001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.primitives; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021 022import com.google.common.annotations.Beta; 023import com.google.common.annotations.VisibleForTesting; 024 025import sun.misc.Unsafe; 026 027import java.nio.ByteOrder; 028import java.util.Comparator; 029 030/** 031 * Static utility methods pertaining to {@code byte} primitives that interpret 032 * values as <i>unsigned</i> (that is, any negative value {@code b} is treated 033 * as the positive value {@code 256 + b}). The corresponding methods that treat 034 * the values as signed are found in {@link SignedBytes}, and the methods for 035 * which signedness is not an issue are in {@link Bytes}. 036 * 037 * <p>See the Guava User Guide article on <a href= 038 * "http://code.google.com/p/guava-libraries/wiki/PrimitivesExplained"> 039 * primitive utilities</a>. 040 * 041 * @author Kevin Bourrillion 042 * @author Martin Buchholz 043 * @author Hiroshi Yamauchi 044 * @author Louis Wasserman 045 * @since 1.0 046 */ 047public final class UnsignedBytes { 048 private UnsignedBytes() {} 049 050 /** 051 * The largest power of two that can be represented as an unsigned {@code 052 * byte}. 053 * 054 * @since 10.0 055 */ 056 public static final byte MAX_POWER_OF_TWO = (byte) 0x80; 057 058 /** 059 * The largest value that fits into an unsigned byte. 060 * 061 * @since 13.0 062 */ 063 public static final byte MAX_VALUE = (byte) 0xFF; 064 065 private static final int UNSIGNED_MASK = 0xFF; 066 067 /** 068 * Returns the value of the given byte as an integer, when treated as 069 * unsigned. That is, returns {@code value + 256} if {@code value} is 070 * negative; {@code value} itself otherwise. 071 * 072 * @since 6.0 073 */ 074 public static int toInt(byte value) { 075 return value & UNSIGNED_MASK; 076 } 077 078 /** 079 * Returns the {@code byte} value that, when treated as unsigned, is equal to 080 * {@code value}, if possible. 081 * 082 * @param value a value between 0 and 255 inclusive 083 * @return the {@code byte} value that, when treated as unsigned, equals 084 * {@code value} 085 * @throws IllegalArgumentException if {@code value} is negative or greater 086 * than 255 087 */ 088 public static byte checkedCast(long value) { 089 checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value); 090 return (byte) value; 091 } 092 093 /** 094 * Returns the {@code byte} value that, when treated as unsigned, is nearest 095 * in value to {@code value}. 096 * 097 * @param value any {@code long} value 098 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if 099 * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise 100 */ 101 public static byte saturatedCast(long value) { 102 if (value > toInt(MAX_VALUE)) { 103 return MAX_VALUE; // -1 104 } 105 if (value < 0) { 106 return (byte) 0; 107 } 108 return (byte) value; 109 } 110 111 /** 112 * Compares the two specified {@code byte} values, treating them as unsigned 113 * values between 0 and 255 inclusive. For example, {@code (byte) -127} is 114 * considered greater than {@code (byte) 127} because it is seen as having 115 * the value of positive {@code 129}. 116 * 117 * @param a the first {@code byte} to compare 118 * @param b the second {@code byte} to compare 119 * @return a negative value if {@code a} is less than {@code b}; a positive 120 * value if {@code a} is greater than {@code b}; or zero if they are equal 121 */ 122 public static int compare(byte a, byte b) { 123 return toInt(a) - toInt(b); 124 } 125 126 /** 127 * Returns the least value present in {@code array}. 128 * 129 * @param array a <i>nonempty</i> array of {@code byte} values 130 * @return the value present in {@code array} that is less than or equal to 131 * every other value in the array 132 * @throws IllegalArgumentException if {@code array} is empty 133 */ 134 public static byte min(byte... array) { 135 checkArgument(array.length > 0); 136 int min = toInt(array[0]); 137 for (int i = 1; i < array.length; i++) { 138 int next = toInt(array[i]); 139 if (next < min) { 140 min = next; 141 } 142 } 143 return (byte) min; 144 } 145 146 /** 147 * Returns the greatest value present in {@code array}. 148 * 149 * @param array a <i>nonempty</i> array of {@code byte} values 150 * @return the value present in {@code array} that is greater than or equal 151 * to every other value in the array 152 * @throws IllegalArgumentException if {@code array} is empty 153 */ 154 public static byte max(byte... array) { 155 checkArgument(array.length > 0); 156 int max = toInt(array[0]); 157 for (int i = 1; i < array.length; i++) { 158 int next = toInt(array[i]); 159 if (next > max) { 160 max = next; 161 } 162 } 163 return (byte) max; 164 } 165 166 /** 167 * Returns a string representation of x, where x is treated as unsigned. 