001/*
002 * Copyright (C) 2011 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.util.concurrent;
018
019import com.google.common.annotations.Beta;
020import com.google.common.base.Functions;
021import com.google.common.base.Preconditions;
022import com.google.common.base.Supplier;
023import com.google.common.collect.Iterables;
024import com.google.common.collect.MapMaker;
025import com.google.common.math.IntMath;
026import com.google.common.primitives.Ints;
027
028import java.math.RoundingMode;
029import java.util.Arrays;
030import java.util.Collections;
031import java.util.List;
032import java.util.concurrent.ConcurrentMap;
033import java.util.concurrent.Semaphore;
034import java.util.concurrent.locks.Lock;
035import java.util.concurrent.locks.ReadWriteLock;
036import java.util.concurrent.locks.ReentrantLock;
037import java.util.concurrent.locks.ReentrantReadWriteLock;
038
039/**
040 * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping
041 * similar to that of {@code ConcurrentHashMap} in a reusable form, and extends it for
042 * semaphores and read-write locks. Conceptually, lock striping is the technique of dividing a lock
043 * into many <i>stripes</i>, increasing the granularity of a single lock and allowing independent
044 * operations to lock different stripes and proceed concurrently, instead of creating contention
045 * for a single lock.
046 *
047 * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore),
048 * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)}
049 * (assuming {@link Object#hashCode()} is correctly implemented for the keys). Note
050 * that if {@code key1} is <strong>not</strong> equal to {@code key2}, it is <strong>not</strong>
051 * guaranteed that {@code striped.get(key1) != striped.get(key2)}; the elements might nevertheless
052 * be mapped to the same lock. The lower the number of stripes, the higher the probability of this
053 * happening.
054 *
055 * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>},
056 * and {@code Striped<ReadWriteLock>}. For each type, two implementations are offered:
057 * {@linkplain #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak}
058 * {@code Striped<Lock>}, {@linkplain #semaphore(int, int) strong} and {@linkplain
059 * #lazyWeakSemaphore(int, int) weak} {@code Striped<Semaphore>}, and {@linkplain
060 * #readWriteLock(int) strong} and {@linkplain #lazyWeakReadWriteLock(int) weak}
061 * {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all stripes (locks/semaphores) are
062 * initialized eagerly, and are not reclaimed unless {@code Striped} itself is reclaimable.
063 * <i>Weak</i> means that locks/semaphores are created lazily, and they are allowed to be reclaimed
064 * if nobody is holding on to them. This is useful, for example, if one wants to create a {@code
065 * Striped<Lock>} of many locks, but worries that in most cases only a small portion of these
066 * would be in use.
067 *
068 * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K}
069 * represents the task. This maximizes concurrency by having each unique key mapped to a unique
070 * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock
071 * for all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of
072 * choosing either of these extremes, {@code Striped} allows the user to trade between required
073 * concurrency and memory footprint. For example, if a set of tasks are CPU-bound, one could easily
074 * create a very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes,
075 * instead of possibly thousands of locks which could be created in a {@code Map<K, Lock>}
076 * structure.
077 *
078 * @author Dimitris Andreou
079 * @since 13.0
080 */
081@Beta
082public abstract class Striped<L> {
083  private Striped() {}
084
085  /**
086   * Returns the stripe that corresponds to the passed key. It is always guaranteed that if
087   * {@code key1.equals(key2)}, then {@code get(key1) == get(key2)}.
088   *
089   * @param key an arbitrary, non-null key
090   * @return the stripe that the passed key corresponds to
091   */
092  public abstract L get(Object key);
093
094  /**
095   * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to
096   * {@code size()}, exclusively.
097   *
098   * @param index the index of the stripe to return; must be in {@code [0...size())}
099   * @return the stripe at the specified index
100   */
101  public abstract L getAt(int index);
102
103  /**
104   * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key).
105   */
106  abstract int indexFor(Object key);
107
108  /**
109   * Returns the total number of stripes in this instance.
110   */
111  public abstract int size();
112
113  /**
114   * Returns the stripes that correspond to the passed objects, in ascending (as per
115   * {@link #getAt(int)}) order. Thus, threads that use the stripes in the order returned
116   * by this method are guaranteed to not deadlock each other.
