001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkElementIndex;
021import static com.google.common.base.Preconditions.checkNotNull;
022import static com.google.common.base.Preconditions.checkPositionIndex;
023import static com.google.common.base.Preconditions.checkPositionIndexes;
024import static com.google.common.base.Preconditions.checkState;
025import static com.google.common.collect.CollectPreconditions.checkNonnegative;
026import static com.google.common.collect.CollectPreconditions.checkRemove;
027
028import com.google.common.annotations.Beta;
029import com.google.common.annotations.GwtCompatible;
030import com.google.common.annotations.GwtIncompatible;
031import com.google.common.annotations.VisibleForTesting;
032import com.google.common.base.Function;
033import com.google.common.base.Objects;
034import com.google.common.math.IntMath;
035import com.google.common.primitives.Ints;
036
037import java.io.Serializable;
038import java.math.RoundingMode;
039import java.util.AbstractList;
040import java.util.AbstractSequentialList;
041import java.util.ArrayList;
042import java.util.Arrays;
043import java.util.Collection;
044import java.util.Collections;
045import java.util.Iterator;
046import java.util.LinkedList;
047import java.util.List;
048import java.util.ListIterator;
049import java.util.NoSuchElementException;
050import java.util.RandomAccess;
051import java.util.concurrent.CopyOnWriteArrayList;
052
053import javax.annotation.Nullable;
054
055/**
056 * Static utility methods pertaining to {@link List} instances. Also see this
057 * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}.
058 *
059 * <p>See the Guava User Guide article on <a href=
060 * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Lists">
061 * {@code Lists}</a>.
062 *
063 * @author Kevin Bourrillion
064 * @author Mike Bostock
065 * @author Louis Wasserman
066 * @since 2.0 (imported from Google Collections Library)
067 */
068@GwtCompatible(emulated = true)
069public final class Lists {
070  private Lists() {}
071
072  // ArrayList
073
074  /**
075   * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and
076   * earlier).
077   *
078   * <p><b>Note:</b> if mutability is not required, use {@link
079   * ImmutableList#of()} instead.
080   *
081   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and
082   * should be treated as deprecated. Instead, use the {@code ArrayList}
083   * {@linkplain ArrayList#ArrayList() constructor} directly, taking advantage
084   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
085   */
086  @GwtCompatible(serializable = true)
087  public static <E> ArrayList<E> newArrayList() {
088    return new ArrayList<E>();
089  }
090
091  /**
092   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given
093   * elements.
094   *
095   * <p><b>Note:</b> essentially the only reason to use this method is when you
096   * will need to add or remove elements later. Otherwise, for non-null elements
097   * use {@link ImmutableList#of()} (for varargs) or {@link
098   * ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
099   * might be null, or you need support for {@link List#set(int, Object)}, use
100   * {@link Arrays#asList}.
101   *
102   * <p>Note that even when you do need the ability to add or remove, this method
103   * provides only a tiny bit of syntactic sugar for {@code newArrayList(}{@link
104   * Arrays#asList asList}{@code (...))}, or for creating an empty list then
105   * calling {@link Collections#addAll}. This method is not actually very useful
106   * and will likely be deprecated in the future.
107   */
108  @GwtCompatible(serializable = true)
109  public static <E> ArrayList<E> newArrayList(E... elements) {
110    checkNotNull(elements); // for GWT
111    // Avoid integer overflow when a large array is passed in
112    int capacity = computeArrayListCapacity(elements.length);
113    ArrayList<E> list = new ArrayList<E>(capacity);
114    Collections.addAll(list, elements);
115    return list;
116  }
117
118  @VisibleForTesting static int computeArrayListCapacity(int arraySize) {
119    checkNonnegative(arraySize, "arraySize");
120
121    // TODO(kevinb): Figure out the right behavior, and document it
122    return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
123  }
124
125  /**
126   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given
127   * elements; a very thin shortcut for creating an empty list then calling
128   * {@link Iterables#addAll}.
129   *
130   * <p><b>Note:</b> if mutability is not required and the elements are
131   * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change
132   * {@code elements} to be a {@link FluentIterable} and call
133   * {@code elements.toList()}.)
134   *
135   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link
136   * Collection}, you don't need this method. Use the {@code ArrayList}
137   * {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking
138   * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
139   */
140  @GwtCompatible(serializable = true)
141  public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) {
142    checkNotNull(elements); // for GWT
143    // Let ArrayList's sizing logic work, if possible
144    return (elements instanceof Collection)
145        ? new ArrayList<E>(Collections2.cast(elements))
146        : newArrayList(elements.iterator());
147  }
148
149  /**
150   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given
151   * elements; a very thin shortcut for creating an empty list and then calling
152   * {@link Iterators#addAll}.
