001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.util.concurrent; 018 019import static com.google.common.base.Objects.firstNonNull; 020 021import com.google.common.annotations.Beta; 022import com.google.common.base.Preconditions; 023import com.google.common.base.Supplier; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.MapMaker; 026import com.google.common.math.IntMath; 027import com.google.common.primitives.Ints; 028 029import java.math.RoundingMode; 030import java.util.Arrays; 031import java.util.Collections; 032import java.util.List; 033import java.util.concurrent.ConcurrentMap; 034import java.util.concurrent.Semaphore; 035import java.util.concurrent.locks.Lock; 036import java.util.concurrent.locks.ReadWriteLock; 037import java.util.concurrent.locks.ReentrantLock; 038import java.util.concurrent.locks.ReentrantReadWriteLock; 039 040/** 041 * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping 042 * similar to that of {@code ConcurrentHashMap} in a reusable form, and extends it for 043 * semaphores and read-write locks. Conceptually, lock striping is the technique of dividing a lock 044 * into many <i>stripes</i>, increasing the granularity of a single lock and allowing independent 045 * operations to lock different stripes and proceed concurrently, instead of creating contention 046 * for a single lock. 047 * 048 * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore), 049 * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)} 050 * (assuming {@link Object#hashCode()} is correctly implemented for the keys). Note 051 * that if {@code key1} is <strong>not</strong> equal to {@code key2}, it is <strong>not</strong> 052 * guaranteed that {@code striped.get(key1) != striped.get(key2)}; the elements might nevertheless 053 * be mapped to the same lock. The lower the number of stripes, the higher the probability of this 054 * happening. 055 * 056 * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>}, 057 * and {@code Striped<ReadWriteLock>}. For each type, two implementations are offered: 058 * {@linkplain #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak} 059 * {@code Striped<Lock>}, {@linkplain #semaphore(int, int) strong} and {@linkplain 060 * #lazyWeakSemaphore(int, int) weak} {@code Striped<Semaphore>}, and {@linkplain 061 * #readWriteLock(int) strong} and {@linkplain #lazyWeakReadWriteLock(int) weak} 062 * {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all stripes (locks/semaphores) are 063 * initialized eagerly, and are not reclaimed unless {@code Striped} itself is reclaimable. 064 * <i>Weak</i> means that locks/semaphores are created lazily, and they are allowed to be reclaimed 065 * if nobody is holding on to them. This is useful, for example, if one wants to create a {@code 066 * Striped<Lock>} of many locks, but worries that in most cases only a small portion of these 067 * would be in use. 068 * 069 * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K} 070 * represents the task. This maximizes concurrency by having each unique key mapped to a unique 071 * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock 072 * for all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of 073 * choosing either of these extremes, {@code Striped} allows the user to trade between required 074 * concurrency and memory footprint. For example, if a set of tasks are CPU-bound, one could easily 075 * create a very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes, 076 * instead of possibly thousands of locks which could be created in a {@code Map<K, Lock>} 077 * structure. 078 * 079 * @author Dimitris Andreou 080 * @since 13.0 081 */ 082@Beta 083public abstract class Striped<L> { 084 private Striped() {} 085 086 /** 087 * Returns the stripe that corresponds to the passed key. It is always guaranteed that if 088 * {@code key1.equals(key2)}, then {@code get(key1) == get(key2)}. 089 * 090 * @param key an arbitrary, non-null key 091 * @return the stripe that the passed key corresponds to 092 */ 093 public abstract L get(Object key); 094 095 /** 096 * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to 097 * {@code size()}, exclusively. 098 * 099 * @param index the index of the stripe to return; must be in {@code [0...size())} 100 * @return the stripe at the specified index 101 */ 102 public abstract L getAt(int index); 103 104 /** 105 * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key). 106 */ 107 abstract int indexFor(Object key); 108 109 /** 110 * Returns the total number of stripes in this instance. 