168 * 169 * @since 13.0 170 */ 171 @Beta 172 public static String toString(byte x) { 173 return toString(x, 10); 174 } 175 176 /** 177 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated 178 * as unsigned. 179 * 180 * @param x the value to convert to a string. 181 * @param radix the radix to use while working with {@code x} 182 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 183 * and {@link Character#MAX_RADIX}. 184 * @since 13.0 185 */ 186 @Beta 187 public static String toString(byte x, int radix) { 188 checkArgument(radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 189 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix); 190 // Benchmarks indicate this is probably not worth optimizing. 191 return Integer.toString(toInt(x), radix); 192 } 193 194 /** 195 * Returns the unsigned {@code byte} value represented by the given decimal string. 196 * 197 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 198 * value 199 * @throws NullPointerException if {@code s} is null 200 * (in contrast to {@link Byte#parseByte(String)}) 201 * @since 13.0 202 */ 203 @Beta 204 public static byte parseUnsignedByte(String string) { 205 return parseUnsignedByte(string, 10); 206 } 207 208 /** 209 * Returns the unsigned {@code byte} value represented by a string with the given radix. 210 * 211 * @param string the string containing the unsigned {@code byte} representation to be parsed. 212 * @param radix the radix to use while parsing {@code string} 213 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 214 * with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} 215 * and {@link Character#MAX_RADIX}. 216 * @throws NullPointerException if {@code s} is null 217 * (in contrast to {@link Byte#parseByte(String)}) 218 * @since 13.0 219 */ 220 @Beta 221 public static byte parseUnsignedByte(String string, int radix) { 222 int parse = Integer.parseInt(checkNotNull(string), radix); 223 // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( 224 if (parse >> Byte.SIZE == 0) { 225 return (byte) parse; 226 } else { 227 throw new NumberFormatException("out of range: " + parse); 228 } 229 } 230 231 /** 232 * Returns a string containing the supplied {@code byte} values separated by 233 * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2, 234 * (byte) 255)} returns the string {@code "1:2:255"}. 235 * 236 * @param separator the text that should appear between consecutive values in 237 * the resulting string (but not at the start or end) 238 * @param array an array of {@code byte} values, possibly empty 239 */ 240 public static String join(String separator, byte... array) { 241 checkNotNull(separator); 242 if (array.length == 0) { 243 return ""; 244 } 245 246 // For pre-sizing a builder, just get the right order of magnitude 247 StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); 248 builder.append(toInt(array[0])); 249 for (int i = 1; i < array.length; i++) { 250 builder.append(separator).append(toString(array[i])); 251 } 252 return builder.toString(); 253 } 254 255 /** 256 * Returns a comparator that compares two {@code byte} arrays 257 * lexicographically. That is, it compares, using {@link 258 * #compare(byte, byte)}), the first pair of values that follow any common 259 * prefix, or when one array is a prefix of the other, treats the shorter 260 * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] < 261 * [0x01, 0x80] < [0x02]}. Values are treated as unsigned. 262 * 263 * <p>The returned comparator is inconsistent with {@link 264 * Object#equals(Object)} (since arrays support only identity equality), but 265 * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. 266 * 267 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order"> 268 * Lexicographical order article at Wikipedia</a> 269 * @since 2.0 270 */ 271 public static Comparator<byte[]> lexicographicalComparator() { 272 return LexicographicalComparatorHolder.BEST_COMPARATOR; 273 } 274 275 @VisibleForTesting 276 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 277 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 278 } 279 280 /** 281 * Provides a lexicographical comparator implementation; either a Java 282 * implementation or a faster implementation based on {@link Unsafe}. 283 * 284 * <p>Uses reflection to gracefully fall back to the Java implementation if 285 * {@code Unsafe} isn't available. 286 */ 287 @VisibleForTesting 288 static class LexicographicalComparatorHolder { 289 static final String UNSAFE_COMPARATOR_NAME = 290 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 291 292 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 293 294 @VisibleForTesting 295 enum UnsafeComparator implements Comparator<byte[]> { 296 INSTANCE; 297 298 static final boolean BIG_ENDIAN = 299 ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); 300 301 /* 302 * The following static final fields exist for performance reasons. 