153   *
154   * <p><b>Note:</b> if mutability is not required and the elements are
155   * non-null, use {@link ImmutableList#copyOf(Iterator)} instead.
156   */
157  @GwtCompatible(serializable = true)
158  public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) {
159    ArrayList<E> list = newArrayList();
160    Iterators.addAll(list, elements);
161    return list;
162  }
163
164  /**
165   * Creates an {@code ArrayList} instance backed by an array with the specified
166   * initial size; simply delegates to {@link ArrayList#ArrayList(int)}.
167   *
168   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and
169   * should be treated as deprecated. Instead, use {@code new }{@link
170   * ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking
171   * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
172   * (Unlike here, there is no risk of overload ambiguity, since the {@code
173   * ArrayList} constructors very wisely did not accept varargs.)
174   *
175   * @param initialArraySize the exact size of the initial backing array for
176   *     the returned array list ({@code ArrayList} documentation calls this
177   *     value the "capacity")
178   * @return a new, empty {@code ArrayList} which is guaranteed not to resize
179   *     itself unless its size reaches {@code initialArraySize + 1}
180   * @throws IllegalArgumentException if {@code initialArraySize} is negative
181   */
182  @GwtCompatible(serializable = true)
183  public static <E> ArrayList<E> newArrayListWithCapacity(
184      int initialArraySize) {
185    checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
186    return new ArrayList<E>(initialArraySize);
187  }
188
189  /**
190   * Creates an {@code ArrayList} instance to hold {@code estimatedSize}
191   * elements, <i>plus</i> an unspecified amount of padding; you almost
192   * certainly mean to call {@link #newArrayListWithCapacity} (see that method
193   * for further advice on usage).
194   *
195   * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case
196   * that you do want some amount of padding, it's best if you choose your
197   * desired amount explicitly.
198   *
199   * @param estimatedSize an estimate of the eventual {@link List#size()} of
200   *     the new list
201   * @return a new, empty {@code ArrayList}, sized appropriately to hold the
202   *     estimated number of elements
203   * @throws IllegalArgumentException if {@code estimatedSize} is negative
204   */
205  @GwtCompatible(serializable = true)
206  public static <E> ArrayList<E> newArrayListWithExpectedSize(
207      int estimatedSize) {
208    return new ArrayList<E>(computeArrayListCapacity(estimatedSize));
209  }
210
211  // LinkedList
212
213  /**
214   * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and
215   * earlier).
216   *
217   * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link
218   * ImmutableList#of()} instead.
219   *
220   * <p><b>Performance note:</b> {@link ArrayList} and {@link
221   * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in
222   * certain rare and specific situations. Unless you have spent a lot of time
223   * benchmarking your specific needs, use one of those instead.
224   *
225   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and
226   * should be treated as deprecated. Instead, use the {@code LinkedList}
227   * {@linkplain LinkedList#LinkedList() constructor} directly, taking advantage
228   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
229   */
230  @GwtCompatible(serializable = true)
231  public static <E> LinkedList<E> newLinkedList() {
232    return new LinkedList<E>();
233  }
234
235  /**
236   * Creates a <i>mutable</i> {@code LinkedList} instance containing the given
237   * elements; a very thin shortcut for creating an empty list then calling
238   * {@link Iterables#addAll}.
239   *
240   * <p><b>Note:</b> if mutability is not required and the elements are
241   * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change
242   * {@code elements} to be a {@link FluentIterable} and call
243   * {@code elements.toList()}.)
244   *
245   * <p><b>Performance note:</b> {@link ArrayList} and {@link
246   * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in
247   * certain rare and specific situations. Unless you have spent a lot of time
248   * benchmarking your specific needs, use one of those instead.
249   *
250   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link
251   * Collection}, you don't need this method. Use the {@code LinkedList}
252   * {@linkplain LinkedList#LinkedList(Collection) constructor} directly, taking
253   * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
254   */
255  @GwtCompatible(serializable = true)
256  public static <E> LinkedList<E> newLinkedList(
257      Iterable<? extends E> elements) {
258    LinkedList<E> list = newLinkedList();
259    Iterables.addAll(list, elements);
260    return list;
261  }
262
263  /**
264   * Creates an empty {@code CopyOnWriteArrayList} instance.
