001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkNotNull;
020import static com.google.common.collect.CollectPreconditions.checkNonnegative;
021
022import com.google.common.annotations.GwtCompatible;
023import com.google.common.annotations.VisibleForTesting;
024import com.google.common.base.Function;
025
026import java.util.ArrayList;
027import java.util.Arrays;
028import java.util.Collection;
029import java.util.Collections;
030import java.util.Comparator;
031import java.util.HashSet;
032import java.util.Iterator;
033import java.util.List;
034import java.util.Map;
035import java.util.NoSuchElementException;
036import java.util.SortedMap;
037import java.util.SortedSet;
038import java.util.TreeSet;
039import java.util.concurrent.atomic.AtomicInteger;
040
041import javax.annotation.Nullable;
042
043/**
044 * A comparator, with additional methods to support common operations. This is
045 * an "enriched" version of {@code Comparator}, in the same sense that {@link
046 * FluentIterable} is an enriched {@link Iterable}.
047 *
048 * <p>The common ways to get an instance of {@code Ordering} are:
049 *
050 * <ul>
051 * <li>Subclass it and implement {@link #compare} instead of implementing
052 *     {@link Comparator} directly
053 * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link
054 *     #from(Comparator)}
055 * <li>Use the natural ordering, {@link Ordering#natural}
056 * </ul>
057 *
058 * <p>Then you can use the <i>chaining</i> methods to get an altered version of
059 * that {@code Ordering}, including:
060 *
061 * <ul>
062 * <li>{@link #reverse}
063 * <li>{@link #compound(Comparator)}
064 * <li>{@link #onResultOf(Function)}
065 * <li>{@link #nullsFirst} / {@link #nullsLast}
066 * </ul>
067 *
068 * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator}
069 * is required, or use any of its special operations, such as:</p>
070 *
071 * <ul>
072 * <li>{@link #immutableSortedCopy}
073 * <li>{@link #isOrdered} / {@link #isStrictlyOrdered}
074 * <li>{@link #min} / {@link #max}
075 * </ul>
076 *
077 * <p>Except as noted, the orderings returned by the factory methods of this
078 * class are serializable if and only if the provided instances that back them
079 * are. For example, if {@code ordering} and {@code function} can themselves be
080 * serialized, then {@code ordering.onResultOf(function)} can as well.
081 *
082 * <p>See the Guava User Guide article on <a href=
083 * "http://code.google.com/p/guava-libraries/wiki/OrderingExplained">
084 * {@code Ordering}</a>.
085 *
086 * @author Jesse Wilson
087 * @author Kevin Bourrillion
088 * @since 2.0 (imported from Google Collections Library)
089 */
090@GwtCompatible
091public abstract class Ordering<T> implements Comparator<T> {
092  // Natural order
093
094  /**
095   * Returns a serializable ordering that uses the natural order of the values.
096   * The ordering throws a {@link NullPointerException} when passed a null
097   * parameter.
098   *
099   * <p>The type specification is {@code <C extends Comparable>}, instead of
100   * the technically correct {@code <C extends Comparable<? super C>>}, to
101   * support legacy types from before Java 5.
102   */
103  @GwtCompatible(serializable = true)
104  @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
105  public static <C extends Comparable> Ordering<C> natural() {
106    return (Ordering<C>) NaturalOrdering.INSTANCE;
107  }
108
109  // Static factories
110
111  /**
112   * Returns an ordering based on an <i>existing</i> comparator instance. Note
113   * that it is unnecessary to create a <i>new</i> anonymous inner class
114   * implementing {@code Comparator} just to pass it in here. Instead, simply
115   * subclass {@code Ordering} and implement its {@code compare} method
116   * directly.
117   *
118   * @param comparator the comparator that defines the order
119   * @return comparator itself if it is already an {@code Ordering}; otherwise
120   *     an ordering that wraps that comparator
121   */
122  @GwtCompatible(serializable = true)
123  public static <T> Ordering<T> from(Comparator<T> comparator) {
124    return (comparator instanceof Ordering)
125        ? (Ordering<T>) comparator
126        : new ComparatorOrdering<T>(comparator);
127  }
128
129  /**
130   * Simply returns its argument.