303 * 304 * In UnsignedBytesBenchmark, accessing the following objects via static 305 * final fields is the fastest (more than twice as fast as the Java 306 * implementation, vs ~1.5x with non-final static fields, on x86_32) 307 * under the Hotspot server compiler. The reason is obviously that the 308 * non-final fields need to be reloaded inside the loop. 309 * 310 * And, no, defining (final or not) local variables out of the loop still 311 * isn't as good because the null check on the theUnsafe object remains 312 * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get 313 * constant-folded. 314 * 315 * The compiler can treat static final fields as compile-time constants 316 * and can constant-fold them while (final or not) local variables are 317 * run time values. 318 */ 319 320 static final Unsafe theUnsafe; 321 322 /** The offset to the first element in a byte array. */ 323 static final int BYTE_ARRAY_BASE_OFFSET; 324 325 static { 326 theUnsafe = getUnsafe(); 327 328 BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 329 330 // sanity check - this should never fail 331 if (theUnsafe.arrayIndexScale(byte[].class) != 1) { 332 throw new AssertionError(); 333 } 334 } 335 336 /** 337 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. 338 * Replace with a simple call to Unsafe.getUnsafe when integrating 339 * into a jdk. 340 * 341 * @return a sun.misc.Unsafe 342 */ 343 private static sun.misc.Unsafe getUnsafe() { 344 try { 345 return sun.misc.Unsafe.getUnsafe(); 346 } catch (SecurityException tryReflectionInstead) {} 347 try { 348 return java.security.AccessController.doPrivileged 349 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() { 350 public sun.misc.Unsafe run() throws Exception { 351 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class; 352 for (java.lang.reflect.Field f : k.getDeclaredFields()) { 353 f.setAccessible(true); 354 Object x = f.get(null); 355 if (k.isInstance(x)) 356 return k.cast(x); 357 } 358 throw new NoSuchFieldError("the Unsafe"); 359 }}); 360 } catch (java.security.PrivilegedActionException e) { 361 throw new RuntimeException("Could not initialize intrinsics", 362 e.getCause()); 363 } 364 } 365 366 @Override public int compare(byte[] left, byte[] right) { 367 int minLength = Math.min(left.length, right.length); 368 int minWords = minLength / Longs.BYTES; 369 370 /* 371 * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a 372 * time is no slower than comparing 4 bytes at a time even on 32-bit. 373 * On the other hand, it is substantially faster on 64-bit. 374 */ 375 for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { 376 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 377 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 378 if (lw != rw) { 379 if (BIG_ENDIAN) { 380 return UnsignedLongs.compare(lw, rw); 381 } 382 383 /* 384 * We want to compare only the first index where left[index] != right[index]. 385 * This corresponds to the least significant nonzero byte in lw ^ rw, since lw 386 * and rw are little-endian. Long.numberOfTrailingZeros(diff) tells us the least 387 * significant nonzero bit, and zeroing out the first three bits of L.nTZ gives us the 388 * shift to get that least significant nonzero byte. 389 */ 390 int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; 391 return (int) (((lw >>> n) & UNSIGNED_MASK) - ((rw >>> n) & UNSIGNED_MASK)); 392 } 393 } 394 395 // The epilogue to cover the last (minLength % 8) elements. 396 for (int i = minWords * Longs.BYTES; i < minLength; i++) { 397 int result = UnsignedBytes.compare(left[i], right[i]); 398 if (result != 0) { 399 return result; 400 } 401 } 402 return left.length - right.length; 403 } 404 } 405 406 enum PureJavaComparator implements Comparator<byte[]> { 407 INSTANCE; 408 409 @Override public int compare(byte[] left, byte[] right) { 410 int minLength = Math.min(left.length, right.length); 411 for (int i = 0; i < minLength; i++) { 412 int result = UnsignedBytes.compare(left[i], right[i]); 413 if (result != 0) { 414 return result; 415 } 416 } 417 return left.length - right.length; 418 } 419 } 420 421 /** 422 * Returns the Unsafe-using Comparator, or falls back to the pure-Java 423 * implementation if unable to do so. 424 */ 425 static Comparator<byte[]> getBestComparator() { 426 try { 427 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 428 429 // yes, UnsafeComparator does implement Comparator<byte[]> 430 @SuppressWarnings("unchecked") 431 Comparator<byte[]> comparator = 432 (Comparator<byte[]>) theClass.getEnumConstants()[0]; 433 return comparator; 434 } catch (Throwable t) { // ensure we really catch *everything* 435 return lexicographicalComparatorJavaImpl(); 436 } 437 } 438 } 439}