001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.math; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.math.MathPreconditions.checkNonNegative; 022import static com.google.common.math.MathPreconditions.checkPositive; 023import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 024import static java.math.RoundingMode.CEILING; 025import static java.math.RoundingMode.FLOOR; 026import static java.math.RoundingMode.HALF_EVEN; 027 028import com.google.common.annotations.GwtCompatible; 029import com.google.common.annotations.GwtIncompatible; 030import com.google.common.annotations.VisibleForTesting; 031 032import java.math.BigDecimal; 033import java.math.BigInteger; 034import java.math.RoundingMode; 035import java.util.ArrayList; 036import java.util.List; 037 038/** 039 * A class for arithmetic on values of type {@code BigInteger}. 040 * 041 * <p>The implementations of many methods in this class are based on material from Henry S. Warren, 042 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002). 043 * 044 * <p>Similar functionality for {@code int} and for {@code long} can be found in 045 * {@link IntMath} and {@link LongMath} respectively. 046 * 047 * @author Louis Wasserman 048 * @since 11.0 049 */ 050@GwtCompatible(emulated = true) 051public final class BigIntegerMath { 052 /** 053 * Returns {@code true} if {@code x} represents a power of two. 054 */ 055 public static boolean isPowerOfTwo(BigInteger x) { 056 checkNotNull(x); 057 return x.signum() > 0 && x.getLowestSetBit() == x.bitLength() - 1; 058 } 059 060 /** 061 * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. 062 * 063 * @throws IllegalArgumentException if {@code x <= 0} 064 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 065 * is not a power of two 066 */ 067 @SuppressWarnings("fallthrough") 068 // TODO(kevinb): remove after this warning is disabled globally 069 public static int log2(BigInteger x, RoundingMode mode) { 070 checkPositive("x", checkNotNull(x)); 071 int logFloor = x.bitLength() - 1; 072 switch (mode) { 073 case UNNECESSARY: 074 checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through 075 case DOWN: 076 case FLOOR: 077 return logFloor; 078 079 case UP: 080 case CEILING: 081 return isPowerOfTwo(x) ? logFloor : logFloor + 1; 082 083 case HALF_DOWN: 084 case HALF_UP: 085 case HALF_EVEN: 086 if (logFloor < SQRT2_PRECOMPUTE_THRESHOLD) { 087 BigInteger halfPower = SQRT2_PRECOMPUTED_BITS.shiftRight( 088 SQRT2_PRECOMPUTE_THRESHOLD - logFloor); 089 if (x.compareTo(halfPower) <= 0) { 090 return logFloor; 091 } else { 092 return logFloor + 1; 093 } 094 } 095 /* 096 * Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 097 * 098 * To determine which side of logFloor.5 the logarithm is, we compare x^2 to 2^(2 * 099 * logFloor + 1). 100 */ 101 BigInteger x2 = x.pow(2); 102 int logX2Floor = x2.bitLength() - 1; 103 return (logX2Floor < 2 * logFloor + 1) ? logFloor : logFloor + 1; 104 105 default: 106 throw new AssertionError(); 107 } 108 } 109 110 /* 111 * The maximum number of bits in a square root for which we'll precompute an explicit half power 112 * of two. This can be any value, but higher values incur more class load time and linearly 113 * increasing memory consumption. 114 */ 115 @VisibleForTesting static final int SQRT2_PRECOMPUTE_THRESHOLD = 256; 116 117 @VisibleForTesting static final BigInteger SQRT2_PRECOMPUTED_BITS = 118 new BigInteger("16a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b0667322a", 16); 119 120 /** 121 * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. 