131   *
132   * @deprecated no need to use this
133   */
134  @GwtCompatible(serializable = true)
135  @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) {
136    return checkNotNull(ordering);
137  }
138
139  /**
140   * Returns an ordering that compares objects according to the order in
141   * which they appear in the given list. Only objects present in the list
142   * (according to {@link Object#equals}) may be compared. This comparator
143   * imposes a "partial ordering" over the type {@code T}. Subsequent changes
144   * to the {@code valuesInOrder} list will have no effect on the returned
145   * comparator. Null values in the list are not supported.
146   *
147   * <p>The returned comparator throws an {@link ClassCastException} when it
148   * receives an input parameter that isn't among the provided values.
149   *
150   * <p>The generated comparator is serializable if all the provided values are
151   * serializable.
152   *
153   * @param valuesInOrder the values that the returned comparator will be able
154   *     to compare, in the order the comparator should induce
155   * @return the comparator described above
156   * @throws NullPointerException if any of the provided values is null
157   * @throws IllegalArgumentException if {@code valuesInOrder} contains any
158   *     duplicate values (according to {@link Object#equals})
159   */
160  @GwtCompatible(serializable = true)
161  public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
162    return new ExplicitOrdering<T>(valuesInOrder);
163  }
164
165  /**
166   * Returns an ordering that compares objects according to the order in
167   * which they are given to this method. Only objects present in the argument
168   * list (according to {@link Object#equals}) may be compared. This comparator
169   * imposes a "partial ordering" over the type {@code T}. Null values in the
170   * argument list are not supported.
171   *
172   * <p>The returned comparator throws a {@link ClassCastException} when it
173   * receives an input parameter that isn't among the provided values.
174   *
175   * <p>The generated comparator is serializable if all the provided values are
176   * serializable.
177   *
178   * @param leastValue the value which the returned comparator should consider
179   *     the "least" of all values
180   * @param remainingValuesInOrder the rest of the values that the returned
181   *     comparator will be able to compare, in the order the comparator should
182   *     follow
183   * @return the comparator described above
184   * @throws NullPointerException if any of the provided values is null
185   * @throws IllegalArgumentException if any duplicate values (according to
186   *     {@link Object#equals(Object)}) are present among the method arguments
187   */
188  @GwtCompatible(serializable = true)
189  public static <T> Ordering<T> explicit(
190      T leastValue, T... remainingValuesInOrder) {
191    return explicit(Lists.asList(leastValue, remainingValuesInOrder));
192  }
193
194  // Ordering<Object> singletons
195
196  /**
197   * Returns an ordering which treats all values as equal, indicating "no
198   * ordering." Passing this ordering to any <i>stable</i> sort algorithm
199   * results in no change to the order of elements. Note especially that {@link
200   * #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the
201   * returned instance these are implemented by simply copying the source list.
202   *
203   * <p>Example: <pre>   {@code
204   *
205   *   Ordering.allEqual().nullsLast().sortedCopy(
206   *       asList(t, null, e, s, null, t, null))}</pre>
207   *
208   * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns
209   * {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison
210   * order of those three values (which might not even implement {@link
211   * Comparable} at all).
212   *
213   * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with
214   * equals</i> (as defined {@linkplain Comparator here}). Avoid its use in
215   * APIs, such as {@link TreeSet#TreeSet(Comparator)}, where such consistency
216   * is expected.
217   *
218   * <p>The returned comparator is serializable.
219   */
220  @GwtCompatible(serializable = true)
221  @SuppressWarnings("unchecked")
222  public static Ordering<Object> allEqual() {
223    return AllEqualOrdering.INSTANCE;
224  }
225
226  /**
227   * Returns an ordering that compares objects by the natural ordering of their
228   * string representations as returned by {@code toString()}. It does not
229   * support null values.
230   *
231   * <p>The comparator is serializable.
232   */
233  @GwtCompatible(serializable = true)
234  public static Ordering<Object> usingToString() {
235    return UsingToStringOrdering.INSTANCE;
236  }
237
238  /**
239   * Returns an arbitrary ordering over all objects, for which {@code compare(a,
240   * b) == 0} implies {@code a == b} (identity equality). There is no meaning
241   * whatsoever to the order imposed, but it is constant for the life of the VM.