111 */ 112 public abstract int size(); 113 114 /** 115 * Returns the stripes that correspond to the passed objects, in ascending (as per 116 * {@link #getAt(int)}) order. Thus, threads that use the stripes in the order returned 117 * by this method are guaranteed to not deadlock each other. 118 * 119 * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and 120 * {@code bulkGet(keys)} with a relative large number of keys can cause an excessive number 121 * of shared stripes (much like the birthday paradox, where much fewer than anticipated birthdays 122 * are needed for a pair of them to match). Please consider carefully the implications of the 123 * number of stripes, the intended concurrency level, and the typical number of keys used in a 124 * {@code bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls 125 * in Bins model</a> for mathematical formulas that can be used to estimate the probability of 126 * collisions. 127 * 128 * @param keys arbitrary non-null keys 129 * @return the stripes corresponding to the objects (one per each object, derived by delegating 130 * to {@link #get(Object)}; may contain duplicates), in an increasing index order. 131 */ 132 public Iterable<L> bulkGet(Iterable<?> keys) { 133 // Initially using the array to store the keys, then reusing it to store the respective L's 134 final Object[] array = Iterables.toArray(keys, Object.class); 135 int[] stripes = new int[array.length]; 136 for (int i = 0; i < array.length; i++) { 137 stripes[i] = indexFor(array[i]); 138 } 139 Arrays.sort(stripes); 140 for (int i = 0; i < array.length; i++) { 141 array[i] = getAt(stripes[i]); 142 } 143 /* 144 * Note that the returned Iterable holds references to the returned stripes, to avoid 145 * error-prone code like: 146 * 147 * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)' 148 * Iterable<Lock> locks = stripedLock.bulkGet(keys); 149 * for (Lock lock : locks) { 150 * lock.lock(); 151 * } 152 * operation(); 153 * for (Lock lock : locks) { 154 * lock.unlock(); 155 * } 156 * 157 * If we only held the int[] stripes, translating it on the fly to L's, the original locks 158 * might be garbage collected after locking them, ending up in a huge mess. 159 */ 160 @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's 161 List<L> asList = (List<L>) Arrays.asList(array); 162 return Collections.unmodifiableList(asList); 163 } 164 165 // Static factories 166 167 /** 168 * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks. 169 * Every lock is reentrant. 170 * 171 * @param stripes the minimum number of stripes (locks) required 172 * @return a new {@code Striped<Lock>} 173 */ 174 public static Striped<Lock> lock(int stripes) { 175 return new CompactStriped<Lock>(stripes, new Supplier<Lock>() { 176 public Lock get() { 177 return new PaddedLock(); 178 } 179 }); 180 } 181 182 /** 183 * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks. 184 * Every lock is reentrant. 185 * 186 * @param stripes the minimum number of stripes (locks) required 187 * @return a new {@code Striped<Lock>} 188 */ 189 public static Striped<Lock> lazyWeakLock(int stripes) { 190 return new LazyStriped<Lock>(stripes, new Supplier<Lock>() { 191 public Lock get() { 192 return new ReentrantLock(false); 193 } 194 }); 195 } 196 197 /** 198 * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores, 199 * with the specified number of permits. 200 * 201 * @param stripes the minimum number of stripes (semaphores) required 202 * @param permits the number of permits in each semaphore 203 * @return a new {@code Striped<Semaphore>} 204 */ 205 public static Striped<Semaphore> semaphore(int stripes, final int permits) { 206 return new CompactStriped<Semaphore>(stripes, new Supplier<Semaphore>() { 207 public Semaphore get() { 208 return new PaddedSemaphore(permits); 209 } 210 }); 211 } 212 213 /** 214 * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores, 215 * with the specified number of permits. 216 * 217 * @param stripes the minimum number of stripes (semaphores) required 218 * @param permits the number of permits in each semaphore 219 * @return a new {@code Striped<Semaphore>} 220 */ 221 public static Striped<Semaphore> lazyWeakSemaphore(int stripes, final int permits) { 222 return new LazyStriped<Semaphore>(stripes, new Supplier<Semaphore>() { 223 public Semaphore get() { 224 return new Semaphore(permits, false); 225 } 226 }); 227 } 228 229 /** 230 * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced 231 * read-write locks. Every lock is reentrant. 232 * 233 * @param stripes the minimum number of stripes (locks) required 234 * @return a new {@code Striped<ReadWriteLock>} 235 */ 236 public static Striped<ReadWriteLock> readWriteLock(int stripes) { 237 return new CompactStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER); 238 } 239 240 /** 241 * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced 242 * read-write locks. Every lock is reentrant. 