001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkElementIndex; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkPositionIndex; 023import static com.google.common.base.Preconditions.checkPositionIndexes; 024import static com.google.common.base.Preconditions.checkState; 025import static com.google.common.collect.CollectPreconditions.checkNonnegative; 026import static com.google.common.collect.CollectPreconditions.checkRemove; 027 028import com.google.common.annotations.Beta; 029import com.google.common.annotations.GwtCompatible; 030import com.google.common.annotations.GwtIncompatible; 031import com.google.common.annotations.VisibleForTesting; 032import com.google.common.base.Function; 033import com.google.common.base.Objects; 034import com.google.common.math.IntMath; 035import com.google.common.primitives.Ints; 036 037import java.io.Serializable; 038import java.math.RoundingMode; 039import java.util.AbstractList; 040import java.util.AbstractSequentialList; 041import java.util.ArrayList; 042import java.util.Arrays; 043import java.util.Collection; 044import java.util.Collections; 045import java.util.Iterator; 046import java.util.LinkedList; 047import java.util.List; 048import java.util.ListIterator; 049import java.util.NoSuchElementException; 050import java.util.RandomAccess; 051import java.util.concurrent.CopyOnWriteArrayList; 052 053import javax.annotation.Nullable; 054 055/** 056 * Static utility methods pertaining to {@link List} instances. Also see this 057 * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}. 058 * 059 * <p>See the Guava User Guide article on <a href= 060 * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Lists"> 061 * {@code Lists}</a>. 062 * 063 * @author Kevin Bourrillion 064 * @author Mike Bostock 065 * @author Louis Wasserman 066 * @since 2.0 (imported from Google Collections Library) 067 */ 068@GwtCompatible(emulated = true) 069public final class Lists { 070 private Lists() {} 071 072 // ArrayList 073 074 /** 075 * Creates a <i>mutable</i>, empty {@code ArrayList} instance. 076 * 077 * <p><b>Note:</b> if mutability is not required, use {@link 078 * ImmutableList#of()} instead. 079 * 080 * @return a new, empty {@code ArrayList} 081 */ 082 @GwtCompatible(serializable = true) 083 public static <E> ArrayList<E> newArrayList() { 084 return new ArrayList<E>(); 085 } 086 087 /** 088 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 089 * elements. 090 * 091 * <p><b>Note:</b> if mutability is not required and the elements are 092 * non-null, use an overload of {@link ImmutableList#of()} (for varargs) or 093 * {@link ImmutableList#copyOf(Object[])} (for an array) instead. 094 * 095 * @param elements the elements that the list should contain, in order 096 * @return a new {@code ArrayList} containing those elements 097 */ 098 @GwtCompatible(serializable = true) 099 public static <E> ArrayList<E> newArrayList(E... elements) { 100 checkNotNull(elements); // for GWT 101 // Avoid integer overflow when a large array is passed in 102 int capacity = computeArrayListCapacity(elements.length); 103 ArrayList<E> list = new ArrayList<E>(capacity); 104 Collections.addAll(list, elements); 105 return list; 106 } 107 108 @VisibleForTesting static int computeArrayListCapacity(int arraySize) { 109 checkNonnegative(arraySize, "arraySize"); 110 111 // TODO(kevinb): Figure out the right behavior, and document it 112 return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); 113 } 114 115 /** 116 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 117 * elements. 118 * 119 * <p><b>Note:</b> if mutability is not required and the elements are 120 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 121 * 122 * @param elements the elements that the list should contain, in order 123 * @return a new {@code ArrayList} containing those elements 124 */ 125 @GwtCompatible(serializable = true) 126 public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) { 127 checkNotNull(elements); // for GWT 128 // Let ArrayList's sizing logic work, if possible 129 return (elements instanceof Collection) 130 ? new ArrayList<E>(Collections2.cast(elements)) 131 : newArrayList(elements.iterator()); 132 } 133 134 /** 135 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 136 * elements. 