001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.base.Predicates.and;
022import static com.google.common.base.Predicates.in;
023import static com.google.common.base.Predicates.not;
024import static com.google.common.collect.CollectPreconditions.checkNonnegative;
025import static com.google.common.math.LongMath.binomial;
026
027import com.google.common.annotations.Beta;
028import com.google.common.annotations.GwtCompatible;
029import com.google.common.base.Function;
030import com.google.common.base.Joiner;
031import com.google.common.base.Predicate;
032import com.google.common.base.Predicates;
033import com.google.common.math.IntMath;
034import com.google.common.primitives.Ints;
035
036import java.util.AbstractCollection;
037import java.util.ArrayList;
038import java.util.Arrays;
039import java.util.Collection;
040import java.util.Collections;
041import java.util.Comparator;
042import java.util.Iterator;
043import java.util.List;
044
045import javax.annotation.Nullable;
046
047/**
048 * Provides static methods for working with {@code Collection} instances.
049 *
050 * @author Chris Povirk
051 * @author Mike Bostock
052 * @author Jared Levy
053 * @since 2.0 (imported from Google Collections Library)
054 */
055@GwtCompatible
056public final class Collections2 {
057  private Collections2() {}
058
059  /**
060   * Returns the elements of {@code unfiltered} that satisfy a predicate. The
061   * returned collection is a live view of {@code unfiltered}; changes to one
062   * affect the other.
063   *
064   * <p>The resulting collection's iterator does not support {@code remove()},
065   * but all other collection methods are supported. When given an element that
066   * doesn't satisfy the predicate, the collection's {@code add()} and {@code
067   * addAll()} methods throw an {@link IllegalArgumentException}. When methods
068   * such as {@code removeAll()} and {@code clear()} are called on the filtered
069   * collection, only elements that satisfy the filter will be removed from the
070   * underlying collection.
071   *
072   * <p>The returned collection isn't threadsafe or serializable, even if
073   * {@code unfiltered} is.
074   *
075   * <p>Many of the filtered collection's methods, such as {@code size()},
076   * iterate across every element in the underlying collection and determine
077   * which elements satisfy the filter. When a live view is <i>not</i> needed,
078   * it may be faster to copy {@code Iterables.filter(unfiltered, predicate)}
079   * and use the copy.
080   *
081   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
082   * as documented at {@link Predicate#apply}. Do not provide a predicate such
083   * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
084   * with equals. (See {@link Iterables#filter(Iterable, Class)} for related
085   * functionality.)
086   */
087  // TODO(kevinb): how can we omit that Iterables link when building gwt
088  // javadoc?
089  public static <E> Collection<E> filter(
090      Collection<E> unfiltered, Predicate<? super E> predicate) {
091    if (unfiltered instanceof FilteredCollection) {
092      // Support clear(), removeAll(), and retainAll() when filtering a filtered
093      // collection.
094      return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
095    }
096
097    return new FilteredCollection<E>(
098        checkNotNull(unfiltered), checkNotNull(predicate));
099  }
100
101  /**
102   * Delegates to {@link Collection#contains}. Returns {@code false} if the
103   * {@code contains} method throws a {@code ClassCastException} or
104   * {@code NullPointerException}.
105   */
106  static boolean safeContains(
107      Collection<?> collection, @Nullable Object object) {
108    checkNotNull(collection);
109    try {
110      return collection.contains(object);
111    } catch (ClassCastException e) {
112      return false;
113    } catch (NullPointerException e) {
114      return false;
115    }
116  }
117
118  /**
119   * Delegates to {@link Collection#remove}. Returns {@code false} if the
120   * {@code remove} method throws a {@code ClassCastException} or
121   * {@code NullPointerException}.
