001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkElementIndex; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkPositionIndex; 023import static com.google.common.base.Preconditions.checkPositionIndexes; 024import static com.google.common.base.Preconditions.checkState; 025import static com.google.common.collect.CollectPreconditions.checkRemove; 026 027import com.google.common.annotations.Beta; 028import com.google.common.annotations.GwtCompatible; 029import com.google.common.annotations.GwtIncompatible; 030import com.google.common.annotations.VisibleForTesting; 031import com.google.common.base.Function; 032import com.google.common.base.Objects; 033import com.google.common.math.IntMath; 034import com.google.common.primitives.Ints; 035 036import java.io.Serializable; 037import java.math.RoundingMode; 038import java.util.AbstractList; 039import java.util.AbstractSequentialList; 040import java.util.ArrayList; 041import java.util.Arrays; 042import java.util.Collection; 043import java.util.Collections; 044import java.util.Iterator; 045import java.util.LinkedList; 046import java.util.List; 047import java.util.ListIterator; 048import java.util.NoSuchElementException; 049import java.util.RandomAccess; 050import java.util.concurrent.CopyOnWriteArrayList; 051 052import javax.annotation.Nullable; 053 054/** 055 * Static utility methods pertaining to {@link List} instances. Also see this 056 * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}. 057 * 058 * <p>See the Guava User Guide article on <a href= 059 * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Lists"> 060 * {@code Lists}</a>. 061 * 062 * @author Kevin Bourrillion 063 * @author Mike Bostock 064 * @author Louis Wasserman 065 * @since 2.0 (imported from Google Collections Library) 066 */ 067@GwtCompatible(emulated = true) 068public final class Lists { 069 private Lists() {} 070 071 // ArrayList 072 073 /** 074 * Creates a <i>mutable</i>, empty {@code ArrayList} instance. 075 * 076 * <p><b>Note:</b> if mutability is not required, use {@link 077 * ImmutableList#of()} instead. 078 * 079 * @return a new, empty {@code ArrayList} 080 */ 081 @GwtCompatible(serializable = true) 082 public static <E> ArrayList<E> newArrayList() { 083 return new ArrayList<E>(); 084 } 085 086 /** 087 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 088 * elements. 089 * 090 * <p><b>Note:</b> if mutability is not required and the elements are 091 * non-null, use an overload of {@link ImmutableList#of()} (for varargs) or 092 * {@link ImmutableList#copyOf(Object[])} (for an array) instead. 093 * 094 * @param elements the elements that the list should contain, in order 095 * @return a new {@code ArrayList} containing those elements 096 */ 097 @GwtCompatible(serializable = true) 098 public static <E> ArrayList<E> newArrayList(E... elements) { 099 checkNotNull(elements); // for GWT 100 // Avoid integer overflow when a large array is passed in 101 int capacity = computeArrayListCapacity(elements.length); 102 ArrayList<E> list = new ArrayList<E>(capacity); 103 Collections.addAll(list, elements); 104 return list; 105 } 106 107 @VisibleForTesting static int computeArrayListCapacity(int arraySize) { 108 checkArgument(arraySize >= 0); 109 110 // TODO(kevinb): Figure out the right behavior, and document it 111 return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); 112 } 113 114 /** 115 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 116 * elements. 117 * 118 * <p><b>Note:</b> if mutability is not required and the elements are 119 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 120 * 121 * @param elements the elements that the list should contain, in order 122 * @return a new {@code ArrayList} containing those elements 123 */ 124 @GwtCompatible(serializable = true) 125 public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) { 126 checkNotNull(elements); // for GWT 127 // Let ArrayList's sizing logic work, if possible 128 return (elements instanceof Collection) 129 ? new ArrayList<E>(Collections2.cast(elements)) 130 : newArrayList(elements.iterator()); 131 } 132 133 /** 134 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 135 * elements. 