137 * 138 * <p><b>Note:</b> if mutability is not required and the elements are 139 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 140 * 141 * @param elements the elements that the list should contain, in order 142 * @return a new {@code ArrayList} containing those elements 143 */ 144 @GwtCompatible(serializable = true) 145 public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) { 146 ArrayList<E> list = newArrayList(); 147 Iterators.addAll(list, elements); 148 return list; 149 } 150 151 /** 152 * Creates an {@code ArrayList} instance backed by an array of the 153 * <i>exact</i> size specified; equivalent to 154 * {@link ArrayList#ArrayList(int)}. 155 * 156 * <p><b>Note:</b> if you know the exact size your list will be, consider 157 * using a fixed-size list ({@link Arrays#asList(Object[])}) or an {@link 158 * ImmutableList} instead of a growable {@link ArrayList}. 159 * 160 * <p><b>Note:</b> If you have only an <i>estimate</i> of the eventual size of 161 * the list, consider padding this estimate by a suitable amount, or simply 162 * use {@link #newArrayListWithExpectedSize(int)} instead. 163 * 164 * @param initialArraySize the exact size of the initial backing array for 165 * the returned array list ({@code ArrayList} documentation calls this 166 * value the "capacity") 167 * @return a new, empty {@code ArrayList} which is guaranteed not to resize 168 * itself unless its size reaches {@code initialArraySize + 1} 169 * @throws IllegalArgumentException if {@code initialArraySize} is negative 170 */ 171 @GwtCompatible(serializable = true) 172 public static <E> ArrayList<E> newArrayListWithCapacity( 173 int initialArraySize) { 174 checkNonnegative(initialArraySize, "initialArraySize"); // for GWT. 175 return new ArrayList<E>(initialArraySize); 176 } 177 178 /** 179 * Creates an {@code ArrayList} instance sized appropriately to hold an 180 * <i>estimated</i> number of elements without resizing. A small amount of 181 * padding is added in case the estimate is low. 182 * 183 * <p><b>Note:</b> If you know the <i>exact</i> number of elements the list 184 * will hold, or prefer to calculate your own amount of padding, refer to 185 * {@link #newArrayListWithCapacity(int)}. 186 * 187 * @param estimatedSize an estimate of the eventual {@link List#size()} of 188 * the new list 189 * @return a new, empty {@code ArrayList}, sized appropriately to hold the 190 * estimated number of elements 191 * @throws IllegalArgumentException if {@code estimatedSize} is negative 192 */ 193 @GwtCompatible(serializable = true) 194 public static <E> ArrayList<E> newArrayListWithExpectedSize( 195 int estimatedSize) { 196 return new ArrayList<E>(computeArrayListCapacity(estimatedSize)); 197 } 198 199 // LinkedList 200 201 /** 202 * Creates an empty {@code LinkedList} instance. 203 * 204 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 205 * {@link ImmutableList#of()} instead. 206 * 207 * @return a new, empty {@code LinkedList} 208 */ 209 @GwtCompatible(serializable = true) 210 public static <E> LinkedList<E> newLinkedList() { 211 return new LinkedList<E>(); 212 } 213 214 /** 215 * Creates a {@code LinkedList} instance containing the given elements. 216 * 217 * @param elements the elements that the list should contain, in order 218 * @return a new {@code LinkedList} containing those elements 219 */ 220 @GwtCompatible(serializable = true) 221 public static <E> LinkedList<E> newLinkedList( 222 Iterable<? extends E> elements) { 223 LinkedList<E> list = newLinkedList(); 224 Iterables.addAll(list, elements); 225 return list; 226 } 227 228 /** 229 * Creates an empty {@code CopyOnWriteArrayList} instance. 230 * 231 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 232 * {@link Collections#emptyList} instead. 233 * 234 * @return a new, empty {@code CopyOnWriteArrayList} 235 * @since 12.0 236 */ 237 @GwtIncompatible("CopyOnWriteArrayList") 238 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() { 239 return new CopyOnWriteArrayList<E>(); 240 } 241 242 /** 243 * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. 244 * 245 * @param elements the elements that the list should contain, in order 246 * @return a new {@code CopyOnWriteArrayList} containing those elements 247 * @since 12.0 248 */ 249 @GwtIncompatible("CopyOnWriteArrayList") 250 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList( 251 Iterable<? extends E> elements) { 252 // We copy elements to an ArrayList first, rather than incurring the 253 // quadratic cost of adding them to the COWAL directly. 