122   */
123  static boolean safeRemove(Collection<?> collection, @Nullable Object object) {
124    checkNotNull(collection);
125    try {
126      return collection.remove(object);
127    } catch (ClassCastException e) {
128      return false;
129    } catch (NullPointerException e) {
130      return false;
131    }
132  }
133
134  static class FilteredCollection<E> extends AbstractCollection<E> {
135    final Collection<E> unfiltered;
136    final Predicate<? super E> predicate;
137
138    FilteredCollection(Collection<E> unfiltered,
139        Predicate<? super E> predicate) {
140      this.unfiltered = unfiltered;
141      this.predicate = predicate;
142    }
143
144    FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
145      return new FilteredCollection<E>(unfiltered,
146          Predicates.<E>and(predicate, newPredicate));
147      // .<E> above needed to compile in JDK 5
148    }
149
150    @Override
151    public boolean add(E element) {
152      checkArgument(predicate.apply(element));
153      return unfiltered.add(element);
154    }
155
156    @Override
157    public boolean addAll(Collection<? extends E> collection) {
158      for (E element : collection) {
159        checkArgument(predicate.apply(element));
160      }
161      return unfiltered.addAll(collection);
162    }
163
164    @Override
165    public void clear() {
166      Iterables.removeIf(unfiltered, predicate);
167    }
168
169    @Override
170    public boolean contains(@Nullable Object element) {
171      if (safeContains(unfiltered, element)) {
172        @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E
173        E e = (E) element;
174        return predicate.apply(e);
175      }
176      return false;
177    }
178
179    @Override
180    public boolean containsAll(Collection<?> collection) {
181      return containsAllImpl(this, collection);
182    }
183
184    @Override
185    public boolean isEmpty() {
186      return !Iterables.any(unfiltered, predicate);
187    }
188
189    @Override
190    public Iterator<E> iterator() {
191      return Iterators.filter(unfiltered.iterator(), predicate);
192    }
193
194    @Override
195    public boolean remove(Object element) {
196      return contains(element) && unfiltered.remove(element);
197    }
198
199    @Override
200    public boolean removeAll(final Collection<?> collection) {
201      return Iterables.removeIf(unfiltered, and(predicate, in(collection)));
202    }
203
204    @Override
205    public boolean retainAll(final Collection<?> collection) {
206      return Iterables.removeIf(unfiltered, and(predicate, not(in(collection))));
207    }
208
209    @Override
210    public int size() {
211      return Iterators.size(iterator());
212    }
213
214    @Override
215    public Object[] toArray() {
216      // creating an ArrayList so filtering happens once
217      return Lists.newArrayList(iterator()).toArray();
218    }
219
220    @Override
221    public <T> T[] toArray(T[] array) {
222      return Lists.newArrayList(iterator()).toArray(array);
223    }
224  }
225
226  /**
227   * Returns a collection that applies {@code function} to each element of
228   * {@code fromCollection}. The returned collection is a live view of {@code
229   * fromCollection}; changes to one affect the other.
230   *
231   * <p>The returned collection's {@code add()} and {@code addAll()} methods
232   * throw an {@link UnsupportedOperationException}. All other collection
233   * methods are supported, as long as {@code fromCollection} supports them.
234   *
235   * <p>The returned collection isn't threadsafe or serializable, even if
236   * {@code fromCollection} is.
237   *
238   * <p>When a live view is <i>not</i> needed, it may be faster to copy the
239   * transformed collection and use the copy.
240   *
241   * <p>If the input {@code Collection} is known to be a {@code List}, consider
242   * {@link Lists#transform}. If only an {@code Iterable} is available, use
243   * {@link Iterables#transform}.
244   */
245  public static <F, T> Collection<T> transform(Collection<F> fromCollection,
246      Function<? super F, T> function) {
247    return new TransformedCollection<F, T>(fromCollection, function);
248  }
249
250  static class TransformedCollection<F, T> extends AbstractCollection<T> {
251    final Collection<F> fromCollection;
252    final Function<? super F, ? extends T> function;
253
254    TransformedCollection(Collection<F> fromCollection,
255        Function<? super F, ? extends T> function) {
256      this.fromCollection = checkNotNull(fromCollection);
257      this.function = checkNotNull(function);
258    }
259
260    @Override public void clear() {
261      fromCollection.clear();
262    }
263
264    @Override public boolean isEmpty() {
265      return fromCollection.isEmpty();
266    }
267
268    @Override public Iterator<T> iterator() {
269      return Iterators.transform(fromCollection.iterator(), function);
270    }
271
272    @Override public int size() {
273      return fromCollection.size();
274    }
275  }
276
277  /**
278   * Returns {@code true} if the collection {@code self} contains all of the
279   * elements in the collection {@code c}.