122 * 123 * @throws IllegalArgumentException if {@code x <= 0} 124 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 125 * is not a power of ten 126 */ 127 @GwtIncompatible("TODO") 128 @SuppressWarnings("fallthrough") 129 public static int log10(BigInteger x, RoundingMode mode) { 130 checkPositive("x", x); 131 if (fitsInLong(x)) { 132 return LongMath.log10(x.longValue(), mode); 133 } 134 135 int approxLog10 = (int) (log2(x, FLOOR) * LN_2 / LN_10); 136 BigInteger approxPow = BigInteger.TEN.pow(approxLog10); 137 int approxCmp = approxPow.compareTo(x); 138 139 /* 140 * We adjust approxLog10 and approxPow until they're equal to floor(log10(x)) and 141 * 10^floor(log10(x)). 142 */ 143 144 if (approxCmp > 0) { 145 /* 146 * The code is written so that even completely incorrect approximations will still yield the 147 * correct answer eventually, but in practice this branch should almost never be entered, 148 * and even then the loop should not run more than once. 149 */ 150 do { 151 approxLog10--; 152 approxPow = approxPow.divide(BigInteger.TEN); 153 approxCmp = approxPow.compareTo(x); 154 } while (approxCmp > 0); 155 } else { 156 BigInteger nextPow = BigInteger.TEN.multiply(approxPow); 157 int nextCmp = nextPow.compareTo(x); 158 while (nextCmp <= 0) { 159 approxLog10++; 160 approxPow = nextPow; 161 approxCmp = nextCmp; 162 nextPow = BigInteger.TEN.multiply(approxPow); 163 nextCmp = nextPow.compareTo(x); 164 } 165 } 166 167 int floorLog = approxLog10; 168 BigInteger floorPow = approxPow; 169 int floorCmp = approxCmp; 170 171 switch (mode) { 172 case UNNECESSARY: 173 checkRoundingUnnecessary(floorCmp == 0); 174 // fall through 175 case FLOOR: 176 case DOWN: 177 return floorLog; 178 179 case CEILING: 180 case UP: 181 return floorPow.equals(x) ? floorLog : floorLog + 1; 182 183 case HALF_DOWN: 184 case HALF_UP: 185 case HALF_EVEN: 186 // Since sqrt(10) is irrational, log10(x) - floorLog can never be exactly 0.5 187 BigInteger x2 = x.pow(2); 188 BigInteger halfPowerSquared = floorPow.pow(2).multiply(BigInteger.TEN); 189 return (x2.compareTo(halfPowerSquared) <= 0) ? floorLog : floorLog + 1; 190 default: 191 throw new AssertionError(); 192 } 193 } 194 195 private static final double LN_10 = Math.log(10); 196 private static final double LN_2 = Math.log(2); 197 198 /** 199 * Returns the square root of {@code x}, rounded with the specified rounding mode. 200 * 201 * @throws IllegalArgumentException if {@code x < 0} 202 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and 203 * {@code sqrt(x)} is not an integer 204 */ 205 @GwtIncompatible("TODO") 206 @SuppressWarnings("fallthrough") 207 public static BigInteger sqrt(BigInteger x, RoundingMode mode) { 208 checkNonNegative("x", x); 209 if (fitsInLong(x)) { 210 return BigInteger.valueOf(LongMath.sqrt(x.longValue(), mode)); 211 } 212 BigInteger sqrtFloor = sqrtFloor(x); 213 switch (mode) { 214 case UNNECESSARY: 215 checkRoundingUnnecessary(sqrtFloor.pow(2).equals(x)); // fall through 216 case FLOOR: 217 case DOWN: 218 return sqrtFloor; 219 case CEILING: 220 case UP: 221 return sqrtFloor.pow(2).equals(x) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE); 222 case HALF_DOWN: 223 case HALF_UP: 224 case HALF_EVEN: 225 BigInteger halfSquare = sqrtFloor.pow(2).add(sqrtFloor); 226 /* 227 * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both 228 * x and halfSquare are integers, this is equivalent to testing whether or not x <= 229 * halfSquare. 230 */ 231 return (halfSquare.compareTo(x) >= 0) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE); 232 default: 233 throw new AssertionError(); 234 } 235 } 236 237 @GwtIncompatible("TODO") 238 private static BigInteger sqrtFloor(BigInteger x) { 239 /* 240 * Adapted from Hacker's Delight, Figure 11-1. 241 * 242 * Using DoubleUtils.bigToDouble, getting a double approximation of x is extremely fast, and 243 * then we can get a double approximation of the square root. Then, we iteratively improve this 244 * guess with an application of Newton's method, which sets guess := (guess + (x / guess)) / 2. 