136 * 137 * <p><b>Note:</b> if mutability is not required and the elements are 138 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 139 * 140 * @param elements the elements that the list should contain, in order 141 * @return a new {@code ArrayList} containing those elements 142 */ 143 @GwtCompatible(serializable = true) 144 public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) { 145 ArrayList<E> list = newArrayList(); 146 Iterators.addAll(list, elements); 147 return list; 148 } 149 150 /** 151 * Creates an {@code ArrayList} instance backed by an array of the 152 * <i>exact</i> size specified; equivalent to 153 * {@link ArrayList#ArrayList(int)}. 154 * 155 * <p><b>Note:</b> if you know the exact size your list will be, consider 156 * using a fixed-size list ({@link Arrays#asList(Object[])}) or an {@link 157 * ImmutableList} instead of a growable {@link ArrayList}. 158 * 159 * <p><b>Note:</b> If you have only an <i>estimate</i> of the eventual size of 160 * the list, consider padding this estimate by a suitable amount, or simply 161 * use {@link #newArrayListWithExpectedSize(int)} instead. 162 * 163 * @param initialArraySize the exact size of the initial backing array for 164 * the returned array list ({@code ArrayList} documentation calls this 165 * value the "capacity") 166 * @return a new, empty {@code ArrayList} which is guaranteed not to resize 167 * itself unless its size reaches {@code initialArraySize + 1} 168 * @throws IllegalArgumentException if {@code initialArraySize} is negative 169 */ 170 @GwtCompatible(serializable = true) 171 public static <E> ArrayList<E> newArrayListWithCapacity( 172 int initialArraySize) { 173 checkArgument(initialArraySize >= 0); // for GWT. 174 return new ArrayList<E>(initialArraySize); 175 } 176 177 /** 178 * Creates an {@code ArrayList} instance sized appropriately to hold an 179 * <i>estimated</i> number of elements without resizing. A small amount of 180 * padding is added in case the estimate is low. 181 * 182 * <p><b>Note:</b> If you know the <i>exact</i> number of elements the list 183 * will hold, or prefer to calculate your own amount of padding, refer to 184 * {@link #newArrayListWithCapacity(int)}. 185 * 186 * @param estimatedSize an estimate of the eventual {@link List#size()} of 187 * the new list 188 * @return a new, empty {@code ArrayList}, sized appropriately to hold the 189 * estimated number of elements 190 * @throws IllegalArgumentException if {@code estimatedSize} is negative 191 */ 192 @GwtCompatible(serializable = true) 193 public static <E> ArrayList<E> newArrayListWithExpectedSize( 194 int estimatedSize) { 195 return new ArrayList<E>(computeArrayListCapacity(estimatedSize)); 196 } 197 198 // LinkedList 199 200 /** 201 * Creates an empty {@code LinkedList} instance. 202 * 203 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 204 * {@link ImmutableList#of()} instead. 205 * 206 * @return a new, empty {@code LinkedList} 207 */ 208 @GwtCompatible(serializable = true) 209 public static <E> LinkedList<E> newLinkedList() { 210 return new LinkedList<E>(); 211 } 212 213 /** 214 * Creates a {@code LinkedList} instance containing the given elements. 215 * 216 * @param elements the elements that the list should contain, in order 217 * @return a new {@code LinkedList} containing those elements 218 */ 219 @GwtCompatible(serializable = true) 220 public static <E> LinkedList<E> newLinkedList( 221 Iterable<? extends E> elements) { 222 LinkedList<E> list = newLinkedList(); 223 Iterables.addAll(list, elements); 224 return list; 225 } 226 227 /** 228 * Creates an empty {@code CopyOnWriteArrayList} instance. 229 * 230 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 231 * {@link Collections#emptyList} instead. 232 * 233 * @return a new, empty {@code CopyOnWriteArrayList} 234 * @since 12.0 235 */ 236 @GwtIncompatible("CopyOnWriteArrayList") 237 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() { 238 return new CopyOnWriteArrayList<E>(); 239 } 240 241 /** 242 * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. 243 * 244 * @param elements the elements that the list should contain, in order 245 * @return a new {@code CopyOnWriteArrayList} containing those elements 246 * @since 12.0 247 */ 248 @GwtIncompatible("CopyOnWriteArrayList") 249 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList( 250 Iterable<? extends E> elements) { 251 // We copy elements to an ArrayList first, rather than incurring the 252 // quadratic cost of adding them to the COWAL directly. 