254 Collection<? extends E> elementsCollection = (elements instanceof Collection) 255 ? Collections2.cast(elements) 256 : newArrayList(elements); 257 return new CopyOnWriteArrayList<E>(elementsCollection); 258 } 259 260 /** 261 * Returns an unmodifiable list containing the specified first element and 262 * backed by the specified array of additional elements. Changes to the {@code 263 * rest} array will be reflected in the returned list. Unlike {@link 264 * Arrays#asList}, the returned list is unmodifiable. 265 * 266 * <p>This is useful when a varargs method needs to use a signature such as 267 * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload 268 * ambiguity or to enforce a minimum argument count. 269 * 270 * <p>The returned list is serializable and implements {@link RandomAccess}. 271 * 272 * @param first the first element 273 * @param rest an array of additional elements, possibly empty 274 * @return an unmodifiable list containing the specified elements 275 */ 276 public static <E> List<E> asList(@Nullable E first, E[] rest) { 277 return new OnePlusArrayList<E>(first, rest); 278 } 279 280 /** @see Lists#asList(Object, Object[]) */ 281 private static class OnePlusArrayList<E> extends AbstractList<E> 282 implements Serializable, RandomAccess { 283 final E first; 284 final E[] rest; 285 286 OnePlusArrayList(@Nullable E first, E[] rest) { 287 this.first = first; 288 this.rest = checkNotNull(rest); 289 } 290 @Override public int size() { 291 return rest.length + 1; 292 } 293 @Override public E get(int index) { 294 // check explicitly so the IOOBE will have the right message 295 checkElementIndex(index, size()); 296 return (index == 0) ? first : rest[index - 1]; 297 } 298 private static final long serialVersionUID = 0; 299 } 300 301 /** 302 * Returns an unmodifiable list containing the specified first and second 303 * element, and backed by the specified array of additional elements. Changes 304 * to the {@code rest} array will be reflected in the returned list. Unlike 305 * {@link Arrays#asList}, the returned list is unmodifiable. 306 * 307 * <p>This is useful when a varargs method needs to use a signature such as 308 * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid 309 * overload ambiguity or to enforce a minimum argument count. 310 * 311 * <p>The returned list is serializable and implements {@link RandomAccess}. 312 * 313 * @param first the first element 314 * @param second the second element 315 * @param rest an array of additional elements, possibly empty 316 * @return an unmodifiable list containing the specified elements 317 */ 318 public static <E> List<E> asList( 319 @Nullable E first, @Nullable E second, E[] rest) { 320 return new TwoPlusArrayList<E>(first, second, rest); 321 } 322 323 /** @see Lists#asList(Object, Object, Object[]) */ 324 private static class TwoPlusArrayList<E> extends AbstractList<E> 325 implements Serializable, RandomAccess { 326 final E first; 327 final E second; 328 final E[] rest; 329 330 TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) { 331 this.first = first; 332 this.second = second; 333 this.rest = checkNotNull(rest); 334 } 335 @Override public int size() { 336 return rest.length + 2; 337 } 338 @Override public E get(int index) { 339 switch (index) { 340 case 0: 341 return first; 342 case 1: 343 return second; 344 default: 345 // check explicitly so the IOOBE will have the right message 346 checkElementIndex(index, size()); 347 return rest[index - 2]; 348 } 349 } 350 private static final long serialVersionUID = 0; 351 } 352 353 /** 354 * Returns every possible list that can be formed by choosing one element 355 * from each of the given lists in order; the "n-ary 356 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 357 * product</a>" of the lists. For example: <pre> {@code 358 * 359 * Lists.cartesianProduct(ImmutableList.of( 360 * ImmutableList.of(1, 2), 361 * ImmutableList.of("A", "B", "C")))}</pre> 362 * 363 * <p>returns a list containing six lists in the following order: 364 * 365 * <ul> 366 * <li>{@code ImmutableList.of(1, "A")} 367 * <li>{@code ImmutableList.of(1, "B")} 368 * <li>{@code ImmutableList.of(1, "C")} 369 * <li>{@code ImmutableList.of(2, "A")} 370 * <li>{@code ImmutableList.of(2, "B")} 371 * <li>{@code ImmutableList.of(2, "C")} 372 * </ul> 373 * 374 * <p>The result is guaranteed to be in the "traditional", lexicographical 375 * order for Cartesian products that you would get from nesting for loops: 376 * <pre> {@code 377 * 378 * for (B b0 : lists.get(0)) { 379 * for (B b1 : lists.get(1)) { 380 * ... 