280   *
281   * <p>This method iterates over the specified collection {@code c}, checking
282   * each element returned by the iterator in turn to see if it is contained in
283   * the specified collection {@code self}. If all elements are so contained,
284   * {@code true} is returned, otherwise {@code false}.
285   *
286   * @param self a collection which might contain all elements in {@code c}
287   * @param c a collection whose elements might be contained by {@code self}
288   */
289  static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
290    return Iterables.all(c, Predicates.in(self));
291  }
292
293  /**
294   * An implementation of {@link Collection#toString()}.
295   */
296  static String toStringImpl(final Collection<?> collection) {
297    StringBuilder sb
298        = newStringBuilderForCollection(collection.size()).append('[');
299    STANDARD_JOINER.appendTo(
300        sb, Iterables.transform(collection, new Function<Object, Object>() {
301          @Override public Object apply(Object input) {
302            return input == collection ? "(this Collection)" : input;
303          }
304        }));
305    return sb.append(']').toString();
306  }
307
308  /**
309   * Returns best-effort-sized StringBuilder based on the given collection size.
310   */
311  static StringBuilder newStringBuilderForCollection(int size) {
312    checkNonnegative(size, "size");
313    return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO));
314  }
315
316  /**
317   * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
318   */
319  static <T> Collection<T> cast(Iterable<T> iterable) {
320    return (Collection<T>) iterable;
321  }
322
323  static final Joiner STANDARD_JOINER = Joiner.on(", ").useForNull("null");
324
325  /**
326   * Returns a {@link Collection} of all the permutations of the specified
327   * {@link Iterable}.
328   *
329   * <p><i>Notes:</i> This is an implementation of the algorithm for
330   * Lexicographical Permutations Generation, described in Knuth's "The Art of
331   * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
332   * iteration order follows the lexicographical order. This means that
333   * the first permutation will be in ascending order, and the last will be in
334   * descending order.
335   *
336   * <p>Duplicate elements are considered equal. For example, the list [1, 1]
337   * will have only one permutation, instead of two. This is why the elements
338   * have to implement {@link Comparable}.
339   *
340   * <p>An empty iterable has only one permutation, which is an empty list.
341   *
342   * <p>This method is equivalent to
343   * {@code Collections2.orderedPermutations(list, Ordering.natural())}.
344   *
345   * @param elements the original iterable whose elements have to be permuted.
346   * @return an immutable {@link Collection} containing all the different
347   *     permutations of the original iterable.
348   * @throws NullPointerException if the specified iterable is null or has any
349   *     null elements.
350   * @since 12.0
351   */
352  @Beta public static <E extends Comparable<? super E>>
353      Collection<List<E>> orderedPermutations(Iterable<E> elements) {
354    return orderedPermutations(elements, Ordering.natural());
355  }
356
357  /**
358   * Returns a {@link Collection} of all the permutations of the specified
359   * {@link Iterable} using the specified {@link Comparator} for establishing
360   * the lexicographical ordering.
361   *
362   * <p>Examples: <pre>   {@code
363   *
364   *   for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
365   *     println(perm);
366   *   }
367   *   // -> ["a", "b", "c"]
368   *   // -> ["a", "c", "b"]
369   *   // -> ["b", "a", "c"]
370   *   // -> ["b", "c", "a"]
371   *   // -> ["c", "a", "b"]
372   *   // -> ["c", "b", "a"]
373   *
374   *   for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
375   *     println(perm);
376   *   }
377   *   // -> [1, 1, 2, 2]
378   *   // -> [1, 2, 1, 2]
379   *   // -> [1, 2, 2, 1]
380   *   // -> [2, 1, 1, 2]
381   *   // -> [2, 1, 2, 1]
382   *   // -> [2, 2, 1, 1]}</pre>
383   *
384   * <p><i>Notes:</i> This is an implementation of the algorithm for
385   * Lexicographical Permutations Generation, described in Knuth's "The Art of
386   * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The
387   * iteration order follows the lexicographical order. This means that
388   * the first permutation will be in ascending order, and the last will be in
389   * descending order.