253 Collection<? extends E> elementsCollection = (elements instanceof Collection) 254 ? Collections2.cast(elements) 255 : newArrayList(elements); 256 return new CopyOnWriteArrayList<E>(elementsCollection); 257 } 258 259 /** 260 * Returns an unmodifiable list containing the specified first element and 261 * backed by the specified array of additional elements. Changes to the {@code 262 * rest} array will be reflected in the returned list. Unlike {@link 263 * Arrays#asList}, the returned list is unmodifiable. 264 * 265 * <p>This is useful when a varargs method needs to use a signature such as 266 * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload 267 * ambiguity or to enforce a minimum argument count. 268 * 269 * <p>The returned list is serializable and implements {@link RandomAccess}. 270 * 271 * @param first the first element 272 * @param rest an array of additional elements, possibly empty 273 * @return an unmodifiable list containing the specified elements 274 */ 275 public static <E> List<E> asList(@Nullable E first, E[] rest) { 276 return new OnePlusArrayList<E>(first, rest); 277 } 278 279 /** @see Lists#asList(Object, Object[]) */ 280 private static class OnePlusArrayList<E> extends AbstractList<E> 281 implements Serializable, RandomAccess { 282 final E first; 283 final E[] rest; 284 285 OnePlusArrayList(@Nullable E first, E[] rest) { 286 this.first = first; 287 this.rest = checkNotNull(rest); 288 } 289 @Override public int size() { 290 return rest.length + 1; 291 } 292 @Override public E get(int index) { 293 // check explicitly so the IOOBE will have the right message 294 checkElementIndex(index, size()); 295 return (index == 0) ? first : rest[index - 1]; 296 } 297 private static final long serialVersionUID = 0; 298 } 299 300 /** 301 * Returns an unmodifiable list containing the specified first and second 302 * element, and backed by the specified array of additional elements. Changes 303 * to the {@code rest} array will be reflected in the returned list. Unlike 304 * {@link Arrays#asList}, the returned list is unmodifiable. 305 * 306 * <p>This is useful when a varargs method needs to use a signature such as 307 * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid 308 * overload ambiguity or to enforce a minimum argument count. 309 * 310 * <p>The returned list is serializable and implements {@link RandomAccess}. 311 * 312 * @param first the first element 313 * @param second the second element 314 * @param rest an array of additional elements, possibly empty 315 * @return an unmodifiable list containing the specified elements 316 */ 317 public static <E> List<E> asList( 318 @Nullable E first, @Nullable E second, E[] rest) { 319 return new TwoPlusArrayList<E>(first, second, rest); 320 } 321 322 /** @see Lists#asList(Object, Object, Object[]) */ 323 private static class TwoPlusArrayList<E> extends AbstractList<E> 324 implements Serializable, RandomAccess { 325 final E first; 326 final E second; 327 final E[] rest; 328 329 TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) { 330 this.first = first; 331 this.second = second; 332 this.rest = checkNotNull(rest); 333 } 334 @Override public int size() { 335 return rest.length + 2; 336 } 337 @Override public E get(int index) { 338 switch (index) { 339 case 0: 340 return first; 341 case 1: 342 return second; 343 default: 344 // check explicitly so the IOOBE will have the right message 345 checkElementIndex(index, size()); 346 return rest[index - 2]; 347 } 348 } 349 private static final long serialVersionUID = 0; 350 } 351 352 /** 353 * Returns every possible list that can be formed by choosing one element 354 * from each of the given lists in order; the "n-ary 355 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 356 * product</a>" of the lists. For example: <pre> {@code 357 * 358 * Lists.cartesianProduct(ImmutableList.of( 359 * ImmutableList.of(1, 2), 360 * ImmutableList.of("A", "B", "C")))}</pre> 361 * 362 * <p>returns a list containing six lists in the following order: 363 * 364 * <ul> 365 * <li>{@code ImmutableList.of(1, "A")} 366 * <li>{@code ImmutableList.of(1, "B")} 367 * <li>{@code ImmutableList.of(1, "C")} 368 * <li>{@code ImmutableList.of(2, "A")} 369 * <li>{@code ImmutableList.of(2, "B")} 370 * <li>{@code ImmutableList.of(2, "C")} 371 * </ul> 372 * 373 * <p>The result is guaranteed to be in the "traditional", lexicographical 374 * order for Cartesian products that you would get from nesting for loops: 375 * <pre> {@code 376 * 377 * for (B b0 : lists.get(0)) { 378 * for (B b1 : lists.get(1)) { 379 * ... 