001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.primitives; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021 022import com.google.common.annotations.Beta; 023import com.google.common.annotations.VisibleForTesting; 024 025import sun.misc.Unsafe; 026 027import java.nio.ByteOrder; 028import java.util.Comparator; 029 030/** 031 * Static utility methods pertaining to {@code byte} primitives that interpret 032 * values as <i>unsigned</i> (that is, any negative value {@code b} is treated 033 * as the positive value {@code 256 + b}). The corresponding methods that treat 034 * the values as signed are found in {@link SignedBytes}, and the methods for 035 * which signedness is not an issue are in {@link Bytes}. 036 * 037 * <p>See the Guava User Guide article on <a href= 038 * "http://code.google.com/p/guava-libraries/wiki/PrimitivesExplained"> 039 * primitive utilities</a>. 040 * 041 * @author Kevin Bourrillion 042 * @author Martin Buchholz 043 * @author Hiroshi Yamauchi 044 * @author Louis Wasserman 045 * @since 1.0 046 */ 047public final class UnsignedBytes { 048 private UnsignedBytes() {} 049 050 /** 051 * The largest power of two that can be represented as an unsigned {@code 052 * byte}. 053 * 054 * @since 10.0 055 */ 056 public static final byte MAX_POWER_OF_TWO = (byte) 0x80; 057 058 /** 059 * The largest value that fits into an unsigned byte. 060 * 061 * @since 13.0 062 */ 063 public static final byte MAX_VALUE = (byte) 0xFF; 064 065 private static final int UNSIGNED_MASK = 0xFF; 066 067 /** 068 * Returns the value of the given byte as an integer, when treated as 069 * unsigned. That is, returns {@code value + 256} if {@code value} is 070 * negative; {@code value} itself otherwise. 071 * 072 * @since 6.0 073 */ 074 public static int toInt(byte value) { 075 return value & UNSIGNED_MASK; 076 } 077 078 /** 079 * Returns the {@code byte} value that, when treated as unsigned, is equal to 080 * {@code value}, if possible. 081 * 082 * @param value a value between 0 and 255 inclusive 083 * @return the {@code byte} value that, when treated as unsigned, equals 084 * {@code value} 085 * @throws IllegalArgumentException if {@code value} is negative or greater 086 * than 255 087 */ 088 public static byte checkedCast(long value) { 089 if ((value >> Byte.SIZE) != 0) { 090 // don't use checkArgument here, to avoid boxing 091 throw new IllegalArgumentException("Out of range: " + value); 092 } 093 return (byte) value; 094 } 095 096 /** 097 * Returns the {@code byte} value that, when treated as unsigned, is nearest 098 * in value to {@code value}. 099 * 100 * @param value any {@code long} value 101 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if 102 * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise 103 */ 104 public static byte saturatedCast(long value) { 105 if (value > toInt(MAX_VALUE)) { 106 return MAX_VALUE; // -1 107 } 108 if (value < 0) { 109 return (byte) 0; 110 } 111 return (byte) value; 112 } 113 114 /** 115 * Compares the two specified {@code byte} values, treating them as unsigned 116 * values between 0 and 255 inclusive. For example, {@code (byte) -127} is 117 * considered greater than {@code (byte) 127} because it is seen as having 118 * the value of positive {@code 129}. 119 * 120 * @param a the first {@code byte} to compare 121 * @param b the second {@code byte} to compare 122 * @return a negative value if {@code a} is less than {@code b}; a positive 123 * value if {@code a} is greater than {@code b}; or zero if they are equal 124 */ 125 public static int compare(byte a, byte b) { 126 return toInt(a) - toInt(b); 127 } 128 129 /** 130 * Returns the least value present in {@code array}. 131 * 132 * @param array a <i>nonempty</i> array of {@code byte} values 133 * @return the value present in {@code array} that is less than or equal to 134 * every other value in the array 135 * @throws IllegalArgumentException if {@code array} is empty 136 */ 137 public static byte min(byte... array) { 138 checkArgument(array.length > 0); 139 int min = toInt(array[0]); 140 for (int i = 1; i < array.length; i++) { 141 int next = toInt(array[i]); 142 if (next < min) { 143 min = next; 144 } 145 } 146 return (byte) min; 147 } 148 149 /** 150 * Returns the greatest value present in {@code array}. 151 * 152 * @param array a <i>nonempty</i> array of {@code byte} values 153 * @return the value present in {@code array} that is greater than or equal 154 * to every other value in the array 155 * @throws IllegalArgumentException if {@code array} is empty 156 */ 157 public static byte max(byte... array) { 158 checkArgument(array.length > 0); 159 int max = toInt(array[0]); 160 for (int i = 1; i < array.length; i++) { 161 int next = toInt(array[i]); 162 if (next > max) { 163 max = next; 164 } 165 } 166 return (byte) max; 167 } 168 169 /** 170 * Returns a string representation of x, where x is treated as unsigned. 