242   *
243   * <p>Because the ordering is identity-based, it is not "consistent with
244   * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use
245   * caution when building a {@link SortedSet} or {@link SortedMap} from it, as
246   * the resulting collection will not behave exactly according to spec.
247   *
248   * <p>This ordering is not serializable, as its implementation relies on
249   * {@link System#identityHashCode(Object)}, so its behavior cannot be
250   * preserved across serialization.
251   *
252   * @since 2.0
253   */
254  public static Ordering<Object> arbitrary() {
255    return ArbitraryOrderingHolder.ARBITRARY_ORDERING;
256  }
257
258  private static class ArbitraryOrderingHolder {
259    static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering();
260  }
261
262  @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> {
263    @SuppressWarnings("deprecation") // TODO(kevinb): ?
264    private Map<Object, Integer> uids =
265        Platform.tryWeakKeys(new MapMaker()).makeComputingMap(
266            new Function<Object, Integer>() {
267              final AtomicInteger counter = new AtomicInteger(0);
268              @Override
269              public Integer apply(Object from) {
270                return counter.getAndIncrement();
271              }
272            });
273
274    @Override public int compare(Object left, Object right) {
275      if (left == right) {
276        return 0;
277      } else if (left == null) {
278        return -1;
279      } else if (right == null) {
280        return 1;
281      }
282      int leftCode = identityHashCode(left);
283      int rightCode = identityHashCode(right);
284      if (leftCode != rightCode) {
285        return leftCode < rightCode ? -1 : 1;
286      }
287
288      // identityHashCode collision (rare, but not as rare as you'd think)
289      int result = uids.get(left).compareTo(uids.get(right));
290      if (result == 0) {
291        throw new AssertionError(); // extremely, extremely unlikely.
292      }
293      return result;
294    }
295
296    @Override public String toString() {
297      return "Ordering.arbitrary()";
298    }
299
300    /*
301     * We need to be able to mock identityHashCode() calls for tests, because it
302     * can take 1-10 seconds to find colliding objects. Mocking frameworks that
303     * can do magic to mock static method calls still can't do so for a system
304     * class, so we need the indirection. In production, Hotspot should still
305     * recognize that the call is 1-morphic and should still be willing to
306     * inline it if necessary.
307     */
308    int identityHashCode(Object object) {
309      return System.identityHashCode(object);
310    }
311  }
312
313  // Constructor
314
315  /**
316   * Constructs a new instance of this class (only invokable by the subclass
317   * constructor, typically implicit).
318   */
319  protected Ordering() {}
320
321  // Instance-based factories (and any static equivalents)
322
323  /**
324   * Returns the reverse of this ordering; the {@code Ordering} equivalent to
325   * {@link Collections#reverseOrder(Comparator)}.
326   */
327  // type parameter <S> lets us avoid the extra <String> in statements like:
328  // Ordering<String> o = Ordering.<String>natural().reverse();
329  @GwtCompatible(serializable = true)
330  public <S extends T> Ordering<S> reverse() {
331    return new ReverseOrdering<S>(this);
332  }
333
334  /**
335   * Returns an ordering that treats {@code null} as less than all other values
336   * and uses {@code this} to compare non-null values.
337   */
338  // type parameter <S> lets us avoid the extra <String> in statements like:
339  // Ordering<String> o = Ordering.<String>natural().nullsFirst();
340  @GwtCompatible(serializable = true)
341  public <S extends T> Ordering<S> nullsFirst() {
342    return new NullsFirstOrdering<S>(this);
343  }
344
345  /**
346   * Returns an ordering that treats {@code null} as greater than all other
347   * values and uses this ordering to compare non-null values.