381 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 382 * // operate on tuple 383 * } 384 * }}</pre> 385 * 386 * <p>Note that if any input list is empty, the Cartesian product will also be 387 * empty. If no lists at all are provided (an empty list), the resulting 388 * Cartesian product has one element, an empty list (counter-intuitive, but 389 * mathematically consistent). 390 * 391 * <p><i>Performance notes:</i> while the cartesian product of lists of size 392 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 393 * consumption is much smaller. When the cartesian product is constructed, the 394 * input lists are merely copied. Only as the resulting list is iterated are 395 * the individual lists created, and these are not retained after iteration. 396 * 397 * @param lists the lists to choose elements from, in the order that 398 * the elements chosen from those lists should appear in the resulting 399 * lists 400 * @param <B> any common base class shared by all axes (often just {@link 401 * Object}) 402 * @return the Cartesian product, as an immutable list containing immutable 403 * lists 404 * @throws IllegalArgumentException if the size of the cartesian product would 405 * be greater than {@link Integer#MAX_VALUE} 406 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, 407 * or any element of a provided list is null 408 */ static <B> List<List<B>> 409 cartesianProduct(List<? extends List<? extends B>> lists) { 410 return CartesianList.create(lists); 411 } 412 413 /** 414 * Returns every possible list that can be formed by choosing one element 415 * from each of the given lists in order; the "n-ary 416 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 417 * product</a>" of the lists. For example: <pre> {@code 418 * 419 * Lists.cartesianProduct(ImmutableList.of( 420 * ImmutableList.of(1, 2), 421 * ImmutableList.of("A", "B", "C")))}</pre> 422 * 423 * <p>returns a list containing six lists in the following order: 424 * 425 * <ul> 426 * <li>{@code ImmutableList.of(1, "A")} 427 * <li>{@code ImmutableList.of(1, "B")} 428 * <li>{@code ImmutableList.of(1, "C")} 429 * <li>{@code ImmutableList.of(2, "A")} 430 * <li>{@code ImmutableList.of(2, "B")} 431 * <li>{@code ImmutableList.of(2, "C")} 432 * </ul> 433 * 434 * <p>The result is guaranteed to be in the "traditional", lexicographical 435 * order for Cartesian products that you would get from nesting for loops: 436 * <pre> {@code 437 * 438 * for (B b0 : lists.get(0)) { 439 * for (B b1 : lists.get(1)) { 440 * ... 441 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 442 * // operate on tuple 443 * } 444 * }}</pre> 445 * 446 * <p>Note that if any input list is empty, the Cartesian product will also be 447 * empty. If no lists at all are provided (an empty list), the resulting 448 * Cartesian product has one element, an empty list (counter-intuitive, but 449 * mathematically consistent). 450 * 451 * <p><i>Performance notes:</i> while the cartesian product of lists of size 452 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 453 * consumption is much smaller. When the cartesian product is constructed, the 454 * input lists are merely copied. Only as the resulting list is iterated are 455 * the individual lists created, and these are not retained after iteration. 456 * 457 * @param lists the lists to choose elements from, in the order that 458 * the elements chosen from those lists should appear in the resulting 459 * lists 460 * @param <B> any common base class shared by all axes (often just {@link 461 * Object}) 462 * @return the Cartesian product, as an immutable list containing immutable 463 * lists 464 * @throws IllegalArgumentException if the size of the cartesian product would 465 * be greater than {@link Integer#MAX_VALUE} 466 * @throws NullPointerException if {@code lists}, any one of the 467 * {@code lists}, or any element of a provided list is null 468 */ static <B> List<List<B>> 469 cartesianProduct(List<? extends B>... lists) { 470 return cartesianProduct(Arrays.asList(lists)); 471 } 472 473 /** 474 * Returns a list that applies {@code function} to each element of {@code 475 * fromList}. The returned list is a transformed view of {@code fromList}; 476 * changes to {@code fromList} will be reflected in the returned list and vice 477 * versa. 