380 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 381 * // operate on tuple 382 * } 383 * }}</pre> 384 * 385 * <p>Note that if any input list is empty, the Cartesian product will also be 386 * empty. If no lists at all are provided (an empty list), the resulting 387 * Cartesian product has one element, an empty list (counter-intuitive, but 388 * mathematically consistent). 389 * 390 * <p><i>Performance notes:</i> while the cartesian product of lists of size 391 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 392 * consumption is much smaller. When the cartesian product is constructed, the 393 * input lists are merely copied. Only as the resulting list is iterated are 394 * the individual lists created, and these are not retained after iteration. 395 * 396 * @param lists the lists to choose elements from, in the order that 397 * the elements chosen from those lists should appear in the resulting 398 * lists 399 * @param <B> any common base class shared by all axes (often just {@link 400 * Object}) 401 * @return the Cartesian product, as an immutable list containing immutable 402 * lists 403 * @throws IllegalArgumentException if the size of the cartesian product would 404 * be greater than {@link Integer#MAX_VALUE} 405 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, 406 * or any element of a provided list is null 407 */ static <B> List<List<B>> 408 cartesianProduct(List<? extends List<? extends B>> lists) { 409 return CartesianList.create(lists); 410 } 411 412 /** 413 * Returns every possible list that can be formed by choosing one element 414 * from each of the given lists in order; the "n-ary 415 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 416 * product</a>" of the lists. For example: <pre> {@code 417 * 418 * Lists.cartesianProduct(ImmutableList.of( 419 * ImmutableList.of(1, 2), 420 * ImmutableList.of("A", "B", "C")))}</pre> 421 * 422 * <p>returns a list containing six lists in the following order: 423 * 424 * <ul> 425 * <li>{@code ImmutableList.of(1, "A")} 426 * <li>{@code ImmutableList.of(1, "B")} 427 * <li>{@code ImmutableList.of(1, "C")} 428 * <li>{@code ImmutableList.of(2, "A")} 429 * <li>{@code ImmutableList.of(2, "B")} 430 * <li>{@code ImmutableList.of(2, "C")} 431 * </ul> 432 * 433 * <p>The result is guaranteed to be in the "traditional", lexicographical 434 * order for Cartesian products that you would get from nesting for loops: 435 * <pre> {@code 436 * 437 * for (B b0 : lists.get(0)) { 438 * for (B b1 : lists.get(1)) { 439 * ... 440 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 441 * // operate on tuple 442 * } 443 * }}</pre> 444 * 445 * <p>Note that if any input list is empty, the Cartesian product will also be 446 * empty. If no lists at all are provided (an empty list), the resulting 447 * Cartesian product has one element, an empty list (counter-intuitive, but 448 * mathematically consistent). 449 * 450 * <p><i>Performance notes:</i> while the cartesian product of lists of size 451 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 452 * consumption is much smaller. When the cartesian product is constructed, the 453 * input lists are merely copied. Only as the resulting list is iterated are 454 * the individual lists created, and these are not retained after iteration. 455 * 456 * @param lists the lists to choose elements from, in the order that 457 * the elements chosen from those lists should appear in the resulting 458 * lists 459 * @param <B> any common base class shared by all axes (often just {@link 460 * Object}) 461 * @return the Cartesian product, as an immutable list containing immutable 462 * lists 463 * @throws IllegalArgumentException if the size of the cartesian product would 464 * be greater than {@link Integer#MAX_VALUE} 465 * @throws NullPointerException if {@code lists}, any one of the 466 * {@code lists}, or any element of a provided list is null 467 */ static <B> List<List<B>> 468 cartesianProduct(List<? extends B>... lists) { 469 return cartesianProduct(Arrays.asList(lists)); 470 } 471 472 /** 473 * Returns a list that applies {@code function} to each element of {@code 474 * fromList}. The returned list is a transformed view of {@code fromList}; 475 * changes to {@code fromList} will be reflected in the returned list and vice 476 * versa. 