171 * 172 * @since 13.0 173 */ 174 @Beta 175 public static String toString(byte x) { 176 return toString(x, 10); 177 } 178 179 /** 180 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated 181 * as unsigned. 182 * 183 * @param x the value to convert to a string. 184 * @param radix the radix to use while working with {@code x} 185 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 186 * and {@link Character#MAX_RADIX}. 187 * @since 13.0 188 */ 189 @Beta 190 public static String toString(byte x, int radix) { 191 checkArgument(radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 192 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix); 193 // Benchmarks indicate this is probably not worth optimizing. 194 return Integer.toString(toInt(x), radix); 195 } 196 197 /** 198 * Returns the unsigned {@code byte} value represented by the given decimal string. 199 * 200 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 201 * value 202 * @throws NullPointerException if {@code s} is null 203 * (in contrast to {@link Byte#parseByte(String)}) 204 * @since 13.0 205 */ 206 @Beta 207 public static byte parseUnsignedByte(String string) { 208 return parseUnsignedByte(string, 10); 209 } 210 211 /** 212 * Returns the unsigned {@code byte} value represented by a string with the given radix. 213 * 214 * @param string the string containing the unsigned {@code byte} representation to be parsed. 215 * @param radix the radix to use while parsing {@code string} 216 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 217 * with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} 218 * and {@link Character#MAX_RADIX}. 219 * @throws NullPointerException if {@code s} is null 220 * (in contrast to {@link Byte#parseByte(String)}) 221 * @since 13.0 222 */ 223 @Beta 224 public static byte parseUnsignedByte(String string, int radix) { 225 int parse = Integer.parseInt(checkNotNull(string), radix); 226 // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( 227 if (parse >> Byte.SIZE == 0) { 228 return (byte) parse; 229 } else { 230 throw new NumberFormatException("out of range: " + parse); 231 } 232 } 233 234 /** 235 * Returns a string containing the supplied {@code byte} values separated by 236 * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2, 237 * (byte) 255)} returns the string {@code "1:2:255"}. 238 * 239 * @param separator the text that should appear between consecutive values in 240 * the resulting string (but not at the start or end) 241 * @param array an array of {@code byte} values, possibly empty 242 */ 243 public static String join(String separator, byte... array) { 244 checkNotNull(separator); 245 if (array.length == 0) { 246 return ""; 247 } 248 249 // For pre-sizing a builder, just get the right order of magnitude 250 StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); 251 builder.append(toInt(array[0])); 252 for (int i = 1; i < array.length; i++) { 253 builder.append(separator).append(toString(array[i])); 254 } 255 return builder.toString(); 256 } 257 258 /** 259 * Returns a comparator that compares two {@code byte} arrays 260 * lexicographically. That is, it compares, using {@link 261 * #compare(byte, byte)}), the first pair of values that follow any common 262 * prefix, or when one array is a prefix of the other, treats the shorter 263 * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] < 264 * [0x01, 0x80] < [0x02]}. Values are treated as unsigned. 265 * 266 * <p>The returned comparator is inconsistent with {@link 267 * Object#equals(Object)} (since arrays support only identity equality), but 268 * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. 269 * 270 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order"> 271 * Lexicographical order article at Wikipedia</a> 272 * @since 2.0 273 */ 274 public static Comparator<byte[]> lexicographicalComparator() { 275 return LexicographicalComparatorHolder.BEST_COMPARATOR; 276 } 277 278 @VisibleForTesting 279 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 280 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 281 } 282 283 /** 284 * Provides a lexicographical comparator implementation; either a Java 285 * implementation or a faster implementation based on {@link Unsafe}. 286 * 287 * <p>Uses reflection to gracefully fall back to the Java implementation if 288 * {@code Unsafe} isn't available. 289 */ 290 @VisibleForTesting 291 static class LexicographicalComparatorHolder { 292 static final String UNSAFE_COMPARATOR_NAME = 293 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 294 295 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 296 297 @VisibleForTesting 298 enum UnsafeComparator implements Comparator<byte[]> { 299 INSTANCE; 300 301 static final boolean BIG_ENDIAN = 302 ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); 303 304 /* 305 * The following static final fields exist for performance reasons. 