001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.base.Predicates.and; 022import static com.google.common.base.Predicates.in; 023import static com.google.common.base.Predicates.not; 024import static com.google.common.math.LongMath.binomial; 025 026import com.google.common.annotations.Beta; 027import com.google.common.annotations.GwtCompatible; 028import com.google.common.base.Function; 029import com.google.common.base.Joiner; 030import com.google.common.base.Predicate; 031import com.google.common.base.Predicates; 032import com.google.common.math.IntMath; 033import com.google.common.primitives.Ints; 034 035import java.util.AbstractCollection; 036import java.util.ArrayList; 037import java.util.Arrays; 038import java.util.Collection; 039import java.util.Collections; 040import java.util.Comparator; 041import java.util.Iterator; 042import java.util.List; 043 044import javax.annotation.Nullable; 045 046/** 047 * Provides static methods for working with {@code Collection} instances. 048 * 049 * @author Chris Povirk 050 * @author Mike Bostock 051 * @author Jared Levy 052 * @since 2.0 (imported from Google Collections Library) 053 */ 054@GwtCompatible 055public final class Collections2 { 056 private Collections2() {} 057 058 /** 059 * Returns the elements of {@code unfiltered} that satisfy a predicate. The 060 * returned collection is a live view of {@code unfiltered}; changes to one 061 * affect the other. 062 * 063 * <p>The resulting collection's iterator does not support {@code remove()}, 064 * but all other collection methods are supported. When given an element that 065 * doesn't satisfy the predicate, the collection's {@code add()} and {@code 066 * addAll()} methods throw an {@link IllegalArgumentException}. When methods 067 * such as {@code removeAll()} and {@code clear()} are called on the filtered 068 * collection, only elements that satisfy the filter will be removed from the 069 * underlying collection. 070 * 071 * <p>The returned collection isn't threadsafe or serializable, even if 072 * {@code unfiltered} is. 073 * 074 * <p>Many of the filtered collection's methods, such as {@code size()}, 075 * iterate across every element in the underlying collection and determine 076 * which elements satisfy the filter. When a live view is <i>not</i> needed, 077 * it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} 078 * and use the copy. 079 * 080 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 081 * as documented at {@link Predicate#apply}. Do not provide a predicate such 082 * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent 083 * with equals. (See {@link Iterables#filter(Iterable, Class)} for related 084 * functionality.) 085 */ 086 // TODO(kevinb): how can we omit that Iterables link when building gwt 087 // javadoc? 088 public static <E> Collection<E> filter( 089 Collection<E> unfiltered, Predicate<? super E> predicate) { 090 if (unfiltered instanceof FilteredCollection) { 091 // Support clear(), removeAll(), and retainAll() when filtering a filtered 092 // collection. 093 return ((FilteredCollection<E>) unfiltered).createCombined(predicate); 094 } 095 096 return new FilteredCollection<E>( 097 checkNotNull(unfiltered), checkNotNull(predicate)); 098 } 099 100 /** 101 * Delegates to {@link Collection#contains}. Returns {@code false} if the 102 * {@code contains} method throws a {@code ClassCastException} or 103 * {@code NullPointerException}. 104 */ 105 static boolean safeContains( 106 Collection<?> collection, @Nullable Object object) { 107 checkNotNull(collection); 108 try { 109 return collection.contains(object); 110 } catch (ClassCastException e) { 111 return false; 112 } catch (NullPointerException e) { 113 return false; 114 } 115 } 116 117 /** 118 * Delegates to {@link Collection#remove}. Returns {@code false} if the 119 * {@code remove} method throws a {@code ClassCastException} or 120 * {@code NullPointerException}. 121 */ 122 static boolean safeRemove(Collection<?