245 * This iteration has the following two properties: 246 * 247 * a) every iteration (except potentially the first) has guess >= floor(sqrt(x)). This is 248 * because guess' is the arithmetic mean of guess and x / guess, sqrt(x) is the geometric mean, 249 * and the arithmetic mean is always higher than the geometric mean. 250 * 251 * b) this iteration converges to floor(sqrt(x)). In fact, the number of correct digits doubles 252 * with each iteration, so this algorithm takes O(log(digits)) iterations. 253 * 254 * We start out with a double-precision approximation, which may be higher or lower than the 255 * true value. Therefore, we perform at least one Newton iteration to get a guess that's 256 * definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point. 257 */ 258 BigInteger sqrt0; 259 int log2 = log2(x, FLOOR); 260 if(log2 < Double.MAX_EXPONENT) { 261 sqrt0 = sqrtApproxWithDoubles(x); 262 } else { 263 int shift = (log2 - DoubleUtils.SIGNIFICAND_BITS) & ~1; // even! 264 /* 265 * We have that x / 2^shift < 2^54. Our initial approximation to sqrtFloor(x) will be 266 * 2^(shift/2) * sqrtApproxWithDoubles(x / 2^shift). 267 */ 268 sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1); 269 } 270 BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1); 271 if (sqrt0.equals(sqrt1)) { 272 return sqrt0; 273 } 274 do { 275 sqrt0 = sqrt1; 276 sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1); 277 } while (sqrt1.compareTo(sqrt0) < 0); 278 return sqrt0; 279 } 280 281 @GwtIncompatible("TODO") 282 private static BigInteger sqrtApproxWithDoubles(BigInteger x) { 283 return DoubleMath.roundToBigInteger(Math.sqrt(DoubleUtils.bigToDouble(x)), HALF_EVEN); 284 } 285 286 /** 287 * Returns the result of dividing {@code p} by {@code q}, rounding using the specified 288 * {@code RoundingMode}. 289 * 290 * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} 291 * is not an integer multiple of {@code b} 292 */ 293 @GwtIncompatible("TODO") 294 public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode){ 295 BigDecimal pDec = new BigDecimal(p); 296 BigDecimal qDec = new BigDecimal(q); 297 return pDec.divide(qDec, 0, mode).toBigIntegerExact(); 298 } 299 300 /** 301 * Returns {@code n!}, that is, the product of the first {@code n} positive 302 * integers, or {@code 1} if {@code n == 0}. 303 * 304 * <p><b>Warning</b>: the result takes <i>O(n log n)</i> space, so use cautiously. 305 * 306 * <p>This uses an efficient binary recursive algorithm to compute the factorial 307 * with balanced multiplies. It also removes all the 2s from the intermediate 308 * products (shifting them back in at the end). 309 * 310 * @throws IllegalArgumentException if {@code n < 0} 311 */ 312 public static BigInteger factorial(int n) { 313 checkNonNegative("n", n); 314 315 // If the factorial is small enough, just use LongMath to do it. 316 if (n < LongMath.factorials.length) { 317 return BigInteger.valueOf(LongMath.factorials[n]); 318 } 319 320 // Pre-allocate space for our list of intermediate BigIntegers. 321 int approxSize = IntMath.divide(n * IntMath.log2(n, CEILING), Long.SIZE, CEILING); 322 ArrayList<BigInteger> bignums = new ArrayList<BigInteger>(approxSize); 323 324 // Start from the pre-computed maximum long factorial. 325 int startingNumber = LongMath.factorials.length; 326 long product = LongMath.factorials[startingNumber - 1]; 327 // Strip off 2s from this value. 328 int shift = Long.numberOfTrailingZeros(product); 329 product >>= shift; 330 331 // Use floor(log2(num)) + 1 to prevent overflow of multiplication. 