306 * 307 * In UnsignedBytesBenchmark, accessing the following objects via static 308 * final fields is the fastest (more than twice as fast as the Java 309 * implementation, vs ~1.5x with non-final static fields, on x86_32) 310 * under the Hotspot server compiler. The reason is obviously that the 311 * non-final fields need to be reloaded inside the loop. 312 * 313 * And, no, defining (final or not) local variables out of the loop still 314 * isn't as good because the null check on the theUnsafe object remains 315 * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get 316 * constant-folded. 317 * 318 * The compiler can treat static final fields as compile-time constants 319 * and can constant-fold them while (final or not) local variables are 320 * run time values. 321 */ 322 323 static final Unsafe theUnsafe; 324 325 /** The offset to the first element in a byte array. */ 326 static final int BYTE_ARRAY_BASE_OFFSET; 327 328 static { 329 theUnsafe = getUnsafe(); 330 331 BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 332 333 // sanity check - this should never fail 334 if (theUnsafe.arrayIndexScale(byte[].class) != 1) { 335 throw new AssertionError(); 336 } 337 } 338 339 /** 340 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. 341 * Replace with a simple call to Unsafe.getUnsafe when integrating 342 * into a jdk. 343 * 344 * @return a sun.misc.Unsafe 345 */ 346 private static sun.misc.Unsafe getUnsafe() { 347 try { 348 return sun.misc.Unsafe.getUnsafe(); 349 } catch (SecurityException tryReflectionInstead) {} 350 try { 351 return java.security.AccessController.doPrivileged 352 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() { 353 public sun.misc.Unsafe run() throws Exception { 354 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class; 355 for (java.lang.reflect.Field f : k.getDeclaredFields()) { 356 f.setAccessible(true); 357 Object x = f.get(null); 358 if (k.isInstance(x)) 359 return k.cast(x); 360 } 361 throw new NoSuchFieldError("the Unsafe"); 362 }}); 363 } catch (java.security.PrivilegedActionException e) { 364 throw new RuntimeException("Could not initialize intrinsics", 365 e.getCause()); 366 } 367 } 368 369 @Override public int compare(byte[] left, byte[] right) { 370 int minLength = Math.min(left.length, right.length); 371 int minWords = minLength / Longs.BYTES; 372 373 /* 374 * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a 375 * time is no slower than comparing 4 bytes at a time even on 32-bit. 376 * On the other hand, it is substantially faster on 64-bit. 377 */ 378 for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { 379 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 380 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 381 if (lw != rw) { 382 if (BIG_ENDIAN) { 383 return UnsignedLongs.compare(lw, rw); 384 } 385 386 /* 387 * We want to compare only the first index where left[index] != right[index]. 388 * This corresponds to the least significant nonzero byte in lw ^ rw, since lw 389 * and rw are little-endian. Long.numberOfTrailingZeros(diff) tells us the least 390 * significant nonzero bit, and zeroing out the first three bits of L.nTZ gives us the 391 * shift to get that least significant nonzero byte. 392 */ 393 int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; 394 return (int) (((lw >>> n) & UNSIGNED_MASK) - ((rw >>> n) & UNSIGNED_MASK)); 395 } 396 } 397 398 // The epilogue to cover the last (minLength % 8) elements. 399 for (int i = minWords * Longs.BYTES; i < minLength; i++) { 400 int result = UnsignedBytes.compare(left[i], right[i]); 401 if (result != 0) { 402 return result; 403 } 404 } 405 return left.length - right.length; 406 } 407 } 408 409 enum PureJavaComparator implements Comparator<byte[]> { 410 INSTANCE; 411 412 @Override public int compare(byte[] left, byte[] right) { 413 int minLength = Math.min(left.length, right.length); 414 for (int i = 0; i < minLength; i++) { 415 int result = UnsignedBytes.compare(left[i], right[i]); 416 if (result != 0) { 417 return result; 418 } 419 } 420 return left.length - right.length; 421 } 422 } 423 424 /** 425 * Returns the Unsafe-using Comparator, or falls back to the pure-Java 426 * implementation if unable to do so. 427 */ 428 static Comparator<byte[]> getBestComparator() { 429 try { 430 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 431 432 // yes, UnsafeComparator does implement Comparator<byte[]> 433 @SuppressWarnings("unchecked") 434 Comparator<byte[]> comparator = 435 (Comparator<byte[]>) theClass.getEnumConstants()[0]; 436 return comparator; 437 } catch (Throwable t) { // ensure we really catch *everything* 438 return lexicographicalComparatorJavaImpl(); 439 } 440 } 441 } 442}