265   *
266   * <p><b>Note:</b> if you need an immutable empty {@link List}, use
267   * {@link Collections#emptyList} instead.
268   *
269   * @return a new, empty {@code CopyOnWriteArrayList}
270   * @since 12.0
271   */
272  @GwtIncompatible("CopyOnWriteArrayList")
273  public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() {
274    return new CopyOnWriteArrayList<E>();
275  }
276
277  /**
278   * Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
279   *
280   * @param elements the elements that the list should contain, in order
281   * @return a new {@code CopyOnWriteArrayList} containing those elements
282   * @since 12.0
283   */
284  @GwtIncompatible("CopyOnWriteArrayList")
285  public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList(
286      Iterable<? extends E> elements) {
287    // We copy elements to an ArrayList first, rather than incurring the
288    // quadratic cost of adding them to the COWAL directly.
289    Collection<? extends E> elementsCollection = (elements instanceof Collection)
290        ? Collections2.cast(elements)
291        : newArrayList(elements);
292    return new CopyOnWriteArrayList<E>(elementsCollection);
293  }
294
295  /**
296   * Returns an unmodifiable list containing the specified first element and
297   * backed by the specified array of additional elements. Changes to the {@code
298   * rest} array will be reflected in the returned list. Unlike {@link
299   * Arrays#asList}, the returned list is unmodifiable.
300   *
301   * <p>This is useful when a varargs method needs to use a signature such as
302   * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload
303   * ambiguity or to enforce a minimum argument count.
304   *
305   * <p>The returned list is serializable and implements {@link RandomAccess}.
306   *
307   * @param first the first element
308   * @param rest an array of additional elements, possibly empty
309   * @return an unmodifiable list containing the specified elements
310   */
311  public static <E> List<E> asList(@Nullable E first, E[] rest) {
312    return new OnePlusArrayList<E>(first, rest);
313  }
314
315  /** @see Lists#asList(Object, Object[]) */
316  private static class OnePlusArrayList<E> extends AbstractList<E>
317      implements Serializable, RandomAccess {
318    final E first;
319    final E[] rest;
320
321    OnePlusArrayList(@Nullable E first, E[] rest) {
322      this.first = first;
323      this.rest = checkNotNull(rest);
324    }
325    @Override public int size() {
326      return rest.length + 1;
327    }
328    @Override public E get(int index) {
329      // check explicitly so the IOOBE will have the right message
330      checkElementIndex(index, size());
331      return (index == 0) ? first : rest[index - 1];
332    }
333    private static final long serialVersionUID = 0;
334  }
335
336  /**
337   * Returns an unmodifiable list containing the specified first and second
338   * element, and backed by the specified array of additional elements. Changes
339   * to the {@code rest} array will be reflected in the returned list. Unlike
340   * {@link Arrays#asList}, the returned list is unmodifiable.
341   *
342   * <p>This is useful when a varargs method needs to use a signature such as
343   * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid
344   * overload ambiguity or to enforce a minimum argument count.
345   *
346   * <p>The returned list is serializable and implements {@link RandomAccess}.
347   *
348   * @param first the first element
349   * @param second the second element
350   * @param rest an array of additional elements, possibly empty
351   * @return an unmodifiable list containing the specified elements
352   */
353  public static <E> List<E> asList(
354      @Nullable E first, @Nullable E second, E[] rest) {
355    return new TwoPlusArrayList<E>(first, second, rest);
356  }
357
358  /** @see Lists#asList(Object, Object, Object[]) */
359  private static class TwoPlusArrayList<E> extends AbstractList<E>
360      implements Serializable, RandomAccess {
361    final E first;
362    final E second;
363    final E[] rest;
364
365    TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) {
366      this.first = first;
367      this.second = second;
368      this.rest = checkNotNull(rest);
369    }
370    @Override public int size() {
371      return rest.length + 2;
372    }
373    @Override public E get(int index) {
374      switch (index) {
375        case 0:
376          return first;
377        case 1:
378          return second;
379        default:
380          // check explicitly so the IOOBE will have the right message
381          checkElementIndex(index, size());
382          return rest[index - 2];
383      }
384    }
385    private static final long serialVersionUID = 0;
386  }
387
388  /**
389   * Returns every possible list that can be formed by choosing one element
390   * from each of the given lists in order; the "n-ary
391   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
392   * product</a>" of the lists. For example: <pre>   {@code
393   *
394   *   Lists.cartesianProduct(ImmutableList.of(
395   *       ImmutableList.of(1, 2),
396   *       ImmutableList.of("A", "B", "C")))}</pre>
397   *
398   * <p>returns a list containing six lists in the following order:
399   *
400   * <ul>
401   * <li>{@code ImmutableList.of(1, "A")}
402   * <li>{@code ImmutableList.of(1, "B")}
403   * <li>{@code ImmutableList.of(1, "C")}
404   * <li>{@code ImmutableList.of(2, "A")}
405   * <li>{@code ImmutableList.of(2, "B")}
406   * <li>{@code ImmutableList.of(2, "C")}
407   * </ul>
408   *
409   * <p>The result is guaranteed to be in the "traditional", lexicographical
410   * order for Cartesian products that you would get from nesting for loops:
411   * <pre>   {@code
412   *
413   *   for (B b0 : lists.get(0)) {
414   *     for (B b1 : lists.get(1)) {
415   *       ...