348   */
349  // type parameter <S> lets us avoid the extra <String> in statements like:
350  // Ordering<String> o = Ordering.<String>natural().nullsLast();
351  @GwtCompatible(serializable = true)
352  public <S extends T> Ordering<S> nullsLast() {
353    return new NullsLastOrdering<S>(this);
354  }
355
356  /**
357   * Returns a new ordering on {@code F} which orders elements by first applying
358   * a function to them, then comparing those results using {@code this}. For
359   * example, to compare objects by their string forms, in a case-insensitive
360   * manner, use: <pre>   {@code
361   *
362   *   Ordering.from(String.CASE_INSENSITIVE_ORDER)
363   *       .onResultOf(Functions.toStringFunction())}</pre>
364   */
365  @GwtCompatible(serializable = true)
366  public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
367    return new ByFunctionOrdering<F, T>(function, this);
368  }
369
370  <T2 extends T> Ordering<Map.Entry<T2, ?>> onKeys() {
371    return onResultOf(Maps.<T2>keyFunction());
372  }
373
374  /**
375   * Returns an ordering which first uses the ordering {@code this}, but which
376   * in the event of a "tie", then delegates to {@code secondaryComparator}.
377   * For example, to sort a bug list first by status and second by priority, you
378   * might use {@code byStatus.compound(byPriority)}. For a compound ordering
379   * with three or more components, simply chain multiple calls to this method.
380   *
381   * <p>An ordering produced by this method, or a chain of calls to this method,
382   * is equivalent to one created using {@link Ordering#compound(Iterable)} on
383   * the same component comparators.
384   */
385  @GwtCompatible(serializable = true)
386  public <U extends T> Ordering<U> compound(
387      Comparator<? super U> secondaryComparator) {
388    return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
389  }
390
391  /**
392   * Returns an ordering which tries each given comparator in order until a
393   * non-zero result is found, returning that result, and returning zero only if
394   * all comparators return zero. The returned ordering is based on the state of
395   * the {@code comparators} iterable at the time it was provided to this
396   * method.
397   *
398   * <p>The returned ordering is equivalent to that produced using {@code
399   * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
400   *
401   * <p><b>Warning:</b> Supplying an argument with undefined iteration order,
402   * such as a {@link HashSet}, will produce non-deterministic results.
403   *
404   * @param comparators the comparators to try in order
405   */
406  @GwtCompatible(serializable = true)
407  public static <T> Ordering<T> compound(
408      Iterable<? extends Comparator<? super T>> comparators) {
409    return new CompoundOrdering<T>(comparators);
410  }
411
412  /**
413   * Returns a new ordering which sorts iterables by comparing corresponding
414   * elements pairwise until a nonzero result is found; imposes "dictionary
415   * order". If the end of one iterable is reached, but not the other, the
416   * shorter iterable is considered to be less than the longer one. For example,
417   * a lexicographical natural ordering over integers considers {@code
418   * [] < [1] < [1, 1] < [1, 2] < [2]}.
419   *
420   * <p>Note that {@code ordering.lexicographical().reverse()} is not
421   * equivalent to {@code ordering.reverse().lexicographical()} (consider how
422   * each would order {@code [1]} and {@code [1, 1]}).
423   *
424   * @since 2.0
425   */
426  @GwtCompatible(serializable = true)
427  // type parameter <S> lets us avoid the extra <String> in statements like:
428  // Ordering<Iterable<String>> o =
429  //     Ordering.<String>natural().lexicographical();
430  public <S extends T> Ordering<Iterable<S>> lexicographical() {
431    /*
432     * Note that technically the returned ordering should be capable of
433     * handling not just {@code Iterable<S>} instances, but also any {@code
434     * Iterable<? extends S>}. However, the need for this comes up so rarely
435     * that it doesn't justify making everyone else deal with the very ugly
436     * wildcard.
437     */
438    return new LexicographicalOrdering<S>(this);
439  }
440
441  // Regular instance methods
442
443  // Override to add @Nullable
444  @Override public abstract int compare(@Nullable T left, @Nullable T right);
445
446  /**
447   * Returns the least of the specified values according to this ordering. If
448   * there are multiple least values, the first of those is returned. The
449   * iterator will be left exhausted: its {@code hasNext()} method will return
450   * {@code false}.
451   *
452   * @param iterator the iterator whose minimum element is to be determined
453   * @throws NoSuchElementException if {@code iterator} is empty
454   * @throws ClassCastException if the parameters are not <i>mutually
455   *     comparable</i> under this ordering.