> collection, @Nullable Object object) { 123 checkNotNull(collection); 124 try { 125 return collection.remove(object); 126 } catch (ClassCastException e) { 127 return false; 128 } catch (NullPointerException e) { 129 return false; 130 } 131 } 132 133 static class FilteredCollection<E> extends AbstractCollection<E> { 134 final Collection<E> unfiltered; 135 final Predicate<? super E> predicate; 136 137 FilteredCollection(Collection<E> unfiltered, 138 Predicate<? super E> predicate) { 139 this.unfiltered = unfiltered; 140 this.predicate = predicate; 141 } 142 143 FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) { 144 return new FilteredCollection<E>(unfiltered, 145 Predicates.<E>and(predicate, newPredicate)); 146 // .<E> above needed to compile in JDK 5 147 } 148 149 @Override 150 public boolean add(E element) { 151 checkArgument(predicate.apply(element)); 152 return unfiltered.add(element); 153 } 154 155 @Override 156 public boolean addAll(Collection<? extends E> collection) { 157 for (E element : collection) { 158 checkArgument(predicate.apply(element)); 159 } 160 return unfiltered.addAll(collection); 161 } 162 163 @Override 164 public void clear() { 165 Iterables.removeIf(unfiltered, predicate); 166 } 167 168 @Override 169 public boolean contains(@Nullable Object element) { 170 if (safeContains(unfiltered, element)) { 171 @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E 172 E e = (E) element; 173 return predicate.apply(e); 174 } 175 return false; 176 } 177 178 @Override 179 public boolean containsAll(Collection<?> collection) { 180 return containsAllImpl(this, collection); 181 } 182 183 @Override 184 public boolean isEmpty() { 185 return !Iterables.any(unfiltered, predicate); 186 } 187 188 @Override 189 public Iterator<E> iterator() { 190 return Iterators.filter(unfiltered.iterator(), predicate); 191 } 192 193 @Override 194 public boolean remove(Object element) { 195 return contains(element) && unfiltered.remove(element); 196 } 197 198 @Override 199 public boolean removeAll(final Collection<?> collection) { 200 return Iterables.removeIf(unfiltered, and(predicate, in(collection))); 201 } 202 203 @Override 204 public boolean retainAll(final Collection<?> collection) { 205 return Iterables.removeIf(unfiltered, and(predicate, not(in(collection)))); 206 } 207 208 @Override 209 public int size() { 210 return Iterators.size(iterator()); 211 } 212 213 @Override 214 public Object[] toArray() { 215 // creating an ArrayList so filtering happens once 216 return Lists.newArrayList(iterator()).toArray(); 217 } 218 219 @Override 220 public <T> T[] toArray(T[] array) { 221 return Lists.newArrayList(iterator()).toArray(array); 222 } 223 } 224 225 /** 226 * Returns a collection that applies {@code function} to each element of 227 * {@code fromCollection}. The returned collection is a live view of {@code 228 * fromCollection}; changes to one affect the other. 229 * 230 * <p>The returned collection's {@code add()} and {@code addAll()} methods 231 * throw an {@link UnsupportedOperationException}. All other collection 232 * methods are supported, as long as {@code fromCollection} supports them. 233 * 234 * <p>The returned collection isn't threadsafe or serializable, even if 235 * {@code fromCollection} is. 236 * 237 * <p>When a live view is <i>not</i> needed, it may be faster to copy the 238 * transformed collection and use the copy. 239 * 240 * <p>If the input {@code Collection} is known to be a {@code List}, consider 241 * {@link Lists#transform}. If only an {@code Iterable} is available, use 242 * {@link Iterables#transform}. 243 */ 244 public static <F, T> Collection<T> transform(Collection<F> fromCollection, 245 Function<? super F, T> function) { 246 return new TransformedCollection<F, T>(fromCollection, function); 247 } 248 249 static class TransformedCollection<F, T> extends AbstractCollection<T> { 250 final Collection<F> fromCollection; 251 final Function<? super F, ? extends T> function; 252 253 TransformedCollection(Collection<F> fromCollection, 254 Function<? super F, ? extends T> function) { 255 this.fromCollection = checkNotNull(fromCollection); 256 this.function = checkNotNull(function); 257 } 258 259 @Override public void clear() { 260 fromCollection.clear(); 261 } 262 263 @Override public boolean isEmpty() { 264 return fromCollection.isEmpty(); 265 } 266 267 @Override public Iterator<T> iterator() { 268 return Iterators.transform(fromCollection.iterator(), function); 269 } 270 271 @Override public int size() { 272 return fromCollection.size(); 273 } 274 } 275 276 /** 277 * Returns {@code true} if the collection {@code self} contains all of the 278 * elements in the collection {@code c}. 