416   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
417   *       // operate on tuple
418   *     }
419   *   }}</pre>
420   *
421   * <p>Note that if any input list is empty, the Cartesian product will also be
422   * empty. If no lists at all are provided (an empty list), the resulting
423   * Cartesian product has one element, an empty list (counter-intuitive, but
424   * mathematically consistent).
425   *
426   * <p><i>Performance notes:</i> while the cartesian product of lists of size
427   * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory
428   * consumption is much smaller. When the cartesian product is constructed, the
429   * input lists are merely copied. Only as the resulting list is iterated are
430   * the individual lists created, and these are not retained after iteration.
431   *
432   * @param lists the lists to choose elements from, in the order that
433   *     the elements chosen from those lists should appear in the resulting
434   *     lists
435   * @param <B> any common base class shared by all axes (often just {@link
436   *     Object})
437   * @return the Cartesian product, as an immutable list containing immutable
438   *     lists
439   * @throws IllegalArgumentException if the size of the cartesian product would
440   *     be greater than {@link Integer#MAX_VALUE}
441   * @throws NullPointerException if {@code lists}, any one of the {@code lists},
442   *     or any element of a provided list is null
443   */ static <B> List<List<B>>
444      cartesianProduct(List<? extends List<? extends B>> lists) {
445    return CartesianList.create(lists);
446  }
447
448  /**
449   * Returns every possible list that can be formed by choosing one element
450   * from each of the given lists in order; the "n-ary
451   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
452   * product</a>" of the lists. For example: <pre>   {@code
453   *
454   *   Lists.cartesianProduct(ImmutableList.of(
455   *       ImmutableList.of(1, 2),
456   *       ImmutableList.of("A", "B", "C")))}</pre>
457   *
458   * <p>returns a list containing six lists in the following order:
459   *
460   * <ul>
461   * <li>{@code ImmutableList.of(1, "A")}
462   * <li>{@code ImmutableList.of(1, "B")}
463   * <li>{@code ImmutableList.of(1, "C")}
464   * <li>{@code ImmutableList.of(2, "A")}
465   * <li>{@code ImmutableList.of(2, "B")}
466   * <li>{@code ImmutableList.of(2, "C")}
467   * </ul>
468   *
469   * <p>The result is guaranteed to be in the "traditional", lexicographical
470   * order for Cartesian products that you would get from nesting for loops:
471   * <pre>   {@code
472   *
473   *   for (B b0 : lists.get(0)) {
474   *     for (B b1 : lists.get(1)) {
475   *       ...
476   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
477   *       // operate on tuple
478   *     }
479   *   }}</pre>
480   *
481   * <p>Note that if any input list is empty, the Cartesian product will also be
482   * empty. If no lists at all are provided (an empty list), the resulting
483   * Cartesian product has one element, an empty list (counter-intuitive, but
484   * mathematically consistent).
485   *
486   * <p><i>Performance notes:</i> while the cartesian product of lists of size
487   * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory
488   * consumption is much smaller. When the cartesian product is constructed, the
489   * input lists are merely copied. Only as the resulting list is iterated are
490   * the individual lists created, and these are not retained after iteration.