456   *
457   * @since 11.0
458   */
459  public <E extends T> E min(Iterator<E> iterator) {
460    // let this throw NoSuchElementException as necessary
461    E minSoFar = iterator.next();
462
463    while (iterator.hasNext()) {
464      minSoFar = min(minSoFar, iterator.next());
465    }
466
467    return minSoFar;
468  }
469
470  /**
471   * Returns the least of the specified values according to this ordering. If
472   * there are multiple least values, the first of those is returned.
473   *
474   * @param iterable the iterable whose minimum element is to be determined
475   * @throws NoSuchElementException if {@code iterable} is empty
476   * @throws ClassCastException if the parameters are not <i>mutually
477   *     comparable</i> under this ordering.
478   */
479  public <E extends T> E min(Iterable<E> iterable) {
480    return min(iterable.iterator());
481  }
482
483  /**
484   * Returns the lesser of the two values according to this ordering. If the
485   * values compare as 0, the first is returned.
486   *
487   * <p><b>Implementation note:</b> this method is invoked by the default
488   * implementations of the other {@code min} overloads, so overriding it will
489   * affect their behavior.
490   *
491   * @param a value to compare, returned if less than or equal to b.
492   * @param b value to compare.
493   * @throws ClassCastException if the parameters are not <i>mutually
494   *     comparable</i> under this ordering.
495   */
496  public <E extends T> E min(@Nullable E a, @Nullable E b) {
497    return (compare(a, b) <= 0) ? a : b;
498  }
499
500  /**
501   * Returns the least of the specified values according to this ordering. If
502   * there are multiple least values, the first of those is returned.
503   *
504   * @param a value to compare, returned if less than or equal to the rest.
505   * @param b value to compare
506   * @param c value to compare
507   * @param rest values to compare
508   * @throws ClassCastException if the parameters are not <i>mutually
509   *     comparable</i> under this ordering.
510   */
511  public <E extends T> E min(
512      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
513    E minSoFar = min(min(a, b), c);
514
515    for (E r : rest) {
516      minSoFar = min(minSoFar, r);
517    }
518
519    return minSoFar;
520  }
521
522  /**
523   * Returns the greatest of the specified values according to this ordering. If
524   * there are multiple greatest values, the first of those is returned. The
525   * iterator will be left exhausted: its {@code hasNext()} method will return
526   * {@code false}.
527   *
528   * @param iterator the iterator whose maximum element is to be determined
529   * @throws NoSuchElementException if {@code iterator} is empty
530   * @throws ClassCastException if the parameters are not <i>mutually
531   *     comparable</i> under this ordering.
532   *
533   * @since 11.0
534   */
535  public <E extends T> E max(Iterator<E> iterator) {
536    // let this throw NoSuchElementException as necessary
537    E maxSoFar = iterator.next();
538
539    while (iterator.hasNext()) {
540      maxSoFar = max(maxSoFar, iterator.next());
541    }
542
543    return maxSoFar;
544  }
545
546  /**
547   * Returns the greatest of the specified values according to this ordering. If
548   * there are multiple greatest values, the first of those is returned.
549   *
550   * @param iterable the iterable whose maximum element is to be determined
551   * @throws NoSuchElementException if {@code iterable} is empty
552   * @throws ClassCastException if the parameters are not <i>mutually
553   *     comparable</i> under this ordering.
554   */
555  public <E extends T> E max(Iterable<E> iterable) {
556    return max(iterable.iterator());
557  }
558
559  /**
560   * Returns the greater of the two values according to this ordering. If the
561   * values compare as 0, the first is returned.
562   *
563   * <p><b>Implementation note:</b> this method is invoked by the default
564   * implementations of the other {@code max} overloads, so overriding it will
565   * affect their behavior.
566   *
567   * @param a value to compare, returned if greater than or equal to b.
568   * @param b value to compare.
569   * @throws ClassCastException if the parameters are not <i>mutually
570   *     comparable</i> under this ordering.