477 * 478 * <p>Since functions are not reversible, the transform is one-way and new 479 * items cannot be stored in the returned list. The {@code add}, 480 * {@code addAll} and {@code set} methods are unsupported in the returned 481 * list. 482 * 483 * <p>The function is applied lazily, invoked when needed. This is necessary 484 * for the returned list to be a view, but it means that the function will be 485 * applied many times for bulk operations like {@link List#contains} and 486 * {@link List#hashCode}. For this to perform well, {@code function} should be 487 * fast. To avoid lazy evaluation when the returned list doesn't need to be a 488 * view, copy the returned list into a new list of your choosing. 489 * 490 * <p>If {@code fromList} implements {@link RandomAccess}, so will the 491 * returned list. The returned list is threadsafe if the supplied list and 492 * function are. 493 * 494 * <p>If only a {@code Collection} or {@code Iterable} input is available, use 495 * {@link Collections2#transform} or {@link Iterables#transform}. 496 * 497 * <p><b>Note:</b> serializing the returned list is implemented by serializing 498 * {@code fromList}, its contents, and {@code function} -- <i>not</i> by 499 * serializing the transformed values. This can lead to surprising behavior, 500 * so serializing the returned list is <b>not recommended</b>. Instead, 501 * copy the list using {@link ImmutableList#copyOf(Collection)} (for example), 502 * then serialize the copy. Other methods similar to this do not implement 503 * serialization at all for this reason. 504 */ 505 public static <F, T> List<T> transform( 506 List<F> fromList, Function<? super F, ? extends T> function) { 507 return (fromList instanceof RandomAccess) 508 ? new TransformingRandomAccessList<F, T>(fromList, function) 509 : new TransformingSequentialList<F, T>(fromList, function); 510 } 511 512 /** 513 * Implementation of a sequential transforming list. 514 * 515 * @see Lists#transform 516 */ 517 private static class TransformingSequentialList<F, T> 518 extends AbstractSequentialList<T> implements Serializable { 519 final List<F> fromList; 520 final Function<? super F, ? extends T> function; 521 522 TransformingSequentialList( 523 List<F> fromList, Function<? super F, ? extends T> function) { 524 this.fromList = checkNotNull(fromList); 525 this.function = checkNotNull(function); 526 } 527 /** 528 * The default implementation inherited is based on iteration and removal of 529 * each element which can be overkill. That's why we forward this call 530 * directly to the backing list. 531 */ 532 @Override public void clear() { 533 fromList.clear(); 534 } 535 @Override public int size() { 536 return fromList.size(); 537 } 538 @Override public ListIterator<T> listIterator(final int index) { 539 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 540 @Override 541 T transform(F from) { 542 return function.apply(from); 543 } 544 }; 545 } 546 547 private static final long serialVersionUID = 0; 548 } 549 550 /** 551 * Implementation of a transforming random access list. We try to make as many 552 * of these methods pass-through to the source list as possible so that the 553 * performance characteristics of the source list and transformed list are 554 * similar. 555 * 556 * @see Lists#transform 557 */ 558 private static class TransformingRandomAccessList<F, T> 559 extends AbstractList<T> implements RandomAccess, Serializable { 560 final List<F> fromList; 561 final Function<? super F, ? extends T> function; 562 563 TransformingRandomAccessList( 564 List<F> fromList, Function<? super F, ? extends T> function) { 565 this.fromList = checkNotNull(fromList); 566 this.function = checkNotNull(function); 567 } 568 @Override public void clear() { 569 fromList.clear(); 570 } 571 @Override public T get(int index) { 572 return function.apply(fromList.get(index)); 573 } 574 @Override public boolean isEmpty() { 575 return fromList.isEmpty(); 576 } 577 @Override public T remove(int index) { 578 return function.apply(fromList.remove(index)); 579 } 580 @Override public int size() { 581 return fromList.size(); 582 } 583 private static final long serialVersionUID = 0; 584 } 585 586 /** 587 * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, 588 * each of the same size (the final list may be smaller). For example, 589 * partitioning a list containing {@code [a, b, c, d, e]} with a partition 590 * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing 591 * two inner lists of three and two elements, all in the original order. 