491   *
492   * @param lists the lists to choose elements from, in the order that
493   *     the elements chosen from those lists should appear in the resulting
494   *     lists
495   * @param <B> any common base class shared by all axes (often just {@link
496   *     Object})
497   * @return the Cartesian product, as an immutable list containing immutable
498   *     lists
499   * @throws IllegalArgumentException if the size of the cartesian product would
500   *     be greater than {@link Integer#MAX_VALUE}
501   * @throws NullPointerException if {@code lists}, any one of the
502   *     {@code lists}, or any element of a provided list is null
503   */ static <B> List<List<B>>
504      cartesianProduct(List<? extends B>... lists) {
505    return cartesianProduct(Arrays.asList(lists));
506  }
507
508  /**
509   * Returns a list that applies {@code function} to each element of {@code
510   * fromList}. The returned list is a transformed view of {@code fromList};
511   * changes to {@code fromList} will be reflected in the returned list and vice
512   * versa.
513   *
514   * <p>Since functions are not reversible, the transform is one-way and new
515   * items cannot be stored in the returned list. The {@code add},
516   * {@code addAll} and {@code set} methods are unsupported in the returned
517   * list.
518   *
519   * <p>The function is applied lazily, invoked when needed. This is necessary
520   * for the returned list to be a view, but it means that the function will be
521   * applied many times for bulk operations like {@link List#contains} and
522   * {@link List#hashCode}. For this to perform well, {@code function} should be
523   * fast. To avoid lazy evaluation when the returned list doesn't need to be a
524   * view, copy the returned list into a new list of your choosing.
525   *
526   * <p>If {@code fromList} implements {@link RandomAccess}, so will the
527   * returned list. The returned list is threadsafe if the supplied list and
528   * function are.
529   *
530   * <p>If only a {@code Collection} or {@code Iterable} input is available, use
531   * {@link Collections2#transform} or {@link Iterables#transform}.
532   *
533   * <p><b>Note:</b> serializing the returned list is implemented by serializing
534   * {@code fromList}, its contents, and {@code function} -- <i>not</i> by
535   * serializing the transformed values. This can lead to surprising behavior,
536   * so serializing the returned list is <b>not recommended</b>. Instead,
537   * copy the list using {@link ImmutableList#copyOf(Collection)} (for example),
538   * then serialize the copy. Other methods similar to this do not implement
539   * serialization at all for this reason.
540   */
541  public static <F, T> List<T> transform(
542      List<F> fromList, Function<? super F, ? extends T> function) {
543    return (fromList instanceof RandomAccess)
544        ? new TransformingRandomAccessList<F, T>(fromList, function)
545        : new TransformingSequentialList<F, T>(fromList, function);
546  }
547
548  /**
549   * Implementation of a sequential transforming list.
550   *
551   * @see Lists#transform
552   */
553  private static class TransformingSequentialList<F, T>
554      extends AbstractSequentialList<T> implements Serializable {
555    final List<F> fromList;
556    final Function<? super F, ? extends T> function;
557
558    TransformingSequentialList(
559        List<F> fromList, Function<? super F, ? extends T> function) {
560      this.fromList = checkNotNull(fromList);
561      this.function = checkNotNull(function);
562    }
563    /**
564     * The default implementation inherited is based on iteration and removal of
565     * each element which can be overkill. That's why we forward this call
566     * directly to the backing list.
567     */
568    @Override public void clear() {
569      fromList.clear();
570    }
571    @Override public int size() {
572      return fromList.size();
573    }
574    @Override public ListIterator<T> listIterator(final int index) {
575      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
576        @Override
577        T transform(F from) {
578          return function.apply(from);
579        }
580      };
581    }
582
583    private static final long serialVersionUID = 0;
584  }
585
586  /**
587   * Implementation of a transforming random access list. We try to make as many
588   * of these methods pass-through to the source list as possible so that the
589   * performance characteristics of the source list and transformed list are
590   * similar.
591   *
592   * @see Lists#transform
593   */
594  private static class TransformingRandomAccessList<F, T>
595      extends AbstractList<T> implements RandomAccess, Serializable {
596    final List<F> fromList;
597    final Function<? super F, ? extends T> function;
598
599    TransformingRandomAccessList(
600        List<F> fromList, Function<? super F, ? extends T> function) {
601      this.fromList = checkNotNull(fromList);
602      this.function = checkNotNull(function);
603    }
604    @Override public void clear() {
605      fromList.clear();
606    }
607    @Override public T get(int index) {
608      return function.apply(fromList.get(index));
609    }
610    @Override public Iterator<T> iterator() {
611      return listIterator();
612    }
613    @Override public ListIterator<T> listIterator(int index) {
614      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
615        @Override
616        T transform(F from) {
617          return function.apply(from);
618        }
619      };
620    }
621    @Override public boolean isEmpty() {
622      return fromList.isEmpty();
623    }
624    @Override public T remove(int index) {
625      return function.apply(fromList.remove(index));
626    }
627    @Override public int size() {
628      return fromList.size();
629    }
630    private static final long serialVersionUID = 0;
631  }
632
633  /**
634   * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list,
635   * each of the same size (the final list may be smaller). For example,
636   * partitioning a list containing {@code [a, b, c, d, e]} with a partition
637   * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing
638   * two inner lists of three and two elements, all in the original order.
