001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.math; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.math.DoubleUtils.IMPLICIT_BIT; 021import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS; 022import static com.google.common.math.DoubleUtils.getSignificand; 023import static com.google.common.math.DoubleUtils.isFinite; 024import static com.google.common.math.DoubleUtils.isNormal; 025import static com.google.common.math.DoubleUtils.scaleNormalize; 026import static com.google.common.math.MathPreconditions.checkInRange; 027import static com.google.common.math.MathPreconditions.checkNonNegative; 028import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 029import static java.lang.Math.abs; 030import static java.lang.Math.copySign; 031import static java.lang.Math.getExponent; 032import static java.lang.Math.log; 033import static java.lang.Math.rint; 034 035import com.google.common.annotations.VisibleForTesting; 036import com.google.common.primitives.Booleans; 037 038import java.math.BigInteger; 039import java.math.RoundingMode; 040 041/** 042 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}. 043 * 044 * @author Louis Wasserman 045 * @since 11.0 046 */ 047public final class DoubleMath { 048 /* 049 * This method returns a value y such that rounding y DOWN (towards zero) gives the same result 050 * as rounding x according to the specified mode. 051 */ 052 static double roundIntermediate(double x, RoundingMode mode) { 053 if (!isFinite(x)) { 054 throw new ArithmeticException("input is infinite or NaN"); 055 } 056 switch (mode) { 057 case UNNECESSARY: 058 checkRoundingUnnecessary(isMathematicalInteger(x)); 059 return x; 060 061 case FLOOR: 062 if (x >= 0.0 || isMathematicalInteger(x)) { 063 return x; 064 } else { 065 return x - 1.0; 066 } 067 068 case CEILING: 069 if (x <= 0.0 || isMathematicalInteger(x)) { 070 return x; 071 } else { 072 return x + 1.0; 073 } 074 075 case DOWN: 076 return x; 077 078 case UP: 079 if (isMathematicalInteger(x)) { 080 return x; 081 } else { 082 return x + Math.copySign(1.0, x); 083 } 084 085 case HALF_EVEN: 086 return rint(x); 087 088 case HALF_UP: { 089 double z = rint(x); 090 if (abs(x - z) == 0.5) { 091 return x + copySign(0.5, x); 092 } else { 093 return z; 094 } 095 } 096 097 case HALF_DOWN: { 098 double z = rint(x); 099 if (abs(x - z) == 0.5) { 100 return x; 101 } else { 102 return z; 103 } 104 } 105 106 default: 107 throw new AssertionError(); 108 } 109 } 110 111 /** 112 * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding 113 * mode, if possible. 114 * 115 * @throws ArithmeticException if 116 * <ul> 117 * <li>{@code x} is infinite or NaN 118 * <li>{@code x}, after being rounded to a mathematical integer using the specified 119 * rounding mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code 120 * Integer.MAX_VALUE} 121 * <li>{@code x} is not a mathematical integer and {@code mode} is 122 * {@link RoundingMode#UNNECESSARY} 123 * </ul> 124 */ 125 public static int roundToInt(double x, RoundingMode mode) { 126 double z = roundIntermediate(x, mode); 127 checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0); 128 return (int) z; 129 } 130 131 private static final double MIN_INT_AS_DOUBLE = -0x1p31; 132 private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0; 133 134 /** 135 * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding 136 * mode, if possible. 137 * 138 * @throws ArithmeticException if 139 * <ul> 140 * <li>{@code x} is infinite or NaN 141 * <li>{@code x}, after being rounded to a mathematical integer using the specified 142 * rounding mode, is either less than {@code Long.MIN_VALUE} or greater than {@code 143 * Long.MAX_VALUE} 144 * <li>{@code x} is not a mathematical integer and {@code mode} is 145 * {@link RoundingMode#UNNECESSARY} 146 * </ul> 147 */ 148 public static long roundToLong(double x, RoundingMode mode) { 149 double z = roundIntermediate(x, mode); 150 checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE); 151 return (long) z; 152 } 153 154 private static final double MIN_LONG_AS_DOUBLE = -0x1p63; 155 /* 156 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store 157 * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1. 158 */ 159 private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63; 160 161 /** 162 * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified 163 * rounding mode, if possible. 164 * 165 * @throws ArithmeticException if 166 * <ul> 167 * <li>{@code x} is infinite or NaN 168 * <li>{@code x} is not a mathematical integer and {@code mode} is 169 * {@link RoundingMode#UNNECESSARY} 170 * </ul> 171 */ 172 public static BigInteger roundToBigInteger(double x, RoundingMode mode) { 173 x = roundIntermediate(x, mode); 174 if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { 175 return BigInteger.valueOf((long) x); 176 } 177 int exponent = getExponent(x); 178 long significand = getSignificand(x); 179 BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); 180 return (x < 0) ? result.negate() : result; 181 } 182 183 /** 184 * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer 185 * {@code k}. 186 */ 187 public static boolean isPowerOfTwo(double x) { 188 return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x)); 189 } 190 191 /** 192 * Returns the base 2 logarithm of a double value. 193 * 194 * <p>Special cases: 195 * <ul> 196 * <li>If {@code x} is NaN or less than zero, the result is NaN. 197 * <li>If {@code x} is positive infinity, the result is positive infinity. 198 * <li>If {@code x} is positive or negative zero, the result is negative infinity. 199 * </ul> 200 * 201 * <p>The computed result is within 1 ulp of the exact result. 