592 * 593 * <p>The outer list is unmodifiable, but reflects the latest state of the 594 * source list. The inner lists are sublist views of the original list, 595 * produced on demand using {@link List#subList(int, int)}, and are subject 596 * to all the usual caveats about modification as explained in that API. 597 * 598 * @param list the list to return consecutive sublists of 599 * @param size the desired size of each sublist (the last may be 600 * smaller) 601 * @return a list of consecutive sublists 602 * @throws IllegalArgumentException if {@code partitionSize} is nonpositive 603 */ 604 public static <T> List<List<T>> partition(List<T> list, int size) { 605 checkNotNull(list); 606 checkArgument(size > 0); 607 return (list instanceof RandomAccess) 608 ? new RandomAccessPartition<T>(list, size) 609 : new Partition<T>(list, size); 610 } 611 612 private static class Partition<T> extends AbstractList<List<T>> { 613 final List<T> list; 614 final int size; 615 616 Partition(List<T> list, int size) { 617 this.list = list; 618 this.size = size; 619 } 620 621 @Override public List<T> get(int index) { 622 checkElementIndex(index, size()); 623 int start = index * size; 624 int end = Math.min(start + size, list.size()); 625 return list.subList(start, end); 626 } 627 628 @Override public int size() { 629 return IntMath.divide(list.size(), size, RoundingMode.CEILING); 630 } 631 632 @Override public boolean isEmpty() { 633 return list.isEmpty(); 634 } 635 } 636 637 private static class RandomAccessPartition<T> extends Partition<T> 638 implements RandomAccess { 639 RandomAccessPartition(List<T> list, int size) { 640 super(list, size); 641 } 642 } 643 644 /** 645 * Returns a view of the specified string as an immutable list of {@code 646 * Character} values. 647 * 648 * @since 7.0 649 */ 650 @Beta public static ImmutableList<Character> charactersOf(String string) { 651 return new StringAsImmutableList(checkNotNull(string)); 652 } 653 654 @SuppressWarnings("serial") // serialized using ImmutableList serialization 655 private static final class StringAsImmutableList 656 extends ImmutableList<Character> { 657 658 private final String string; 659 660 StringAsImmutableList(String string) { 661 this.string = string; 662 } 663 664 @Override public int indexOf(@Nullable Object object) { 665 return (object instanceof Character) 666 ? string.indexOf((Character) object) : -1; 667 } 668 669 @Override public int lastIndexOf(@Nullable Object object) { 670 return (object instanceof Character) 671 ? string.lastIndexOf((Character) object) : -1; 672 } 673 674 @Override public ImmutableList<Character> subList( 675 int fromIndex, int toIndex) { 676 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 677 return charactersOf(string.substring(fromIndex, toIndex)); 678 } 679 680 @Override boolean isPartialView() { 681 return false; 682 } 683 684 @Override public Character get(int index) { 685 checkElementIndex(index, size()); // for GWT 686 return string.charAt(index); 687 } 688 689 @Override public int size() { 690 return string.length(); 691 } 692 } 693 694 /** 695 * Returns a view of the specified {@code CharSequence} as a {@code 696 * List<Character>}, viewing {@code sequence} as a sequence of Unicode code 697 * units. The view does not support any modification operations, but reflects 698 * any changes to the underlying character sequence. 