243 * 244 * @param stripes the minimum number of stripes (locks) required 245 * @return a new {@code Striped<ReadWriteLock>} 246 */ 247 public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) { 248 return new LazyStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER); 249 } 250 251 // ReentrantReadWriteLock is large enough to make padding probably unnecessary 252 private static final Supplier<ReadWriteLock> READ_WRITE_LOCK_SUPPLIER = 253 new Supplier<ReadWriteLock>() { 254 public ReadWriteLock get() { 255 return new ReentrantReadWriteLock(); 256 } 257 }; 258 259 private abstract static class PowerOfTwoStriped<L> extends Striped<L> { 260 /** Capacity (power of two) minus one, for fast mod evaluation */ 261 final int mask; 262 263 PowerOfTwoStriped(int stripes) { 264 Preconditions.checkArgument(stripes > 0, "Stripes must be positive"); 265 this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1; 266 } 267 268 @Override final int indexFor(Object key) { 269 int hash = smear(key.hashCode()); 270 return hash & mask; 271 } 272 273 @Override public final L get(Object key) { 274 return getAt(indexFor(key)); 275 } 276 } 277 278 /** 279 * Implementation of Striped where 2^k stripes are represented as an array of the same length, 280 * eagerly initialized. 281 */ 282 private static class CompactStriped<L> extends PowerOfTwoStriped<L> { 283 /** Size is a power of two. */ 284 private final Object[] array; 285 286 private CompactStriped(int stripes, Supplier<L> supplier) { 287 super(stripes); 288 Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)"); 289 290 this.array = new Object[mask + 1]; 291 for (int i = 0; i < array.length; i++) { 292 array[i] = supplier.get(); 293 } 294 } 295 296 @SuppressWarnings("unchecked") // we only put L's in the array 297 @Override public L getAt(int index) { 298 return (L) array[index]; 299 } 300 301 @Override public int size() { 302 return array.length; 303 } 304 } 305 306 /** 307 * Implementation of Striped where up to 2^k stripes can be represented, using a Cache 308 * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the 309 * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced. 310 */ 311 private static class LazyStriped<L> extends PowerOfTwoStriped<L> { 312 final ConcurrentMap<Integer, L> locks; 313 final Supplier<L> supplier; 314 final int size; 315 316 LazyStriped(int stripes, Supplier<L> supplier) { 317 super(stripes); 318 this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; 319 this.supplier = supplier; 320 this.locks = new MapMaker().weakValues().makeMap(); 321 } 322 323 @Override public L getAt(int index) { 324 if (size != Integer.MAX_VALUE) { 325 Preconditions.checkElementIndex(index, size()); 326 } // else no check necessary, all index values are valid 327 L existing = locks.get(index); 328 if (existing != null) { 329 return existing; 330 } 331 L created = supplier.get(); 332 existing = locks.putIfAbsent(index, created); 333 return firstNonNull(existing, created); 334 } 335 336 @Override public int size() { 337 return size; 338 } 339 } 340 341 /** 342 * A bit mask were all bits are set. 343 */ 344 private static final int ALL_SET = ~0; 345 346 private static int ceilToPowerOfTwo(int x) { 347 return 1 << IntMath.log2(x, RoundingMode.CEILING); 348 } 349 350 /* 351 * This method was written by Doug Lea with assistance from members of JCP 352 * JSR-166 Expert Group and released to the public domain, as explained at 353 * http://creativecommons.org/licenses/publicdomain 354 * 355 * As of 2010/06/11, this method is identical to the (package private) hash 356 * method in OpenJDK 7's java.util.HashMap class. 357 */ 358 // Copied from java/com/google/common/collect/Hashing.java 359 private static int smear(int hashCode) { 360 hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12); 361 return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4); 362 } 363 364 private static class PaddedLock extends ReentrantLock { 365 /* 366 * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add 367 * a fourth long here, to minimize chance of interference between consecutive locks, 368 * but I couldn't observe any benefit from that. 369 */ 370 @SuppressWarnings("unused") 371 long q1, q2, q3; 372 373 PaddedLock() { 374 super(false); 375 } 376 } 377 378 private static class PaddedSemaphore extends Semaphore { 379 // See PaddedReentrantLock comment 380 @SuppressWarnings("unused") 381 long q1, q2, q3; 382 383 PaddedSemaphore(int permits) { 384 super(permits, false); 385 } 386 } 387}