478 * 479 * <p>Since functions are not reversible, the transform is one-way and new 480 * items cannot be stored in the returned list. The {@code add}, 481 * {@code addAll} and {@code set} methods are unsupported in the returned 482 * list. 483 * 484 * <p>The function is applied lazily, invoked when needed. This is necessary 485 * for the returned list to be a view, but it means that the function will be 486 * applied many times for bulk operations like {@link List#contains} and 487 * {@link List#hashCode}. For this to perform well, {@code function} should be 488 * fast. To avoid lazy evaluation when the returned list doesn't need to be a 489 * view, copy the returned list into a new list of your choosing. 490 * 491 * <p>If {@code fromList} implements {@link RandomAccess}, so will the 492 * returned list. The returned list is threadsafe if the supplied list and 493 * function are. 494 * 495 * <p>If only a {@code Collection} or {@code Iterable} input is available, use 496 * {@link Collections2#transform} or {@link Iterables#transform}. 497 * 498 * <p><b>Note:</b> serializing the returned list is implemented by serializing 499 * {@code fromList}, its contents, and {@code function} -- <i>not</i> by 500 * serializing the transformed values. This can lead to surprising behavior, 501 * so serializing the returned list is <b>not recommended</b>. Instead, 502 * copy the list using {@link ImmutableList#copyOf(Collection)} (for example), 503 * then serialize the copy. Other methods similar to this do not implement 504 * serialization at all for this reason. 505 */ 506 public static <F, T> List<T> transform( 507 List<F> fromList, Function<? super F, ? extends T> function) { 508 return (fromList instanceof RandomAccess) 509 ? new TransformingRandomAccessList<F, T>(fromList, function) 510 : new TransformingSequentialList<F, T>(fromList, function); 511 } 512 513 /** 514 * Implementation of a sequential transforming list. 515 * 516 * @see Lists#transform 517 */ 518 private static class TransformingSequentialList<F, T> 519 extends AbstractSequentialList<T> implements Serializable { 520 final List<F> fromList; 521 final Function<? super F, ? extends T> function; 522 523 TransformingSequentialList( 524 List<F> fromList, Function<? super F, ? extends T> function) { 525 this.fromList = checkNotNull(fromList); 526 this.function = checkNotNull(function); 527 } 528 /** 529 * The default implementation inherited is based on iteration and removal of 530 * each element which can be overkill. That's why we forward this call 531 * directly to the backing list. 532 */ 533 @Override public void clear() { 534 fromList.clear(); 535 } 536 @Override public int size() { 537 return fromList.size(); 538 } 539 @Override public ListIterator<T> listIterator(final int index) { 540 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 541 @Override 542 T transform(F from) { 543 return function.apply(from); 544 } 545 }; 546 } 547 548 private static final long serialVersionUID = 0; 549 } 550 551 /** 552 * Implementation of a transforming random access list. We try to make as many 553 * of these methods pass-through to the source list as possible so that the 554 * performance characteristics of the source list and transformed list are 555 * similar. 556 * 557 * @see Lists#transform 558 */ 559 private static class TransformingRandomAccessList<F, T> 560 extends AbstractList<T> implements RandomAccess, Serializable { 561 final List<F> fromList; 562 final Function<? super F, ? extends T> function; 563 564 TransformingRandomAccessList( 565 List<F> fromList, Function<? super F, ? extends T> function) { 566 this.fromList = checkNotNull(fromList); 567 this.function = checkNotNull(function); 568 } 569 @Override public void clear() { 570 fromList.clear(); 571 } 572 @Override public T get(int index) { 573 return function.apply(fromList.get(index)); 574 } 575 @Override public Iterator<T> iterator() { 576 return listIterator(); 577 } 578 @Override public ListIterator<T> listIterator(int index) { 579 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 580 @Override 581 T transform(F from) { 582 return function.apply(from); 583 } 584 }; 585 } 586 @Override public boolean isEmpty() { 587 return fromList.isEmpty(); 588 } 589 @Override public T remove(int index) { 590 return function.apply(fromList.remove(index)); 591 } 592 @Override public int size() { 593 return fromList.size(); 594 } 595 private static final long serialVersionUID = 0; 596 } 597 598 /** 599 * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, 600 * each of the same size (the final list may be smaller). For example, 601 * partitioning a list containing {@code [a, b, c, d, e]} with a partition 602 * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing 603 * two inner lists of three and two elements, all in the original order. 