699 * 700 * @param sequence the character sequence to view as a {@code List} of 701 * characters 702 * @return an {@code List<Character>} view of the character sequence 703 * @since 7.0 704 */ 705 @Beta public static List<Character> charactersOf(CharSequence sequence) { 706 return new CharSequenceAsList(checkNotNull(sequence)); 707 } 708 709 private static final class CharSequenceAsList 710 extends AbstractList<Character> { 711 private final CharSequence sequence; 712 713 CharSequenceAsList(CharSequence sequence) { 714 this.sequence = sequence; 715 } 716 717 @Override public Character get(int index) { 718 checkElementIndex(index, size()); // for GWT 719 return sequence.charAt(index); 720 } 721 722 @Override public int size() { 723 return sequence.length(); 724 } 725 } 726 727 /** 728 * Returns a reversed view of the specified list. For example, {@code 729 * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 730 * 2, 1}. The returned list is backed by this list, so changes in the returned 731 * list are reflected in this list, and vice-versa. The returned list supports 732 * all of the optional list operations supported by this list. 733 * 734 * <p>The returned list is random-access if the specified list is random 735 * access. 736 * 737 * @since 7.0 738 */ 739 public static <T> List<T> reverse(List<T> list) { 740 if (list instanceof ImmutableList) { 741 return ((ImmutableList<T>) list).reverse(); 742 } else if (list instanceof ReverseList) { 743 return ((ReverseList<T>) list).getForwardList(); 744 } else if (list instanceof RandomAccess) { 745 return new RandomAccessReverseList<T>(list); 746 } else { 747 return new ReverseList<T>(list); 748 } 749 } 750 751 private static class ReverseList<T> extends AbstractList<T> { 752 private final List<T> forwardList; 753 754 ReverseList(List<T> forwardList) { 755 this.forwardList = checkNotNull(forwardList); 756 } 757 758 List<T> getForwardList() { 759 return forwardList; 760 } 761 762 private int reverseIndex(int index) { 763 int size = size(); 764 checkElementIndex(index, size); 765 return (size - 1) - index; 766 } 767 768 private int reversePosition(int index) { 769 int size = size(); 770 checkPositionIndex(index, size); 771 return size - index; 772 } 773 774 @Override public void add(int index, @Nullable T element) { 775 forwardList.add(reversePosition(index), element); 776 } 777 778 @Override public void clear() { 779 forwardList.clear(); 780 } 781 782 @Override public T remove(int index) { 783 return forwardList.remove(reverseIndex(index)); 784 } 785 786 @Override protected void removeRange(int fromIndex, int toIndex) { 787 subList(fromIndex, toIndex).clear(); 788 } 789 790 @Override public T set(int index, @Nullable T element) { 791 return forwardList.set(reverseIndex(index), element); 792 } 793 794 @Override public T get(int index) { 795 return forwardList.get(reverseIndex(index)); 796 } 797 798 @Override public int size() { 799 return forwardList.size(); 800 } 801 802 @Override public List<T> subList(int fromIndex, int toIndex) { 803 checkPositionIndexes(fromIndex, toIndex, size()); 804 return reverse(forwardList.subList( 805 reversePosition(toIndex), reversePosition(fromIndex))); 806 } 807 808 @Override public Iterator<T> iterator() { 809 return listIterator(); 810 } 811 812 @Override public ListIterator<T> listIterator(int index) { 813 int start = reversePosition(index); 814 final ListIterator<T> forwardIterator = forwardList.listIterator(start); 815 return new ListIterator<T>() { 816 817 boolean canRemoveOrSet; 818 819 @Override public void add(T e) { 820 forwardIterator.add(e); 821 forwardIterator.previous(); 822 canRemoveOrSet = false; 823 } 824 825 @Override public boolean hasNext() { 826 return forwardIterator.hasPrevious(); 827 } 828 829 @Override public boolean hasPrevious() { 830 return forwardIterator.hasNext(); 831 } 832 833 @Override public T next() { 834 if (!hasNext()) { 835 throw new NoSuchElementException(); 836 } 837 canRemoveOrSet = true; 838 return forwardIterator.previous(); 839 } 840 841 @Override public int nextIndex() { 842 return reversePosition(forwardIterator.nextIndex()); 843 } 844 845 @Override public T previous() { 846 if (!hasPrevious()) { 847 throw new NoSuchElementException(); 848 } 849 canRemoveOrSet = true; 850 return forwardIterator.next(); 851 } 852 853 @Override public int previousIndex() { 854 return nextIndex() - 1; 855 } 856 857 @Override public void remove() { 858 checkRemove(canRemoveOrSet); 859 forwardIterator.remove(); 860 canRemoveOrSet = false; 861 } 862 863 @Override public void set(T e) { 864 checkState(canRemoveOrSet); 865 forwardIterator.set(e); 866 } 867 }; 868 } 869 } 870 871 private static class RandomAccessReverseList<T> extends ReverseList<T> 872 implements RandomAccess { 873 RandomAccessReverseList(List<T> forwardList) { 874 super(forwardList); 875 } 876 } 877 878 /** 879 * An implementation of {@link List#hashCode()}. 