332 int productBits = LongMath.log2(product, FLOOR) + 1; 333 int bits = LongMath.log2(startingNumber, FLOOR) + 1; 334 // Check for the next power of two boundary, to save us a CLZ operation. 335 int nextPowerOfTwo = 1 << (bits - 1); 336 337 // Iteratively multiply the longs as big as they can go. 338 for (long num = startingNumber; num <= n; num++) { 339 // Check to see if the floor(log2(num)) + 1 has changed. 340 if ((num & nextPowerOfTwo) != 0) { 341 nextPowerOfTwo <<= 1; 342 bits++; 343 } 344 // Get rid of the 2s in num. 345 int tz = Long.numberOfTrailingZeros(num); 346 long normalizedNum = num >> tz; 347 shift += tz; 348 // Adjust floor(log2(num)) + 1. 349 int normalizedBits = bits - tz; 350 // If it won't fit in a long, then we store off the intermediate product. 351 if (normalizedBits + productBits >= Long.SIZE) { 352 bignums.add(BigInteger.valueOf(product)); 353 product = 1; 354 productBits = 0; 355 } 356 product *= normalizedNum; 357 productBits = LongMath.log2(product, FLOOR) + 1; 358 } 359 // Check for leftovers. 360 if (product > 1) { 361 bignums.add(BigInteger.valueOf(product)); 362 } 363 // Efficiently multiply all the intermediate products together. 364 return listProduct(bignums).shiftLeft(shift); 365 } 366 367 static BigInteger listProduct(List<BigInteger> nums) { 368 return listProduct(nums, 0, nums.size()); 369 } 370 371 static BigInteger listProduct(List<BigInteger> nums, int start, int end) { 372 switch (end - start) { 373 case 0: 374 return BigInteger.ONE; 375 case 1: 376 return nums.get(start); 377 case 2: 378 return nums.get(start).multiply(nums.get(start + 1)); 379 case 3: 380 return nums.get(start).multiply(nums.get(start + 1)).multiply(nums.get(start + 2)); 381 default: 382 // Otherwise, split the list in half and recursively do this. 383 int m = (end + start) >>> 1; 384 return listProduct(nums, start, m).multiply(listProduct(nums, m, end)); 385 } 386 } 387 388 /** 389 * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and 390 * {@code k}, that is, {@code n! / (k! (n - k)!)}. 391 * 392 * <p><b>Warning</b>: the result can take as much as <i>O(k log n)</i> space. 393 * 394 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n} 395 */ 396 public static BigInteger binomial(int n, int k) { 397 checkNonNegative("n", n); 398 checkNonNegative("k", k); 399 checkArgument(k <= n, "k (%s) > n (%s)", k, n); 400 if (k > (n >> 1)) { 401 k = n - k; 402 } 403 if (k < LongMath.biggestBinomials.length && n <= LongMath.biggestBinomials[k]) { 404 return BigInteger.valueOf(LongMath.binomial(n, k)); 405 } 406 407 BigInteger accum = BigInteger.ONE; 408 409 long numeratorAccum = n; 410 long denominatorAccum = 1; 411 412 int bits = LongMath.log2(n, RoundingMode.CEILING); 413 414 int numeratorBits = bits; 415 416 for (int i = 1; i < k; i++) { 417 int p = n - i; 418 int q = i + 1; 419 420 // log2(p) >= bits - 1, because p >= n/2 421 422 if (numeratorBits + bits >= Long.SIZE - 1) { 423 // The numerator is as big as it can get without risking overflow. 424 // Multiply numeratorAccum / denominatorAccum into accum. 425 accum = accum 426 .multiply(BigInteger.valueOf(numeratorAccum)) 427 .divide(BigInteger.valueOf(denominatorAccum)); 428 numeratorAccum = p; 429 denominatorAccum = q; 430 numeratorBits = bits; 431 } else { 432 // We can definitely multiply into the long accumulators without overflowing them. 433 numeratorAccum *= p; 434 denominatorAccum *= q; 435 numeratorBits += bits; 436 } 437 } 438 return accum 439 .multiply(BigInteger.valueOf(numeratorAccum)) 440 .divide(BigInteger.valueOf(denominatorAccum)); 441 } 442 443 // Returns true if BigInteger.valueOf(x.longValue()).equals(x). 444 @GwtIncompatible("TODO") 445 static boolean fitsInLong(BigInteger x) { 446 return x.bitLength() <= Long.SIZE - 1; 447 } 448 449 private BigIntegerMath() {} 450}