571   */
572  public <E extends T> E max(@Nullable E a, @Nullable E b) {
573    return (compare(a, b) >= 0) ? a : b;
574  }
575
576  /**
577   * Returns the greatest of the specified values according to this ordering. If
578   * there are multiple greatest values, the first of those is returned.
579   *
580   * @param a value to compare, returned if greater than or equal to the rest.
581   * @param b value to compare
582   * @param c value to compare
583   * @param rest values to compare
584   * @throws ClassCastException if the parameters are not <i>mutually
585   *     comparable</i> under this ordering.
586   */
587  public <E extends T> E max(
588      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
589    E maxSoFar = max(max(a, b), c);
590
591    for (E r : rest) {
592      maxSoFar = max(maxSoFar, r);
593    }
594
595    return maxSoFar;
596  }
597
598  /**
599   * Returns the {@code k} least elements of the given iterable according to
600   * this ordering, in order from least to greatest.  If there are fewer than
601   * {@code k} elements present, all will be included.
602   *
603   * <p>The implementation does not necessarily use a <i>stable</i> sorting
604   * algorithm; when multiple elements are equivalent, it is undefined which
605   * will come first.
606   *
607   * @return an immutable {@code RandomAccess} list of the {@code k} least
608   *     elements in ascending order
609   * @throws IllegalArgumentException if {@code k} is negative
610   * @since 8.0
611   */
612  public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
613    if (iterable instanceof Collection) {
614      Collection<E> collection = (Collection<E>) iterable;
615      if (collection.size() <= 2L * k) {
616        // In this case, just dumping the collection to an array and sorting is
617        // faster than using the implementation for Iterator, which is
618        // specialized for k much smaller than n.
619
620        @SuppressWarnings("unchecked") // c only contains E's and doesn't escape
621        E[] array = (E[]) collection.toArray();
622        Arrays.sort(array, this);
623        if (array.length > k) {
624          array = ObjectArrays.arraysCopyOf(array, k);
625        }
626        return Collections.unmodifiableList(Arrays.asList(array));
627      }
628    }
629    return leastOf(iterable.iterator(), k);
630  }
631
632  /**
633   * Returns the {@code k} least elements from the given iterator according to
634   * this ordering, in order from least to greatest.  If there are fewer than
635   * {@code k} elements present, all will be included.
636   *
637   * <p>The implementation does not necessarily use a <i>stable</i> sorting
638   * algorithm; when multiple elements are equivalent, it is undefined which
639   * will come first.
640   *
641   * @return an immutable {@code RandomAccess} list of the {@code k} least
642   *     elements in ascending order
643   * @throws IllegalArgumentException if {@code k} is negative
644   * @since 14.0
645   */
646  public <E extends T> List<E> leastOf(Iterator<E> elements, int k) {
647    checkNotNull(elements);
648    checkNonnegative(k, "k");
649
650    if (k == 0 || !elements.hasNext()) {
651      return ImmutableList.of();
652    } else if (k >= Integer.MAX_VALUE / 2) {
653      // k is really large; just do a straightforward sorted-copy-and-sublist
654      ArrayList<E> list = Lists.newArrayList(elements);
655      Collections.sort(list, this);
656      if (list.size() > k) {
657        list.subList(k, list.size()).clear();
658      }
659      list.trimToSize();
660      return Collections.unmodifiableList(list);
661    }
662
663    /*
664     * Our goal is an O(n) algorithm using only one pass and O(k) additional
665     * memory.
666     *
667     * We use the following algorithm: maintain a buffer of size 2*k. Every time
668     * the buffer gets full, find the median and partition around it, keeping
669     * only the lowest k elements.  This requires n/k find-median-and-partition
670     * steps, each of which take O(k) time with a traditional quickselect.
671     *
672     * After sorting the output, the whole algorithm is O(n + k log k). It
673     * degrades gracefully for worst-case input (descending order), performs
674     * competitively or wins outright for randomly ordered input, and doesn't
675     * require the whole collection to fit into memory.
676     */
677    int bufferCap = k * 2;
678    @SuppressWarnings("unchecked") // we'll only put E's in
679    E[] buffer = (E[]) new Object[bufferCap];
680    E threshold = elements.next();
681    buffer[0] = threshold;
682    int bufferSize = 1;
683    // threshold is the kth smallest element seen so far.  Once bufferSize >= k,
684    // anything larger than threshold can be ignored immediately.