604 * 605 * <p>The outer list is unmodifiable, but reflects the latest state of the 606 * source list. The inner lists are sublist views of the original list, 607 * produced on demand using {@link List#subList(int, int)}, and are subject 608 * to all the usual caveats about modification as explained in that API. 609 * 610 * @param list the list to return consecutive sublists of 611 * @param size the desired size of each sublist (the last may be 612 * smaller) 613 * @return a list of consecutive sublists 614 * @throws IllegalArgumentException if {@code partitionSize} is nonpositive 615 */ 616 public static <T> List<List<T>> partition(List<T> list, int size) { 617 checkNotNull(list); 618 checkArgument(size > 0); 619 return (list instanceof RandomAccess) 620 ? new RandomAccessPartition<T>(list, size) 621 : new Partition<T>(list, size); 622 } 623 624 private static class Partition<T> extends AbstractList<List<T>> { 625 final List<T> list; 626 final int size; 627 628 Partition(List<T> list, int size) { 629 this.list = list; 630 this.size = size; 631 } 632 633 @Override public List<T> get(int index) { 634 checkElementIndex(index, size()); 635 int start = index * size; 636 int end = Math.min(start + size, list.size()); 637 return list.subList(start, end); 638 } 639 640 @Override public int size() { 641 return IntMath.divide(list.size(), size, RoundingMode.CEILING); 642 } 643 644 @Override public boolean isEmpty() { 645 return list.isEmpty(); 646 } 647 } 648 649 private static class RandomAccessPartition<T> extends Partition<T> 650 implements RandomAccess { 651 RandomAccessPartition(List<T> list, int size) { 652 super(list, size); 653 } 654 } 655 656 /** 657 * Returns a view of the specified string as an immutable list of {@code 658 * Character} values. 659 * 660 * @since 7.0 661 */ 662 @Beta public static ImmutableList<Character> charactersOf(String string) { 663 return new StringAsImmutableList(checkNotNull(string)); 664 } 665 666 @SuppressWarnings("serial") // serialized using ImmutableList serialization 667 private static final class StringAsImmutableList 668 extends ImmutableList<Character> { 669 670 private final String string; 671 672 StringAsImmutableList(String string) { 673 this.string = string; 674 } 675 676 @Override public int indexOf(@Nullable Object object) { 677 return (object instanceof Character) 678 ? string.indexOf((Character) object) : -1; 679 } 680 681 @Override public int lastIndexOf(@Nullable Object object) { 682 return (object instanceof Character) 683 ? string.lastIndexOf((Character) object) : -1; 684 } 685 686 @Override public ImmutableList<Character> subList( 687 int fromIndex, int toIndex) { 688 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 689 return charactersOf(string.substring(fromIndex, toIndex)); 690 } 691 692 @Override boolean isPartialView() { 693 return false; 694 } 695 696 @Override public Character get(int index) { 697 checkElementIndex(index, size()); // for GWT 698 return string.charAt(index); 699 } 700 701 @Override public int size() { 702 return string.length(); 703 } 704 } 705 706 /** 707 * Returns a view of the specified {@code CharSequence} as a {@code 708 * List<Character>}, viewing {@code sequence} as a sequence of Unicode code 709 * units. The view does not support any modification operations, but reflects 710 * any changes to the underlying character sequence. 