639   *
640   * <p>The outer list is unmodifiable, but reflects the latest state of the
641   * source list. The inner lists are sublist views of the original list,
642   * produced on demand using {@link List#subList(int, int)}, and are subject
643   * to all the usual caveats about modification as explained in that API.
644   *
645   * @param list the list to return consecutive sublists of
646   * @param size the desired size of each sublist (the last may be
647   *     smaller)
648   * @return a list of consecutive sublists
649   * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
650   */
651  public static <T> List<List<T>> partition(List<T> list, int size) {
652    checkNotNull(list);
653    checkArgument(size > 0);
654    return (list instanceof RandomAccess)
655        ? new RandomAccessPartition<T>(list, size)
656        : new Partition<T>(list, size);
657  }
658
659  private static class Partition<T> extends AbstractList<List<T>> {
660    final List<T> list;
661    final int size;
662
663    Partition(List<T> list, int size) {
664      this.list = list;
665      this.size = size;
666    }
667
668    @Override public List<T> get(int index) {
669      checkElementIndex(index, size());
670      int start = index * size;
671      int end = Math.min(start + size, list.size());
672      return list.subList(start, end);
673    }
674
675    @Override public int size() {
676      return IntMath.divide(list.size(), size, RoundingMode.CEILING);
677    }
678
679    @Override public boolean isEmpty() {
680      return list.isEmpty();
681    }
682  }
683
684  private static class RandomAccessPartition<T> extends Partition<T>
685      implements RandomAccess {
686    RandomAccessPartition(List<T> list, int size) {
687      super(list, size);
688    }
689  }
690
691  /**
692   * Returns a view of the specified string as an immutable list of {@code
693   * Character} values.
694   *
695   * @since 7.0
696   */
697  @Beta public static ImmutableList<Character> charactersOf(String string) {
698    return new StringAsImmutableList(checkNotNull(string));
699  }
700
701  @SuppressWarnings("serial") // serialized using ImmutableList serialization
702  private static final class StringAsImmutableList
703      extends ImmutableList<Character> {
704
705    private final String string;
706
707    StringAsImmutableList(String string) {
708      this.string = string;
709    }
710
711    @Override public int indexOf(@Nullable Object object) {
712      return (object instanceof Character)
713          ? string.indexOf((Character) object) : -1;
714    }
715
716    @Override public int lastIndexOf(@Nullable Object object) {
717      return (object instanceof Character)
718          ? string.lastIndexOf((Character) object) : -1;
719    }
720
721    @Override public ImmutableList<Character> subList(
722        int fromIndex, int toIndex) {
723      checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
724      return charactersOf(string.substring(fromIndex, toIndex));
725    }
726
727    @Override boolean isPartialView() {
728      return false;
729    }
730
731    @Override public Character get(int index) {
732      checkElementIndex(index, size()); // for GWT
733      return string.charAt(index);
734    }
735
736    @Override public int size() {
737      return string.length();
738    }
739  }
740
741  /**
742   * Returns a view of the specified {@code CharSequence} as a {@code
743   * List<Character>}, viewing {@code sequence} as a sequence of Unicode code
744   * units. The view does not support any modification operations, but reflects
745   * any changes to the underlying character sequence.
746   *
747   * @param sequence the character sequence to view as a {@code List} of
748   *        characters
749   * @return an {@code List<Character>} view of the character sequence
750   * @since 7.0
751   */
752  @Beta public static List<Character> charactersOf(CharSequence sequence) {
753    return new CharSequenceAsList(checkNotNull(sequence));
754  }
755
756  private static final class CharSequenceAsList
757      extends AbstractList<Character> {
758    private final CharSequence sequence;
759
760    CharSequenceAsList(CharSequence sequence) {
761      this.sequence = sequence;
762    }
763
764    @Override public Character get(int index) {
765      checkElementIndex(index, size()); // for GWT
766      return sequence.charAt(index);
767    }
768
769    @Override public int size() {
770      return sequence.length();
771    }
772  }
773
774  /**
775   * Returns a reversed view of the specified list. For example, {@code
776   * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3,
777   * 2, 1}. The returned list is backed by this list, so changes in the returned
778   * list are reflected in this list, and vice-versa. The returned list supports
779   * all of the optional list operations supported by this list.