685
686    while (bufferSize < k && elements.hasNext()) {
687      E e = elements.next();
688      buffer[bufferSize++] = e;
689      threshold = max(threshold, e);
690    }
691
692    while (elements.hasNext()) {
693      E e = elements.next();
694      if (compare(e, threshold) >= 0) {
695        continue;
696      }
697
698      buffer[bufferSize++] = e;
699      if (bufferSize == bufferCap) {
700        // We apply the quickselect algorithm to partition about the median,
701        // and then ignore the last k elements.
702        int left = 0;
703        int right = bufferCap - 1;
704
705        int minThresholdPosition = 0;
706        // The leftmost position at which the greatest of the k lower elements
707        // -- the new value of threshold -- might be found.
708
709        while (left < right) {
710          int pivotIndex = (left + right + 1) >>> 1;
711          int pivotNewIndex = partition(buffer, left, right, pivotIndex);
712          if (pivotNewIndex > k) {
713            right = pivotNewIndex - 1;
714          } else if (pivotNewIndex < k) {
715            left = Math.max(pivotNewIndex, left + 1);
716            minThresholdPosition = pivotNewIndex;
717          } else {
718            break;
719          }
720        }
721        bufferSize = k;
722
723        threshold = buffer[minThresholdPosition];
724        for (int i = minThresholdPosition + 1; i < bufferSize; i++) {
725          threshold = max(threshold, buffer[i]);
726        }
727      }
728    }
729
730    Arrays.sort(buffer, 0, bufferSize, this);
731
732    bufferSize = Math.min(bufferSize, k);
733    return Collections.unmodifiableList(
734        Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize)));
735    // We can't use ImmutableList; we have to be null-friendly!
736  }
737
738  private <E extends T> int partition(
739      E[] values, int left, int right, int pivotIndex) {
740    E pivotValue = values[pivotIndex];
741
742    values[pivotIndex] = values[right];
743    values[right] = pivotValue;
744
745    int storeIndex = left;
746    for (int i = left; i < right; i++) {
747      if (compare(values[i], pivotValue) < 0) {
748        ObjectArrays.swap(values, storeIndex, i);
749        storeIndex++;
750      }
751    }
752    ObjectArrays.swap(values, right, storeIndex);
753    return storeIndex;
754  }
755
756  /**
757   * Returns the {@code k} greatest elements of the given iterable according to
758   * this ordering, in order from greatest to least. If there are fewer than
759   * {@code k} elements present, all will be included.
760   *
761   * <p>The implementation does not necessarily use a <i>stable</i> sorting
762   * algorithm; when multiple elements are equivalent, it is undefined which
763   * will come first.
764   *
765   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
766   *     elements in <i>descending order</i>
767   * @throws IllegalArgumentException if {@code k} is negative
768   * @since 8.0
769   */
770  public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
771    // TODO(kevinb): see if delegation is hurting performance noticeably
772    // TODO(kevinb): if we change this implementation, add full unit tests.
773    return reverse().leastOf(iterable, k);
774  }
775
776  /**
777   * Returns the {@code k} greatest elements from the given iterator according to
778   * this ordering, in order from greatest to least. If there are fewer than
779   * {@code k} elements present, all will be included.
780   *
781   * <p>The implementation does not necessarily use a <i>stable</i> sorting
782   * algorithm; when multiple elements are equivalent, it is undefined which
783   * will come first.
784   *
785   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
786   *     elements in <i>descending order</i>
787   * @throws IllegalArgumentException if {@code k} is negative
788   * @since 14.0
789   */
790  public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) {
791    return reverse().leastOf(iterator, k);
792  }
793
794  /**
795   * Returns a <b>mutable</b> list containing {@code elements} sorted by this
796   * ordering; use this only when the resulting list may need further
797   * modification, or may contain {@code null}. The input is not modified. The
798   * returned list is serializable and has random access.
799   *
800   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
801   * elements that are duplicates according to the comparator. The sort
802   * performed is <i>stable</i>, meaning that such elements will appear in the
803   * returned list in the same order they appeared in {@code elements}.