390   *
391   * <p>Elements that compare equal are considered equal and no new permutations
392   * are created by swapping them.
393   *
394   * <p>An empty iterable has only one permutation, which is an empty list.
395   *
396   * @param elements the original iterable whose elements have to be permuted.
397   * @param comparator a comparator for the iterable's elements.
398   * @return an immutable {@link Collection} containing all the different
399   *     permutations of the original iterable.
400   * @throws NullPointerException If the specified iterable is null, has any
401   *     null elements, or if the specified comparator is null.
402   * @since 12.0
403   */
404  @Beta public static <E> Collection<List<E>> orderedPermutations(
405      Iterable<E> elements, Comparator<? super E> comparator) {
406    return new OrderedPermutationCollection<E>(elements, comparator);
407  }
408
409  private static final class OrderedPermutationCollection<E>
410      extends AbstractCollection<List<E>> {
411    final ImmutableList<E> inputList;
412    final Comparator<? super E> comparator;
413    final int size;
414
415    OrderedPermutationCollection(Iterable<E> input,
416        Comparator<? super E> comparator) {
417      this.inputList = Ordering.from(comparator).immutableSortedCopy(input);
418      this.comparator = comparator;
419      this.size = calculateSize(inputList, comparator);
420    }
421
422    /**
423     * The number of permutations with repeated elements is calculated as
424     * follows:
425     * <ul>
426     * <li>For an empty list, it is 1 (base case).</li>
427     * <li>When r numbers are added to a list of n-r elements, the number of
428     * permutations is increased by a factor of (n choose r).</li>
429     * </ul>
430     */
431    private static <E> int calculateSize(
432        List<E> sortedInputList, Comparator<? super E> comparator) {
433      long permutations = 1;
434      int n = 1;
435      int r = 1;
436      while (n < sortedInputList.size()) {
437        int comparison = comparator.compare(
438            sortedInputList.get(n - 1), sortedInputList.get(n));
439        if (comparison < 0) {
440          // We move to the next non-repeated element.
441          permutations *= binomial(n, r);
442          r = 0;
443          if (!isPositiveInt(permutations)) {
444            return Integer.MAX_VALUE;
445          }
446        }
447        n++;
448        r++;
449      }
450      permutations *= binomial(n, r);
451      if (!isPositiveInt(permutations)) {
452        return Integer.MAX_VALUE;
453      }
454      return (int) permutations;
455    }
456
457    @Override public int size() {
458      return size;
459    }
460
461    @Override public boolean isEmpty() {
462      return false;
463    }
464
465    @Override public Iterator<List<E>> iterator() {
466      return new OrderedPermutationIterator<E>(inputList, comparator);
467    }
468
469    @Override public boolean contains(@Nullable Object obj) {
470      if (obj instanceof List) {
471        List<?> list = (List<?>) obj;
472        return isPermutation(inputList, list);
473      }
474      return false;
475    }
476
477    @Override public String toString() {
478      return "orderedPermutationCollection(" + inputList + ")";
479    }
480  }
481
482  private static final class OrderedPermutationIterator<E>
483      extends AbstractIterator<List<E>> {
484
485    List<E> nextPermutation;
486    final Comparator<? super E> comparator;
487
488    OrderedPermutationIterator(List<E> list,
489        Comparator<? super E> comparator) {
490      this.nextPermutation = Lists.newArrayList(list);
491      this.comparator = comparator;
492    }
493
494    @Override protected List<E> computeNext() {
495      if (nextPermutation == null) {
496        return endOfData();
497      }
498      ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
499      calculateNextPermutation();
500      return next;
501    }
502
503    void calculateNextPermutation() {
504      int j = findNextJ();
505      if (j == -1) {
506        nextPermutation = null;
507        return;
508      }
509
510      int l = findNextL(j);
511      Collections.swap(nextPermutation, j, l);
512      int n = nextPermutation.size();
513      Collections.reverse(nextPermutation.subList(j + 1, n));
514    }
515
516    int findNextJ() {
517      for (int k = nextPermutation.size() - 2; k >= 0; k--) {
518        if (comparator.compare(nextPermutation.get(k),
519            nextPermutation.get(k + 1)) < 0) {
520          return k;
521        }
522      }
523      return -1;
524    }
525
526    int findNextL(int j) {
527      E ak = nextPermutation.get(j);
528      for (int l = nextPermutation.size() - 1; l > j; l--) {
529        if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
530          return l;
531        }
532      }
533      throw new AssertionError("this statement should be unreachable");
534    }
535  }
536
537  /**
538   * Returns a {@link Collection} of all the permutations of the specified
539   * {@link Collection}.