780   *
781   * <p>The returned list is random-access if the specified list is random
782   * access.
783   *
784   * @since 7.0
785   */
786  public static <T> List<T> reverse(List<T> list) {
787    if (list instanceof ImmutableList) {
788      return ((ImmutableList<T>) list).reverse();
789    } else if (list instanceof ReverseList) {
790      return ((ReverseList<T>) list).getForwardList();
791    } else if (list instanceof RandomAccess) {
792      return new RandomAccessReverseList<T>(list);
793    } else {
794      return new ReverseList<T>(list);
795    }
796  }
797
798  private static class ReverseList<T> extends AbstractList<T> {
799    private final List<T> forwardList;
800
801    ReverseList(List<T> forwardList) {
802      this.forwardList = checkNotNull(forwardList);
803    }
804
805    List<T> getForwardList() {
806      return forwardList;
807    }
808
809    private int reverseIndex(int index) {
810      int size = size();
811      checkElementIndex(index, size);
812      return (size - 1) - index;
813    }
814
815    private int reversePosition(int index) {
816      int size = size();
817      checkPositionIndex(index, size);
818      return size - index;
819    }
820
821    @Override public void add(int index, @Nullable T element) {
822      forwardList.add(reversePosition(index), element);
823    }
824
825    @Override public void clear() {
826      forwardList.clear();
827    }
828
829    @Override public T remove(int index) {
830      return forwardList.remove(reverseIndex(index));
831    }
832
833    @Override protected void removeRange(int fromIndex, int toIndex) {
834      subList(fromIndex, toIndex).clear();
835    }
836
837    @Override public T set(int index, @Nullable T element) {
838      return forwardList.set(reverseIndex(index), element);
839    }
840
841    @Override public T get(int index) {
842      return forwardList.get(reverseIndex(index));
843    }
844
845    @Override public int size() {
846      return forwardList.size();
847    }
848
849    @Override public List<T> subList(int fromIndex, int toIndex) {
850      checkPositionIndexes(fromIndex, toIndex, size());
851      return reverse(forwardList.subList(
852          reversePosition(toIndex), reversePosition(fromIndex)));
853    }
854
855    @Override public Iterator<T> iterator() {
856      return listIterator();
857    }
858
859    @Override public ListIterator<T> listIterator(int index) {
860      int start = reversePosition(index);
861      final ListIterator<T> forwardIterator = forwardList.listIterator(start);
862      return new ListIterator<T>() {
863
864        boolean canRemoveOrSet;
865
866        @Override public void add(T e) {
867          forwardIterator.add(e);
868          forwardIterator.previous();
869          canRemoveOrSet = false;
870        }
871
872        @Override public boolean hasNext() {
873          return forwardIterator.hasPrevious();
874        }
875
876        @Override public boolean hasPrevious() {
877          return forwardIterator.hasNext();
878        }
879
880        @Override public T next() {
881          if (!hasNext()) {
882            throw new NoSuchElementException();
883          }
884          canRemoveOrSet = true;
885          return forwardIterator.previous();
886        }
887
888        @Override public int nextIndex() {
889          return reversePosition(forwardIterator.nextIndex());
890        }
891
892        @Override public T previous() {
893          if (!hasPrevious()) {
894            throw new NoSuchElementException();
895          }
896          canRemoveOrSet = true;
897          return forwardIterator.next();
898        }
899
900        @Override public int previousIndex() {
901          return nextIndex() - 1;
902        }
903
904        @Override public void remove() {
905          checkRemove(canRemoveOrSet);
906          forwardIterator.remove();
907          canRemoveOrSet = false;
908        }
909
910        @Override public void set(T e) {
911          checkState(canRemoveOrSet);
912          forwardIterator.set(e);
913        }
914      };
915    }
916  }
917
918  private static class RandomAccessReverseList<T> extends ReverseList<T>
919      implements RandomAccess {
920    RandomAccessReverseList(List<T> forwardList) {
921      super(forwardList);
922    }
923  }
924
925  /**
926   * An implementation of {@link List#hashCode()}.
927   */
928  static int hashCodeImpl(List<?> list) {
929    // TODO(user): worth optimizing for RandomAccess?