117   *
118   * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and
119   * {@code bulkGet(keys)} with a relative large number of keys can cause an excessive number
120   * of shared stripes (much like the birthday paradox, where much fewer than anticipated birthdays
121   * are needed for a pair of them to match). Please consider carefully the implications of the
122   * number of stripes, the intended concurrency level, and the typical number of keys used in a
123   * {@code bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls
124   * in Bins model</a> for mathematical formulas that can be used to estimate the probability of
125   * collisions.
126   *
127   * @param keys arbitrary non-null keys
128   * @return the stripes corresponding to the objects (one per each object, derived by delegating
129   *         to {@link #get(Object)}; may contain duplicates), in an increasing index order.
130   */
131  public Iterable<L> bulkGet(Iterable<?> keys) {
132    // Initially using the array to store the keys, then reusing it to store the respective L's
133    final Object[] array = Iterables.toArray(keys, Object.class);
134    int[] stripes = new int[array.length];
135    for (int i = 0; i < array.length; i++) {
136      stripes[i] = indexFor(array[i]);
137    }
138    Arrays.sort(stripes);
139    for (int i = 0; i < array.length; i++) {
140      array[i] = getAt(stripes[i]);
141    }
142    /*
143     * Note that the returned Iterable holds references to the returned stripes, to avoid
144     * error-prone code like:
145     *
146     * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)'
147     * Iterable<Lock> locks = stripedLock.bulkGet(keys);
148     * for (Lock lock : locks) {
149     *   lock.lock();
150     * }
151     * operation();
152     * for (Lock lock : locks) {
153     *   lock.unlock();
154     * }
155     *
156     * If we only held the int[] stripes, translating it on the fly to L's, the original locks
157     * might be garbage collected after locking them, ending up in a huge mess.
158     */
159    @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's
160    List<L> asList = (List<L>) Arrays.asList(array);
161    return Collections.unmodifiableList(asList);
162  }
163
164  // Static factories
165
166  /**
167   * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks, with the
168   * specified fairness. Every lock is reentrant.
169   *
170   * @param stripes the minimum number of stripes (locks) required
171   * @return a new {@code Striped<Lock>}
172   */
173  public static Striped<Lock> lock(int stripes) {
174    return new CompactStriped<Lock>(stripes, new Supplier<Lock>() {
175      public Lock get() {
176        return new PaddedLock();
177      }
178    });
179  }
180
181  /**
182   * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks, with the
183   * specified fairness. Every lock is reentrant.
184   *
185   * @param stripes the minimum number of stripes (locks) required
186   * @return a new {@code Striped<Lock>}
187   */
188  public static Striped<Lock> lazyWeakLock(int stripes) {
189    return new LazyStriped<Lock>(stripes, new Supplier<Lock>() {
190      public Lock get() {
191        return new ReentrantLock(false);
192      }
193    });
194  }
195
196  /**
197   * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores,
198   * with the specified number of permits and fairness.
199   *
200   * @param stripes the minimum number of stripes (semaphores) required
201   * @param permits the number of permits in each semaphore
202   * @return a new {@code Striped<Semaphore>}
203   */
204  public static Striped<Semaphore> semaphore(int stripes, final int permits) {
205    return new CompactStriped<Semaphore>(stripes, new Supplier<Semaphore>() {
206      public Semaphore get() {
207        return new PaddedSemaphore(permits);
208      }
209    });
210  }
211
212  /**
213   * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores,
214   * with the specified number of permits and fairness.
215   *
216   * @param stripes the minimum number of stripes (semaphores) required
217   * @param permits the number of permits in each semaphore
218   * @return a new {@code Striped<Semaphore>}
219   */
220  public static Striped<Semaphore> lazyWeakSemaphore(int stripes, final int permits) {
221    return new LazyStriped<Semaphore>(stripes, new Supplier<Semaphore>() {
222      public Semaphore get() {
223        return new Semaphore(permits, false);
224      }
225    });
226  }
227
228  /**
229   * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced
230   * read-write locks, with the specified fairness. Every lock is reentrant.