804   *
805   * <p><b>Performance note:</b> According to our
806   * benchmarking
807   * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in
808   * both time and space) than this method, and this method in turn generally
809   * performs better than copying the list and calling {@link
810   * Collections#sort(List)}.
811   */
812  public <E extends T> List<E> sortedCopy(Iterable<E> elements) {
813    @SuppressWarnings("unchecked") // does not escape, and contains only E's
814    E[] array = (E[]) Iterables.toArray(elements);
815    Arrays.sort(array, this);
816    return Lists.newArrayList(Arrays.asList(array));
817  }
818
819  /**
820   * Returns an <b>immutable</b> list containing {@code elements} sorted by this
821   * ordering. The input is not modified.
822   *
823   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
824   * elements that are duplicates according to the comparator. The sort
825   * performed is <i>stable</i>, meaning that such elements will appear in the
826   * returned list in the same order they appeared in {@code elements}.
827   *
828   * <p><b>Performance note:</b> According to our
829   * benchmarking
830   * on Open JDK 7, this method is the most efficient way to make a sorted copy
831   * of a collection.
832   *
833   * @throws NullPointerException if any of {@code elements} (or {@code
834   *     elements} itself) is null
835   * @since 3.0
836   */
837  public <E extends T> ImmutableList<E> immutableSortedCopy(
838      Iterable<E> elements) {
839    @SuppressWarnings("unchecked") // we'll only ever have E's in here
840    E[] array = (E[]) Iterables.toArray(elements);
841    for (E e : array) {
842      checkNotNull(e);
843    }
844    Arrays.sort(array, this);
845    return ImmutableList.asImmutableList(array);
846  }
847
848  /**
849   * Returns {@code true} if each element in {@code iterable} after the first is
850   * greater than or equal to the element that preceded it, according to this
851   * ordering. Note that this is always true when the iterable has fewer than
852   * two elements.
853   */
854  public boolean isOrdered(Iterable<? extends T> iterable) {
855    Iterator<? extends T> it = iterable.iterator();
856    if (it.hasNext()) {
857      T prev = it.next();
858      while (it.hasNext()) {
859        T next = it.next();
860        if (compare(prev, next) > 0) {
861          return false;
862        }
863        prev = next;
864      }
865    }
866    return true;
867  }
868
869  /**
870   * Returns {@code true} if each element in {@code iterable} after the first is
871   * <i>strictly</i> greater than the element that preceded it, according to
872   * this ordering. Note that this is always true when the iterable has fewer
873   * than two elements.
874   */
875  public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
876    Iterator<? extends T> it = iterable.iterator();
877    if (it.hasNext()) {
878      T prev = it.next();
879      while (it.hasNext()) {
880        T next = it.next();
881        if (compare(prev, next) >= 0) {
882          return false;
883        }
884        prev = next;
885      }
886    }
887    return true;
888  }
889
890  /**
891   * {@link Collections#binarySearch(List, Object, Comparator) Searches}
892   * {@code sortedList} for {@code key} using the binary search algorithm. The
893   * list must be sorted using this ordering.
894   *
895   * @param sortedList the list to be searched
896   * @param key the key to be searched for
897   */
898  public int binarySearch(List<? extends T> sortedList, @Nullable T key) {
899    return Collections.binarySearch(sortedList, key, this);
900  }
901
902  /**
903   * Exception thrown by a {@link Ordering#explicit(List)} or {@link
904   * Ordering#explicit(Object, Object[])} comparator when comparing a value
905   * outside the set of values it can compare. Extending {@link
906   * ClassCastException} may seem odd, but it is required.
907   */
908  // TODO(kevinb): make this public, document it right
909  @VisibleForTesting
910  static class IncomparableValueException extends ClassCastException {
911    final Object value;
912
913    IncomparableValueException(Object value) {
914      super("Cannot compare value: " + value);
915      this.value = value;
916    }
917
918    private static final long serialVersionUID = 0;
919  }
920
921  // Never make these public
922  static final int LEFT_IS_GREATER = 1;
923  static final int RIGHT_IS_GREATER = -1;
924}