540   *
541   * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm
542   * for permutations generation, described in Knuth's "The Art of Computer
543   * Programming", Volume 4, Chapter 7, Section 7.2.1.2.
544   *
545   * <p>If the input list contains equal elements, some of the generated
546   * permutations will be equal.
547   *
548   * <p>An empty collection has only one permutation, which is an empty list.
549   *
550   * @param elements the original collection whose elements have to be permuted.
551   * @return an immutable {@link Collection} containing all the different
552   *     permutations of the original collection.
553   * @throws NullPointerException if the specified collection is null or has any
554   *     null elements.
555   * @since 12.0
556   */
557  @Beta public static <E> Collection<List<E>> permutations(
558      Collection<E> elements) {
559    return new PermutationCollection<E>(ImmutableList.copyOf(elements));
560  }
561
562  private static final class PermutationCollection<E>
563      extends AbstractCollection<List<E>> {
564    final ImmutableList<E> inputList;
565
566    PermutationCollection(ImmutableList<E> input) {
567      this.inputList = input;
568    }
569
570    @Override public int size() {
571      return IntMath.factorial(inputList.size());
572    }
573
574    @Override public boolean isEmpty() {
575      return false;
576    }
577
578    @Override public Iterator<List<E>> iterator() {
579      return new PermutationIterator<E>(inputList);
580    }
581
582    @Override public boolean contains(@Nullable Object obj) {
583      if (obj instanceof List) {
584        List<?> list = (List<?>) obj;
585        return isPermutation(inputList, list);
586      }
587      return false;
588    }
589
590    @Override public String toString() {
591      return "permutations(" + inputList + ")";
592    }
593  }
594
595  private static class PermutationIterator<E>
596      extends AbstractIterator<List<E>> {
597    final List<E> list;
598    final int[] c;
599    final int[] o;
600    int j;
601
602    PermutationIterator(List<E> list) {
603      this.list = new ArrayList<E>(list);
604      int n = list.size();
605      c = new int[n];
606      o = new int[n];
607      Arrays.fill(c, 0);
608      Arrays.fill(o, 1);
609      j = Integer.MAX_VALUE;
610    }
611
612    @Override protected List<E> computeNext() {
613      if (j <= 0) {
614        return endOfData();
615      }
616      ImmutableList<E> next = ImmutableList.copyOf(list);
617      calculateNextPermutation();
618      return next;
619    }
620
621    void calculateNextPermutation() {
622      j = list.size() - 1;
623      int s = 0;
624
625      // Handle the special case of an empty list. Skip the calculation of the
626      // next permutation.
627      if (j == -1) {
628        return;
629      }
630
631      while (true) {
632        int q = c[j] + o[j];
633        if (q < 0) {
634          switchDirection();
635          continue;
636        }
637        if (q == j + 1) {
638          if (j == 0) {
639            break;
640          }
641          s++;
642          switchDirection();
643          continue;
644        }
645
646        Collections.swap(list, j - c[j] + s, j - q + s);
647        c[j] = q;
648        break;
649      }
650    }
651
652    void switchDirection() {
653      o[j] = -o[j];
654      j--;
655    }
656  }
657
658  /**
659   * Returns {@code true} if the second list is a permutation of the first.
660   */
661  private static boolean isPermutation(List<?> first,
662      List<?> second) {
663    if (first.size() != second.size()) {
664      return false;
665    }
666    Multiset<?> firstMultiset = HashMultiset.create(first);
667    Multiset<?> secondMultiset = HashMultiset.create(second);
668    return firstMultiset.equals(secondMultiset);
669  }
670
671  private static boolean isPositiveInt(long n) {
672    return n >= 0 && n <= Integer.MAX_VALUE;
673  }
674}