711 * 712 * @param sequence the character sequence to view as a {@code List} of 713 * characters 714 * @return an {@code List<Character>} view of the character sequence 715 * @since 7.0 716 */ 717 @Beta public static List<Character> charactersOf(CharSequence sequence) { 718 return new CharSequenceAsList(checkNotNull(sequence)); 719 } 720 721 private static final class CharSequenceAsList 722 extends AbstractList<Character> { 723 private final CharSequence sequence; 724 725 CharSequenceAsList(CharSequence sequence) { 726 this.sequence = sequence; 727 } 728 729 @Override public Character get(int index) { 730 checkElementIndex(index, size()); // for GWT 731 return sequence.charAt(index); 732 } 733 734 @Override public int size() { 735 return sequence.length(); 736 } 737 } 738 739 /** 740 * Returns a reversed view of the specified list. For example, {@code 741 * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 742 * 2, 1}. The returned list is backed by this list, so changes in the returned 743 * list are reflected in this list, and vice-versa. The returned list supports 744 * all of the optional list operations supported by this list. 745 * 746 * <p>The returned list is random-access if the specified list is random 747 * access. 748 * 749 * @since 7.0 750 */ 751 public static <T> List<T> reverse(List<T> list) { 752 if (list instanceof ImmutableList) { 753 return ((ImmutableList<T>) list).reverse(); 754 } else if (list instanceof ReverseList) { 755 return ((ReverseList<T>) list).getForwardList(); 756 } else if (list instanceof RandomAccess) { 757 return new RandomAccessReverseList<T>(list); 758 } else { 759 return new ReverseList<T>(list); 760 } 761 } 762 763 private static class ReverseList<T> extends AbstractList<T> { 764 private final List<T> forwardList; 765 766 ReverseList(List<T> forwardList) { 767 this.forwardList = checkNotNull(forwardList); 768 } 769 770 List<T> getForwardList() { 771 return forwardList; 772 } 773 774 private int reverseIndex(int index) { 775 int size = size(); 776 checkElementIndex(index, size); 777 return (size - 1) - index; 778 } 779 780 private int reversePosition(int index) { 781 int size = size(); 782 checkPositionIndex(index, size); 783 return size - index; 784 } 785 786 @Override public void add(int index, @Nullable T element) { 787 forwardList.add(reversePosition(index), element); 788 } 789 790 @Override public void clear() { 791 forwardList.clear(); 792 } 793 794 @Override public T remove(int index) { 795 return forwardList.remove(reverseIndex(index)); 796 } 797 798 @Override protected void removeRange(int fromIndex, int toIndex) { 799 subList(fromIndex, toIndex).clear(); 800 } 801 802 @Override public T set(int index, @Nullable T element) { 803 return forwardList.set(reverseIndex(index), element); 804 } 805 806 @Override public T get(int index) { 807 return forwardList.get(reverseIndex(index)); 808 } 809 810 @Override public int size() { 811 return forwardList.size(); 812 } 813 814 @Override public List<T> subList(int fromIndex, int toIndex) { 815 checkPositionIndexes(fromIndex, toIndex, size()); 816 return reverse(forwardList.subList( 817 reversePosition(toIndex), reversePosition(fromIndex))); 818 } 819 820 @Override public Iterator<T> iterator() { 821 return listIterator(); 822 } 823 824 @Override public ListIterator<T> listIterator(int index) { 825 int start = reversePosition(index); 826 final ListIterator<T> forwardIterator = forwardList.listIterator(start); 827 return new ListIterator<T>() { 828 829 boolean canRemoveOrSet; 830 831 @Override public void add(T e) { 832 forwardIterator.add(e); 833 forwardIterator.previous(); 834 canRemoveOrSet = false; 835 } 836 837 @Override public boolean hasNext() { 838 return forwardIterator.hasPrevious(); 839 } 840 841 @Override public boolean hasPrevious() { 842 return forwardIterator.hasNext(); 843 } 844 845 @Override public T next() { 846 if (!hasNext()) { 847 throw new NoSuchElementException(); 848 } 849 canRemoveOrSet = true; 850 return forwardIterator.previous(); 851 } 852 853 @Override public int nextIndex() { 854 return reversePosition(forwardIterator.nextIndex()); 855 } 856 857 @Override public T previous() { 858 if (!hasPrevious()) { 859 throw new NoSuchElementException(); 860 } 861 canRemoveOrSet = true; 862 return forwardIterator.next(); 863 } 864 865 @Override public int previousIndex() { 866 return nextIndex() - 1; 867 } 868 869 @Override public void remove() { 870 checkRemove(canRemoveOrSet); 871 forwardIterator.remove(); 872 canRemoveOrSet = false; 873 } 874 875 @Override public void set(T e) { 876 checkState(canRemoveOrSet); 877 forwardIterator.set(e); 878 } 879 }; 880 } 881 } 882 883 private static class RandomAccessReverseList<T> extends ReverseList<T> 884 implements RandomAccess { 885 RandomAccessReverseList(List<T> forwardList) { 886 super(forwardList); 887 } 888 } 889 890 /** 891 * An implementation of {@link List#hashCode()}. 