231   *
232   * @param stripes the minimum number of stripes (locks) required
233   * @return a new {@code Striped<ReadWriteLock>}
234   */
235  public static Striped<ReadWriteLock> readWriteLock(int stripes) {
236    return new CompactStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER);
237  }
238
239  /**
240   * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced
241   * read-write locks, with the specified fairness. Every lock is reentrant.
242   *
243   * @param stripes the minimum number of stripes (locks) required
244   * @return a new {@code Striped<ReadWriteLock>}
245   */
246  public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) {
247    return new LazyStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER);
248  }
249
250  // ReentrantReadWriteLock is large enough to make padding probably unnecessary
251  private static final Supplier<ReadWriteLock> READ_WRITE_LOCK_SUPPLIER =
252      new Supplier<ReadWriteLock>() {
253    public ReadWriteLock get() {
254      return new ReentrantReadWriteLock();
255    }
256  };
257
258  private abstract static class PowerOfTwoStriped<L> extends Striped<L> {
259    /** Capacity (power of two) minus one, for fast mod evaluation */
260    final int mask;
261
262    PowerOfTwoStriped(int stripes) {
263      Preconditions.checkArgument(stripes > 0, "Stripes must be positive");
264      this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1;
265    }
266
267    @Override final int indexFor(Object key) {
268      int hash = smear(key.hashCode());
269      return hash & mask;
270    }
271
272    @Override public final L get(Object key) {
273      return getAt(indexFor(key));
274    }
275  }
276
277  /**
278   * Implementation of Striped where 2^k stripes are represented as an array of the same length,
279   * eagerly initialized.
280   */
281  private static class CompactStriped<L> extends PowerOfTwoStriped<L> {
282    /** Size is a power of two. */
283    private final Object[] array;
284
285    private CompactStriped(int stripes, Supplier<L> supplier) {
286      super(stripes);
287      Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)");
288
289      this.array = new Object[mask + 1];
290      for (int i = 0; i < array.length; i++) {
291        array[i] = supplier.get();
292      }
293    }
294
295    @SuppressWarnings("unchecked") // we only put L's in the array
296    @Override public L getAt(int index) {
297      return (L) array[index];
298    }
299
300    @Override public int size() {
301      return array.length;
302    }
303  }
304
305  /**
306   * Implementation of Striped where up to 2^k stripes can be represented, using a Cache
307   * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the
308   * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced.
309   */
310  private static class LazyStriped<L> extends PowerOfTwoStriped<L> {
311    final ConcurrentMap<Integer, L> cache;
312    final int size;
313
314    LazyStriped(int stripes, Supplier<L> supplier) {
315      super(stripes);
316      this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1;
317      this.cache = new MapMaker().weakValues().makeComputingMap(Functions.forSupplier(supplier));
318    }
319
320    @Override public L getAt(int index) {
321      Preconditions.checkElementIndex(index, size());
322      return cache.get(index);
323    }
324
325    @Override public int size() {
326      return size;
327    }
328  }
329
330  /**
331   * A bit mask were all bits are set.
332   */
333  private static final int ALL_SET = ~0;
334
335  private static int ceilToPowerOfTwo(int x) {
336    return 1 << IntMath.log2(x, RoundingMode.CEILING);
337  }
338
339  /*
340   * This method was written by Doug Lea with assistance from members of JCP
341   * JSR-166 Expert Group and released to the public domain, as explained at
342   * http://creativecommons.org/licenses/publicdomain
343   *
344   * As of 2010/06/11, this method is identical to the (package private) hash
345   * method in OpenJDK 7's java.util.HashMap class.
346   */
347  // Copied from java/com/google/common/collect/Hashing.java
348  private static int smear(int hashCode) {
349    hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12);
350    return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4);
351  }
352
353  private static class PaddedLock extends ReentrantLock {
354    /*
355     * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add
356     * a fourth long here, to minimize chance of interference between consecutive locks,
357     * but I couldn't observe any benefit from that.
358     */
359    @SuppressWarnings("unused")
360    long q1, q2, q3;
361
362    PaddedLock() {
363      super(false);
364    }
365  }
366
367  private static class PaddedSemaphore extends Semaphore {
368    // See PaddedReentrantLock comment
369    @SuppressWarnings("unused")
370    long q1, q2, q3;
371
372    PaddedSemaphore(int permits) {
373      super(permits, false);
374    }
375  }
376}