880 */ 881 static int hashCodeImpl(List<?> list) { 882 // TODO(user): worth optimizing for RandomAccess? 883 int hashCode = 1; 884 for (Object o : list) { 885 hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); 886 887 hashCode = ~~hashCode; 888 // needed to deal with GWT integer overflow 889 } 890 return hashCode; 891 } 892 893 /** 894 * An implementation of {@link List#equals(Object)}. 895 */ 896 static boolean equalsImpl(List<?> list, @Nullable Object object) { 897 if (object == checkNotNull(list)) { 898 return true; 899 } 900 if (!(object instanceof List)) { 901 return false; 902 } 903 904 List<?> o = (List<?>) object; 905 906 return list.size() == o.size() 907 && Iterators.elementsEqual(list.iterator(), o.iterator()); 908 } 909 910 /** 911 * An implementation of {@link List#addAll(int, Collection)}. 912 */ 913 static <E> boolean addAllImpl( 914 List<E> list, int index, Iterable<? extends E> elements) { 915 boolean changed = false; 916 ListIterator<E> listIterator = list.listIterator(index); 917 for (E e : elements) { 918 listIterator.add(e); 919 changed = true; 920 } 921 return changed; 922 } 923 924 /** 925 * An implementation of {@link List#indexOf(Object)}. 926 */ 927 static int indexOfImpl(List<?> list, @Nullable Object element) { 928 ListIterator<?> listIterator = list.listIterator(); 929 while (listIterator.hasNext()) { 930 if (Objects.equal(element, listIterator.next())) { 931 return listIterator.previousIndex(); 932 } 933 } 934 return -1; 935 } 936 937 /** 938 * An implementation of {@link List#lastIndexOf(Object)}. 939 */ 940 static int lastIndexOfImpl(List<?> list, @Nullable Object element) { 941 ListIterator<?> listIterator = list.listIterator(list.size()); 942 while (listIterator.hasPrevious()) { 943 if (Objects.equal(element, listIterator.previous())) { 944 return listIterator.nextIndex(); 945 } 946 } 947 return -1; 948 } 949 950 /** 951 * Returns an implementation of {@link List#listIterator(int)}. 952 */ 953 static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) { 954 return new AbstractListWrapper<E>(list).listIterator(index); 955 } 956 957 /** 958 * An implementation of {@link List#subList(int, int)}. 959 */ 960 static <E> List<E> subListImpl( 961 final List<E> list, int fromIndex, int toIndex) { 962 List<E> wrapper; 963 if (list instanceof RandomAccess) { 964 wrapper = new RandomAccessListWrapper<E>(list) { 965 @Override public ListIterator<E> listIterator(int index) { 966 return backingList.listIterator(index); 967 } 968 969 private static final long serialVersionUID = 0; 970 }; 971 } else { 972 wrapper = new AbstractListWrapper<E>(list) { 973 @Override public ListIterator<E> listIterator(int index) { 974 return backingList.listIterator(index); 975 } 976 977 private static final long serialVersionUID = 0; 978 }; 979 } 980 return wrapper.subList(fromIndex, toIndex); 981 } 982 983 private static class AbstractListWrapper<E> extends AbstractList<E> { 984 final List<E> backingList; 985 986 AbstractListWrapper(List<E> backingList) { 987 this.backingList = checkNotNull(backingList); 988 } 989 990 @Override public void add(int index, E element) { 991 backingList.add(index, element); 992 } 993 994 @Override public boolean addAll(int index, Collection<? extends E> c) { 995 return backingList.addAll(index, c); 996 } 997 998 @Override public E get(int index) { 999 return backingList.get(index); 1000 } 1001 1002 @Override public E remove(int index) { 1003 return backingList.remove(index); 1004 } 1005 1006 @Override public E set(int index, E element) { 1007 return backingList.set(index, element); 1008 } 1009 1010 @Override public boolean contains(Object o) { 1011 return backingList.contains(o); 1012 } 1013 1014 @Override public int size() { 1015 return backingList.size(); 1016 } 1017 } 1018 1019 private static class RandomAccessListWrapper<E> 1020 extends AbstractListWrapper<E> implements RandomAccess { 1021 RandomAccessListWrapper(List<E> backingList) { 1022 super(backingList); 1023 } 1024 } 1025 1026 /** 1027 * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 1028 */ 1029 static <T> List<T> cast(Iterable<T> iterable) { 1030 return (List<T>) iterable; 1031 } 1032}