892 */ 893 static int hashCodeImpl(List<?> list) { 894 // TODO(user): worth optimizing for RandomAccess? 895 int hashCode = 1; 896 for (Object o : list) { 897 hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); 898 899 hashCode = ~~hashCode; 900 // needed to deal with GWT integer overflow 901 } 902 return hashCode; 903 } 904 905 /** 906 * An implementation of {@link List#equals(Object)}. 907 */ 908 static boolean equalsImpl(List<?> list, @Nullable Object object) { 909 if (object == checkNotNull(list)) { 910 return true; 911 } 912 if (!(object instanceof List)) { 913 return false; 914 } 915 916 List<?> o = (List<?>) object; 917 918 return list.size() == o.size() 919 && Iterators.elementsEqual(list.iterator(), o.iterator()); 920 } 921 922 /** 923 * An implementation of {@link List#addAll(int, Collection)}. 924 */ 925 static <E> boolean addAllImpl( 926 List<E> list, int index, Iterable<? extends E> elements) { 927 boolean changed = false; 928 ListIterator<E> listIterator = list.listIterator(index); 929 for (E e : elements) { 930 listIterator.add(e); 931 changed = true; 932 } 933 return changed; 934 } 935 936 /** 937 * An implementation of {@link List#indexOf(Object)}. 938 */ 939 static int indexOfImpl(List<?> list, @Nullable Object element) { 940 ListIterator<?> listIterator = list.listIterator(); 941 while (listIterator.hasNext()) { 942 if (Objects.equal(element, listIterator.next())) { 943 return listIterator.previousIndex(); 944 } 945 } 946 return -1; 947 } 948 949 /** 950 * An implementation of {@link List#lastIndexOf(Object)}. 951 */ 952 static int lastIndexOfImpl(List<?> list, @Nullable Object element) { 953 ListIterator<?> listIterator = list.listIterator(list.size()); 954 while (listIterator.hasPrevious()) { 955 if (Objects.equal(element, listIterator.previous())) { 956 return listIterator.nextIndex(); 957 } 958 } 959 return -1; 960 } 961 962 /** 963 * Returns an implementation of {@link List#listIterator(int)}. 964 */ 965 static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) { 966 return new AbstractListWrapper<E>(list).listIterator(index); 967 } 968 969 /** 970 * An implementation of {@link List#subList(int, int)}. 971 */ 972 static <E> List<E> subListImpl( 973 final List<E> list, int fromIndex, int toIndex) { 974 List<E> wrapper; 975 if (list instanceof RandomAccess) { 976 wrapper = new RandomAccessListWrapper<E>(list) { 977 @Override public ListIterator<E> listIterator(int index) { 978 return backingList.listIterator(index); 979 } 980 981 private static final long serialVersionUID = 0; 982 }; 983 } else { 984 wrapper = new AbstractListWrapper<E>(list) { 985 @Override public ListIterator<E> listIterator(int index) { 986 return backingList.listIterator(index); 987 } 988 989 private static final long serialVersionUID = 0; 990 }; 991 } 992 return wrapper.subList(fromIndex, toIndex); 993 } 994 995 private static class AbstractListWrapper<E> extends AbstractList<E> { 996 final List<E> backingList; 997 998 AbstractListWrapper(List<E> backingList) { 999 this.backingList = checkNotNull(backingList); 1000 } 1001 1002 @Override public void add(int index, E element) { 1003 backingList.add(index, element); 1004 } 1005 1006 @Override public boolean addAll(int index, Collection<? extends E> c) { 1007 return backingList.addAll(index, c); 1008 } 1009 1010 @Override public E get(int index) { 1011 return backingList.get(index); 1012 } 1013 1014 @Override public E remove(int index) { 1015 return backingList.remove(index); 1016 } 1017 1018 @Override public E set(int index, E element) { 1019 return backingList.set(index, element); 1020 } 1021 1022 @Override public boolean contains(Object o) { 1023 return backingList.contains(o); 1024 } 1025 1026 @Override public int size() { 1027 return backingList.size(); 1028 } 1029 } 1030 1031 private static class RandomAccessListWrapper<E> 1032 extends AbstractListWrapper<E> implements RandomAccess { 1033 RandomAccessListWrapper(List<E> backingList) { 1034 super(backingList); 1035 } 1036 } 1037 1038 /** 1039 * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 1040 */ 1041 static <T> List<T> cast(Iterable<T> iterable) { 1042 return (List<T>) iterable; 1043 } 1044}