202 * 203 * <p>If the result of this method will be immediately rounded to an {@code int}, 204 * {@link #log2(double, RoundingMode)} is faster. 205 */ 206 public static double log2(double x) { 207 return log(x) / LN_2; // surprisingly within 1 ulp according to tests 208 } 209 210 private static final double LN_2 = log(2); 211 212 /** 213 * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an 214 * {@code int}. 215 * 216 * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. 217 * 218 * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is 219 * infinite 220 */ 221 @SuppressWarnings("fallthrough") 222 public static int log2(double x, RoundingMode mode) { 223 checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); 224 int exponent = getExponent(x); 225 if (!isNormal(x)) { 226 return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; 227 // Do the calculation on a normal value. 228 } 229 // x is positive, finite, and normal 230 boolean increment; 231 switch (mode) { 232 case UNNECESSARY: 233 checkRoundingUnnecessary(isPowerOfTwo(x)); 234 // fall through 235 case FLOOR: 236 increment = false; 237 break; 238 case CEILING: 239 increment = !isPowerOfTwo(x); 240 break; 241 case DOWN: 242 increment = exponent < 0 & !isPowerOfTwo(x); 243 break; 244 case UP: 245 increment = exponent >= 0 & !isPowerOfTwo(x); 246 break; 247 case HALF_DOWN: 248 case HALF_EVEN: 249 case HALF_UP: 250 double xScaled = scaleNormalize(x); 251 // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," 252 // so log2(x) is never exactly exponent + 0.5. 253 increment = (xScaled * xScaled) > 2.0; 254 break; 255 default: 256 throw new AssertionError(); 257 } 258 return increment ? exponent + 1 : exponent; 259 } 260 261 /** 262 * Returns {@code true} if {@code x} represents a mathematical integer. 263 * 264 * <p>This is equivalent to, but not necessarily implemented as, the expression {@code 265 * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. 266 */ 267 public static boolean isMathematicalInteger(double x) { 268 return isFinite(x) 269 && (x == 0.0 || 270 SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x)); 271 } 272 273 /** 274 * Returns {@code n!}, that is, the product of the first {@code n} positive 275 * integers, {@code 1} if {@code n == 0}, or e n!}, or 276 * {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}. 277 * 278 * <p>The result is within 1 ulp of the true value. 279 * 280 * @throws IllegalArgumentException if {@code n < 0} 281 */ 282 public static double factorial(int n) { 283 checkNonNegative("n", n); 284 if (n > MAX_FACTORIAL) { 285 return Double.POSITIVE_INFINITY; 286 } else { 287 // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate 288 // result than multiplying by everySixteenthFactorial[n >> 4] directly. 289 double accum = 1.0; 290 for (int i = 1 + (n & ~0xf); i <= n; i++) { 291 accum *= i; 292 } 293 return accum * everySixteenthFactorial[n >> 4]; 294 } 295 } 296 297 @VisibleForTesting 298 static final int MAX_FACTORIAL = 170; 299 300 @VisibleForTesting 301 static final double[] everySixteenthFactorial = { 302 0x1.0p0, 303 0x1.30777758p44, 304 0x1.956ad0aae33a4p117, 305 0x1.ee69a78d72cb6p202, 306 0x1.fe478ee34844ap295, 307 0x1.c619094edabffp394, 308 0x1.3638dd7bd6347p498, 309 0x1.7cac197cfe503p605, 310 0x1.1e5dfc140e1e5p716, 311 0x1.8ce85fadb707ep829, 312 0x1.95d5f3d928edep945}; 313 314 /** 315 * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other. 316 * 317 * <p>Technically speaking, this is equivalent to 318 * {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}. 319 * 320 * <p>Notable special cases include: 321 * <ul> 322 * <li>All NaNs are fuzzily equal. 323 * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal. 324 * <li>Positive and negative zero are always fuzzily equal. 325 * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then 326 * {@code a} and {@code b} are fuzzily equal if and only if {@code a == b}. 327 * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal. 328 * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code 329 * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves. 330 * </li> 331 * 332 * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an 333 * equivalence relation and <em>not</em> suitable for use in {@link Object#equals} 334 * implementations. 335 * 336 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 337 * @since 13.0 338 */ 339 public static boolean fuzzyEquals(double a, double b, double tolerance) { 340 MathPreconditions.checkNonNegative("tolerance", tolerance); 341 return 342 Math.copySign(a - b, 1.0) <= tolerance 343 // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics 344 || (a == b) // needed to ensure that infinities equal themselves 345 || ((a != a) && (b != b)); // x != x is equivalent to Double.isNaN(x), but faster 346 } 347 348 /** 349 * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values. 350 * 351 * <p>This method is equivalent to 352 * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like 353 * {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all 354 * other values (including {@link Double#POSITIVE_INFINITY}). 355 * 356 * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in 357 * {@link Comparable#compareTo} implementations. In particular, it is not transitive. 358 * 359 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 360 * @since 13.0 361 */ 362 public static int fuzzyCompare(double a, double b, double tolerance) { 363 if (fuzzyEquals(a, b, tolerance)) { 364 return 0; 365 } else if (a < b) { 366 return -1; 367 } else if (a > b) { 368 return 1; 369 } else { 370 return Booleans.compare(Double.isNaN(a), Double.isNaN(b)); 371 } 372 } 373 374 private DoubleMath() {} 375}