279 * 280 * <p>This method iterates over the specified collection {@code c}, checking 281 * each element returned by the iterator in turn to see if it is contained in 282 * the specified collection {@code self}. If all elements are so contained, 283 * {@code true} is returned, otherwise {@code false}. 284 * 285 * @param self a collection which might contain all elements in {@code c} 286 * @param c a collection whose elements might be contained by {@code self} 287 */ 288 static boolean containsAllImpl(Collection<?> self, Collection<?> c) { 289 return Iterables.all(c, Predicates.in(self)); 290 } 291 292 /** 293 * An implementation of {@link Collection#toString()}. 294 */ 295 static String toStringImpl(final Collection<?> collection) { 296 StringBuilder sb 297 = newStringBuilderForCollection(collection.size()).append('['); 298 STANDARD_JOINER.appendTo( 299 sb, Iterables.transform(collection, new Function<Object, Object>() { 300 @Override public Object apply(Object input) { 301 return input == collection ? "(this Collection)" : input; 302 } 303 })); 304 return sb.append(']').toString(); 305 } 306 307 /** 308 * Returns best-effort-sized StringBuilder based on the given collection size. 309 */ 310 static StringBuilder newStringBuilderForCollection(int size) { 311 checkArgument(size >= 0, "size must be non-negative"); 312 return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO)); 313 } 314 315 /** 316 * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 317 */ 318 static <T> Collection<T> cast(Iterable<T> iterable) { 319 return (Collection<T>) iterable; 320 } 321 322 static final Joiner STANDARD_JOINER = Joiner.on(", ").useForNull("null"); 323 324 /** 325 * Returns a {@link Collection} of all the permutations of the specified 326 * {@link Iterable}. 327 * 328 * <p><i>Notes:</i> This is an implementation of the algorithm for 329 * Lexicographical Permutations Generation, described in Knuth's "The Art of 330 * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The 331 * iteration order follows the lexicographical order. This means that 332 * the first permutation will be in ascending order, and the last will be in 333 * descending order. 334 * 335 * <p>Duplicate elements are considered equal. For example, the list [1, 1] 336 * will have only one permutation, instead of two. This is why the elements 337 * have to implement {@link Comparable}. 338 * 339 * <p>An empty iterable has only one permutation, which is an empty list. 340 * 341 * <p>This method is equivalent to 342 * {@code Collections2.orderedPermutations(list, Ordering.natural())}. 343 * 344 * @param elements the original iterable whose elements have to be permuted. 345 * @return an immutable {@link Collection} containing all the different 346 * permutations of the original iterable. 347 * @throws NullPointerException if the specified iterable is null or has any 348 * null elements. 349 * @since 12.0 350 */ 351 @Beta public static <E extends Comparable<? super E>> 352 Collection<List<E>> orderedPermutations(Iterable<E> elements) { 353 return orderedPermutations(elements, Ordering.natural()); 354 } 355 356 /** 357 * Returns a {@link Collection} of all the permutations of the specified 358 * {@link Iterable} using the specified {@link Comparator} for establishing 359 * the lexicographical ordering. 360 * 361 * <p>Examples: <pre> {@code 362 * 363 * for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) { 364 * println(perm); 365 * } 366 * // -> ["a", "b", "c"] 367 * // -> ["a", "c", "b"] 368 * // -> ["b", "a", "c"] 369 * // -> ["b", "c", "a"] 370 * // -> ["c", "a", "b"] 371 * // -> ["c", "b", "a"] 372 * 373 * for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) { 374 * println(perm); 375 * } 376 * // -> [1, 1, 2, 2] 377 * // -> [1, 2, 1, 2] 378 * // -> [1, 2, 2, 1] 379 * // -> [2, 1, 1, 2] 380 * // -> [2, 1, 2, 1] 381 * // -> [2, 2, 1, 1]}</pre> 382 * 383 * <p><i>Notes:</i> This is an implementation of the algorithm for 384 * Lexicographical Permutations Generation, described in Knuth's "The Art of 385 * Computer Programming", Volume 4, Chapter 7, Section 7.2.1.2. The 386 * iteration order follows the lexicographical order. This means that 387 * the first permutation will be in ascending order, and the last will be in 388 * descending order. 