930    int hashCode = 1;
931    for (Object o : list) {
932      hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());
933
934      hashCode = ~~hashCode;
935      // needed to deal with GWT integer overflow
936    }
937    return hashCode;
938  }
939
940  /**
941   * An implementation of {@link List#equals(Object)}.
942   */
943  static boolean equalsImpl(List<?> list, @Nullable Object object) {
944    if (object == checkNotNull(list)) {
945      return true;
946    }
947    if (!(object instanceof List)) {
948      return false;
949    }
950
951    List<?> o = (List<?>) object;
952
953    return list.size() == o.size()
954        && Iterators.elementsEqual(list.iterator(), o.iterator());
955  }
956
957  /**
958   * An implementation of {@link List#addAll(int, Collection)}.
959   */
960  static <E> boolean addAllImpl(
961      List<E> list, int index, Iterable<? extends E> elements) {
962    boolean changed = false;
963    ListIterator<E> listIterator = list.listIterator(index);
964    for (E e : elements) {
965      listIterator.add(e);
966      changed = true;
967    }
968    return changed;
969  }
970
971  /**
972   * An implementation of {@link List#indexOf(Object)}.
973   */
974  static int indexOfImpl(List<?> list, @Nullable Object element) {
975    ListIterator<?> listIterator = list.listIterator();
976    while (listIterator.hasNext()) {
977      if (Objects.equal(element, listIterator.next())) {
978        return listIterator.previousIndex();
979      }
980    }
981    return -1;
982  }
983
984  /**
985   * An implementation of {@link List#lastIndexOf(Object)}.
986   */
987  static int lastIndexOfImpl(List<?> list, @Nullable Object element) {
988    ListIterator<?> listIterator = list.listIterator(list.size());
989    while (listIterator.hasPrevious()) {
990      if (Objects.equal(element, listIterator.previous())) {
991        return listIterator.nextIndex();
992      }
993    }
994    return -1;
995  }
996
997  /**
998   * Returns an implementation of {@link List#listIterator(int)}.
999   */
1000  static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) {
1001    return new AbstractListWrapper<E>(list).listIterator(index);
1002  }
1003
1004  /**
1005   * An implementation of {@link List#subList(int, int)}.
1006   */
1007  static <E> List<E> subListImpl(
1008      final List<E> list, int fromIndex, int toIndex) {
1009    List<E> wrapper;
1010    if (list instanceof RandomAccess) {
1011      wrapper = new RandomAccessListWrapper<E>(list) {
1012        @Override public ListIterator<E> listIterator(int index) {
1013          return backingList.listIterator(index);
1014        }
1015
1016        private static final long serialVersionUID = 0;
1017      };
1018    } else {
1019      wrapper = new AbstractListWrapper<E>(list) {
1020        @Override public ListIterator<E> listIterator(int index) {
1021          return backingList.listIterator(index);
1022        }
1023
1024        private static final long serialVersionUID = 0;
1025      };
1026    }
1027    return wrapper.subList(fromIndex, toIndex);
1028  }
1029
1030  private static class AbstractListWrapper<E> extends AbstractList<E> {
1031    final List<E> backingList;
1032
1033    AbstractListWrapper(List<E> backingList) {
1034      this.backingList = checkNotNull(backingList);
1035    }
1036
1037    @Override public void add(int index, E element) {
1038      backingList.add(index, element);
1039    }
1040
1041    @Override public boolean addAll(int index, Collection<? extends E> c) {
1042      return backingList.addAll(index, c);
1043    }
1044
1045    @Override public E get(int index) {
1046      return backingList.get(index);
1047    }
1048
1049    @Override public E remove(int index) {
1050      return backingList.remove(index);
1051    }
1052
1053    @Override public E set(int index, E element) {
1054      return backingList.set(index, element);
1055    }
1056
1057    @Override public boolean contains(Object o) {
1058      return backingList.contains(o);
1059    }
1060
1061    @Override public int size() {
1062      return backingList.size();
1063    }
1064  }
1065
1066  private static class RandomAccessListWrapper<E>
1067      extends AbstractListWrapper<E> implements RandomAccess {
1068    RandomAccessListWrapper(List<E> backingList) {
1069      super(backingList);
1070    }
1071  }
1072
1073  /**
1074   * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
1075   */
1076  static <T> List<T> cast(Iterable<T> iterable) {
1077    return (List<T>) iterable;
1078  }
1079}