returns the {@code k} least elements from the given iterator according to
636   * this ordering, in order from least to greatest.  If there are fewer than
637   * {@code k} elements present, all will be included.
638   *
639   * <p>The implementation does not necessarily use a <i>stable</i> sorting
640   * algorithm; when multiple elements are equivalent, it is undefined which
641   * will come first.
642   *
643   * @return an immutable {@code RandomAccess} list of the {@code k} least
644   *     elements in ascending order
645   * @throws IllegalArgumentException if {@code k} is negative
646   * @since 14.0
647   */
648  public <E extends T> List<E> leastOf(Iterator<E> elements, int k) {
649    checkNotNull(elements);
650    checkNonnegative(k, "k");
651
652    if (k == 0 || !elements.hasNext()) {
653      return ImmutableList.of();
654    } else if (k >= Integer.MAX_VALUE / 2) {
655      // k is really large; just do a straightforward sorted-copy-and-sublist
656      ArrayList<E> list = Lists.newArrayList(elements);
657      Collections.sort(list, this);
658      if (list.size() > k) {
659        list.subList(k, list.size()).clear();
660      }
661      list.trimToSize();
662      return Collections.unmodifiableList(list);
663    }
664
665    /*
666     * Our goal is an O(n) algorithm using only one pass and O(k) additional
667     * memory.
668     *
669     * We use the following algorithm: maintain a buffer of size 2*k. Every time
670     * the buffer gets full, find the median and partition around it, keeping
671     * only the lowest k elements.  This requires n/k find-median-and-partition
672     * steps, each of which take O(k) time with a traditional quickselect.
673     *
674     * After sorting the output, the whole algorithm is O(n + k log k). It
675     * degrades gracefully for worst-case input (descending order), performs
676     * competitively or wins outright for randomly ordered input, and doesn't
677     * require the whole collection to fit into memory.
678     */
679    int bufferCap = k * 2;
680    @SuppressWarnings("unchecked") // we'll only put E's in
681    E[] buffer = (E[]) new Object[bufferCap];
682    E threshold = elements.next();
683    buffer[0] = threshold;
684    int bufferSize = 1;
685    // threshold is the kth smallest element seen so far.  Once bufferSize >= k,
686    // anything larger than threshold can be ignored immediately.
687
688    while (bufferSize < k && elements.hasNext()) {
689      E e = elements.next();
690      buffer[bufferSize++] = e;
691      threshold = max(threshold, e);
692    }
693
694    while (elements.hasNext()) {
695      E e = elements.next();
696      if (compare(e, threshold) >= 0) {
697        continue;
698      }
699
700      buffer[bufferSize++] = e;
701      if (bufferSize == bufferCap) {
702        // We apply the quickselect algorithm to partition about the median,
703        // and then ignore the last k elements.
704        int left = 0;
705        int right = bufferCap - 1;
706
707        int minThresholdPosition = 0;
708        // The leftmost position at which the greatest of the k lower elements
709        // -- the new value of threshold -- might be found.
710
711        while (left < right) {
712          int pivotIndex = (left + right + 1) >>> 1;
713          int pivotNewIndex = partition(buffer, left, right, pivotIndex);
714          if (pivotNewIndex > k) {
715            right = pivotNewIndex - 1;
716          } else if (pivotNewIndex < k) {
717            left = Math.max(pivotNewIndex, left + 1);
718            minThresholdPosition = pivotNewIndex;
719          } else {
720            break;
721          }
722        }
723        bufferSize = k;
724
725        threshold = buffer[minThresholdPosition];
726        for (int i = minThresholdPosition + 1; i < bufferSize; i++) {
727          threshold = max(threshold, buffer[i]);
728        }
729      }
730    }
731
732    Arrays.sort(buffer, 0, bufferSize, this);
733
734    bufferSize = Math.min(bufferSize, k);
735    return Collections.unmodifiableList(
736        Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize)));
737    // We can't use ImmutableList; we have to be null-friendly!
738  }
739
740  private <E extends T> int partition(
741      E[] values, int left, int right, int pivotIndex) {
742    E pivotValue = values[pivotIndex];
743
744    values[pivotIndex] = values[right];
745    values[right] = pivotValue;
746
747    int storeIndex = left;
748    for (int i = left; i < right; i++) {
749      if (compare(values[i], pivotValue) < 0) {
750        ObjectArrays.swap(values, storeIndex, i);
751        storeIndex++;
752      }
753    }
754    ObjectArrays.swap(values, right, storeIndex);
755    return storeIndex;
756  }
757
758  /**
759   * Returns the {@code k} greatest elements of the given iterable according to
760   * this ordering, in order from greatest to least. If there are fewer than
761   * {@code k} elements present, all will be included.
762   *
763   * <p>The implementation does not necessarily use a <i>stable</i> sorting
764   * algorithm; when multiple elements are equivalent, it is undefined which
765   * will come first.
766   *
767   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
768   *     elements in <i>descending order</i>
769   * @throws IllegalArgumentException if {@code k} is negative
770   * @since 8.0
771   */
772  public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
773    // TODO(kevinb): see if delegation is hurting performance noticeably
774    // TODO(kevinb): if we change this implementation, add full unit tests.