389 * 390 * <p>Elements that compare equal are considered equal and no new permutations 391 * are created by swapping them. 392 * 393 * <p>An empty iterable has only one permutation, which is an empty list. 394 * 395 * @param elements the original iterable whose elements have to be permuted. 396 * @param comparator a comparator for the iterable's elements. 397 * @return an immutable {@link Collection} containing all the different 398 * permutations of the original iterable. 399 * @throws NullPointerException If the specified iterable is null, has any 400 * null elements, or if the specified comparator is null. 401 * @since 12.0 402 */ 403 @Beta public static <E> Collection<List<E>> orderedPermutations( 404 Iterable<E> elements, Comparator<? super E> comparator) { 405 return new OrderedPermutationCollection<E>(elements, comparator); 406 } 407 408 private static final class OrderedPermutationCollection<E> 409 extends AbstractCollection<List<E>> { 410 final ImmutableList<E> inputList; 411 final Comparator<? super E> comparator; 412 final int size; 413 414 OrderedPermutationCollection(Iterable<E> input, 415 Comparator<? super E> comparator) { 416 this.inputList = Ordering.from(comparator).immutableSortedCopy(input); 417 this.comparator = comparator; 418 this.size = calculateSize(inputList, comparator); 419 } 420 421 /** 422 * The number of permutations with repeated elements is calculated as 423 * follows: 424 * <ul> 425 * <li>For an empty list, it is 1 (base case).</li> 426 * <li>When r numbers are added to a list of n-r elements, the number of 427 * permutations is increased by a factor of (n choose r).</li> 428 * </ul> 429 */ 430 private static <E> int calculateSize( 431 List<E> sortedInputList, Comparator<? super E> comparator) { 432 long permutations = 1; 433 int n = 1; 434 int r = 1; 435 while (n < sortedInputList.size()) { 436 int comparison = comparator.compare( 437 sortedInputList.get(n - 1), sortedInputList.get(n)); 438 if (comparison < 0) { 439 // We move to the next non-repeated element. 440 permutations *= binomial(n, r); 441 r = 0; 442 if (!isPositiveInt(permutations)) { 443 return Integer.MAX_VALUE; 444 } 445 } 446 n++; 447 r++; 448 } 449 permutations *= binomial(n, r); 450 if (!isPositiveInt(permutations)) { 451 return Integer.MAX_VALUE; 452 } 453 return (int) permutations; 454 } 455 456 @Override public int size() { 457 return size; 458 } 459 460 @Override public boolean isEmpty() { 461 return false; 462 } 463 464 @Override public Iterator<List<E>> iterator() { 465 return new OrderedPermutationIterator<E>(inputList, comparator); 466 } 467 468 @Override public boolean contains(@Nullable Object obj) { 469 if (obj instanceof List) { 470 List<?> list = (List<?>) obj; 471 return isPermutation(inputList, list); 472 } 473 return false; 474 } 475 476 @Override public String toString() { 477 return "orderedPermutationCollection(" + inputList + ")"; 478 } 479 } 480 481 private static final class OrderedPermutationIterator<E> 482 extends AbstractIterator<List<E>> { 483 484 List<E> nextPermutation; 485 final Comparator<? super E> comparator; 486 487 OrderedPermutationIterator(List<E> list, 488 Comparator<? super E> comparator) { 489 this.nextPermutation = Lists.newArrayList(list); 490 this.comparator = comparator; 491 } 492 493 @Override protected List<E> computeNext() { 494 if (nextPermutation == null) { 495 return endOfData(); 496 } 497 ImmutableList<E> next = ImmutableList.copyOf(nextPermutation); 498 calculateNextPermutation(); 499 return next; 500 } 501 502 void calculateNextPermutation() { 503 int j = findNextJ(); 504 if (j == -1) { 505 nextPermutation = null; 506 return; 507 } 508 509 int l = findNextL(j); 510 Collections.swap(nextPermutation, j, l); 511 int n = nextPermutation.size(); 512 Collections.reverse(nextPermutation.subList(j + 1, n)); 513 } 514 515 int findNextJ() { 516 for (int k = nextPermutation.size() - 2; k >= 0; k--) { 517 if (comparator.compare(nextPermutation.get(k), 518 nextPermutation.get(k + 1)) < 0) { 519 return k; 520 } 521 } 522 return -1; 523 } 524 525 int findNextL(int j) { 526 E ak = nextPermutation.get(j); 527 for (int l = nextPermutation.size() - 1; l > j; l--) { 528 if (comparator.compare(ak, nextPermutation.get(l)) < 0) { 529 return l; 530 } 531 } 532 throw new AssertionError("this statement should be unreachable"); 533 } 534 } 535 536 /** 537 * Returns a {@link Collection} of all the permutations of the specified 538 * {@link Collection}. 539 * 540 * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm 541 * for permutations generation, described in Knuth's "The Art of Computer 542 * Programming", Volume 4, Chapter 7, Section 7.2.1.2. 543 * 544 * <p>If the input list contains equal elements, some of the generated 545 * permutations will be equal. 546 * 547 * <p>An empty collection has only one permutation, which is an empty list. 548 * 549 * @param elements the original collection whose elements have to be permuted. 550 * @return an immutable {@link Collection} containing all the different 551 * permutations of the original collection. 552 * @throws NullPointerException if the specified collection is null or has any 553 * null elements. 554 * @since 12.0 555 */ 556 @Beta public static <E> Collection<List<E>> permutations( 557 Collection<E> elements) { 558 return new PermutationCollection<E>(ImmutableList.copyOf(elements)); 559 } 560 561 private static final class PermutationCollection<E> 562 extends AbstractCollection<List<E>> { 563 final ImmutableList<E> inputList; 564 565 PermutationCollection(ImmutableList<E> input) { 566 this.inputList = input; 567 } 568 569 @Override public int size() { 570 return IntMath.factorial(inputList.size()); 571 } 572 573 @Override public boolean isEmpty() { 574 return false; 575 } 576 577 @Override public Iterator<List<E>> iterator() { 578 return new PermutationIterator<E>(inputList); 579 } 580 581 @Override public boolean contains(@Nullable Object obj) { 582 if (obj instanceof List) { 583 List<?> list = (List<?>) obj; 584 return isPermutation(inputList, list); 585 } 586 return false; 587 } 588 589 @Override public String toString() { 590 return "permutations(" + inputList + ")"; 591 } 592 } 593 594 private static class PermutationIterator<E> 595 extends AbstractIterator<List<E>> { 596 final List<E> list; 597 final int[] c; 598 final int[] o; 599 int j; 600 601 PermutationIterator(List<E> list) { 602 this.list = new ArrayList<E>(list); 603 int n = list.size(); 604 c = new int[n]; 605 o = new int[n]; 606 Arrays.fill(c, 0); 607 Arrays.fill(o, 1); 608 j = Integer.MAX_VALUE; 609 } 610 611 @Override protected List<E> computeNext() { 612 if (j <= 0) { 613 return endOfData(); 614 } 615 ImmutableList<E> next = ImmutableList.copyOf(list); 616 calculateNextPermutation(); 617 return next; 618 } 619 620 void calculateNextPermutation() { 621 j = list.size() - 1; 622 int s = 0; 623 624 // Handle the special case of an empty list. Skip the calculation of the 625 // next permutation. 626 if (j == -1) { 627 return; 628 } 629 630 while (true) { 631 int q = c[j] + o[j]; 632 if (q < 0) { 633 switchDirection(); 634 continue; 635 } 636 if (q == j + 1) { 637 if (j == 0) { 638 break; 639 } 640 s++; 641 switchDirection(); 642 continue; 643 } 644 645 Collections.swap(list, j - c[j] + s, j - q + s); 646 c[j] = q; 647 break; 648 } 649 } 650 651 void switchDirection() { 652 o[j] = -o[j]; 653 j--; 654 } 655 } 656 657 /** 658 * Returns {@code true} if the second list is a permutation of the first. 659 */ 660 private static boolean isPermutation(List<?> first, 661 List<?> second) { 662 if (first.size() != second.size()) { 663 return false; 664 } 665 Multiset<?> firstMultiset = HashMultiset.create(first); 666 Multiset<?> secondMultiset = HashMultiset.create(second); 667 return firstMultiset.equals(secondMultiset); 668 } 669 670 private static boolean isPositiveInt(long n) { 671 return n >= 0 && n <= Integer.MAX_VALUE; 672 } 673}