775    return reverse().leastOf(iterable, k);
776  }
777
778  /**
779   * Returns the {@code k} greatest elements from the given iterator according to
780   * this ordering, in order from greatest to least. If there are fewer than
781   * {@code k} elements present, all will be included.
782   *
783   * <p>The implementation does not necessarily use a <i>stable</i> sorting
784   * algorithm; when multiple elements are equivalent, it is undefined which
785   * will come first.
786   *
787   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
788   *     elements in <i>descending order</i>
789   * @throws IllegalArgumentException if {@code k} is negative
790   * @since 14.0
791   */
792  public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) {
793    return reverse().leastOf(iterator, k);
794  }
795
796  /**
797   * Returns a <b>mutable</b> list containing {@code elements} sorted by this
798   * ordering; use this only when the resulting list may need further
799   * modification, or may contain {@code null}. The input is not modified. The
800   * returned list is serializable and has random access.
801   *
802   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
803   * elements that are duplicates according to the comparator. The sort
804   * performed is <i>stable</i>, meaning that such elements will appear in the
805   * returned list in the same order they appeared in {@code elements}.
806   *
807   * <p><b>Performance note:</b> According to our
808   * benchmarking
809   * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in
810   * both time and space) than this method, and this method in turn generally
811   * performs better than copying the list and calling {@link
812   * Collections#sort(List)}.
813   */
814  public <E extends T> List<E> sortedCopy(Iterable<E> elements) {
815    @SuppressWarnings("unchecked") // does not escape, and contains only E's
816    E[] array = (E[]) Iterables.toArray(elements);
817    Arrays.sort(array, this);
818    return Lists.newArrayList(Arrays.asList(array));
819  }
820
821  /**
822   * Returns an <b>immutable</b> list containing {@code elements} sorted by this
823   * ordering. The input is not modified.
824   *
825   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
826   * elements that are duplicates according to the comparator. The sort
827   * performed is <i>stable</i>, meaning that such elements will appear in the
828   * returned list in the same order they appeared in {@code elements}.
829   *
830   * <p><b>Performance note:</b> According to our
831   * benchmarking
832   * on Open JDK 7, this method is the most efficient way to make a sorted copy
833   * of a collection.
834   *
835   * @throws NullPointerException if any of {@code elements} (or {@code
836   *     elements} itself) is null
837   * @since 3.0
838   */
839  public <E extends T> ImmutableList<E> immutableSortedCopy(
840      Iterable<E> elements) {
841    @SuppressWarnings("unchecked") // we'll only ever have E's in here
842    E[] array = (E[]) Iterables.toArray(elements);
843    for (E e : array) {
844      checkNotNull(e);
845    }
846    Arrays.sort(array, this);
847    return ImmutableList.asImmutableList(array);
848  }
849
850  /**
851   * Returns {@code true} if each element in {@code iterable} after the first is
852   * greater than or equal to the element that preceded it, according to this
853   * ordering. Note that this is always true when the iterable has fewer than
854   * two elements.
855   */
856  public boolean isOrdered(Iterable<? extends T> iterable) {
857    Iterator<? extends T> it = iterable.iterator();
858    if (it.hasNext()) {
859      T prev = it.next();
860      while (it.hasNext()) {
861        T next = it.next();
862        if (compare(prev, next) > 0) {
863          return false;
864        }
865        prev = next;
866      }
867    }
868    return true;
869  }
870
871  /**
872   * Returns {@code true} if each element in {@code iterable} after the first is
873   * <i>strictly</i> greater than the element that preceded it, according to
874   * this ordering. Note that this is always true when the iterable has fewer
875   * than two elements.
876   */
877  public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
878    Iterator<? extends T> it = iterable.iterator();
879    if (it.hasNext()) {
880      T prev = it.next();
881      while (it.hasNext()) {
882        T next = it.next();
883        if (compare(prev, next) >= 0) {
884          return false;
885        }
886        prev = next;
887      }
888    }
889    return true;
890  }
891
892  /**
893   * {@link Collections#binarySearch(List, Object, Comparator) Searches}
894   * {@code sortedList} for {@code key} using the binary search algorithm. The
895   * list must be sorted using this ordering.
896   *
897   * @param sortedList the list to be searched
898   * @param key the key to be searched for
899   */
900  public int binarySearch(List<? extends T> sortedList, @Nullable T key) {
901    return Collections.binarySearch(sortedList, key, this);
902  }
903
904  /**
905   * Exception thrown by a {@link Ordering#explicit(List)} or {@link
906   * Ordering#explicit(Object, Object[])} comparator when comparing a value
907   * outside the set of values it can compare. Extending {@link
908   * ClassCastException} may seem odd, but it is required.
909   */
910  // TODO(kevinb): make this public, document it right
911  @VisibleForTesting
912  static class IncomparableValueException extends ClassCastException {
913    final Object value;
914
915    IncomparableValueException(Object value) {
916      super("Cannot compare value: " + value);
917      this.value = value;
918    }
919
920    private static final long serialVersionUID = 0;
921  }
922
923  // Never make these public
924  static final int LEFT_IS_GREATER = 1;
925  static final int RIGHT_IS_GREATER = -1;
926}