001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.collect; 016 017import com.google.common.annotations.Beta; 018import com.google.common.base.Preconditions; 019 020import java.util.ArrayDeque; 021import java.util.Collection; 022import java.util.Deque; 023import java.util.PriorityQueue; 024import java.util.Queue; 025import java.util.concurrent.ArrayBlockingQueue; 026import java.util.concurrent.BlockingQueue; 027import java.util.concurrent.ConcurrentLinkedQueue; 028import java.util.concurrent.LinkedBlockingDeque; 029import java.util.concurrent.LinkedBlockingQueue; 030import java.util.concurrent.PriorityBlockingQueue; 031import java.util.concurrent.SynchronousQueue; 032import java.util.concurrent.TimeUnit; 033 034/** 035 * Static utility methods pertaining to {@link Queue} and {@link Deque} instances. 036 * Also see this class's counterparts {@link Lists}, {@link Sets}, and {@link Maps}. 037 * 038 * @author Kurt Alfred Kluever 039 * @since 11.0 040 */ 041public final class Queues { 042 private Queues() {} 043 044 // ArrayBlockingQueue 045 046 /** 047 * Creates an empty {@code ArrayBlockingQueue} instance. 048 * 049 * @return a new, empty {@code ArrayBlockingQueue} 050 */ 051 public static <E> ArrayBlockingQueue<E> newArrayBlockingQueue(int capacity) { 052 return new ArrayBlockingQueue<E>(capacity); 053 } 054 055 // ArrayDeque 056 057 /** 058 * Creates an empty {@code ArrayDeque} instance. 059 * 060 * @return a new, empty {@code ArrayDeque} 061 * @since 12.0 062 */ 063 public static <E> ArrayDeque<E> newArrayDeque() { 064 return new ArrayDeque<E>(); 065 } 066 067 /** 068 * Creates an {@code ArrayDeque} instance containing the given elements. 069 * 070 * @param elements the elements that the queue should contain, in order 071 * @return a new {@code ArrayDeque} containing those elements 072 * @since 12.0 073 */ 074 public static <E> ArrayDeque<E> newArrayDeque(Iterable<? extends E> elements) { 075 if (elements instanceof Collection) { 076 return new ArrayDeque<E>(Collections2.cast(elements)); 077 } 078 ArrayDeque<E> deque = new ArrayDeque<E>(); 079 Iterables.addAll(deque, elements); 080 return deque; 081 } 082 083 // ConcurrentLinkedQueue 084 085 /** 086 * Creates an empty {@code ConcurrentLinkedQueue} instance. 087 * 088 * @return a new, empty {@code ConcurrentLinkedQueue} 089 */ 090 public static <E> ConcurrentLinkedQueue<E> newConcurrentLinkedQueue() { 091 return new ConcurrentLinkedQueue<E>(); 092 } 093 094 /** 095 * Creates an {@code ConcurrentLinkedQueue} instance containing the given elements. 096 * 097 * @param elements the elements that the queue should contain, in order 098 * @return a new {@code ConcurrentLinkedQueue} containing those elements 099 */ 100 public static <E> ConcurrentLinkedQueue<E> newConcurrentLinkedQueue( 101 Iterable<? extends E> elements) { 102 if (elements instanceof Collection) { 103 return new ConcurrentLinkedQueue<E>(Collections2.cast(elements)); 104 } 105 ConcurrentLinkedQueue<E> queue = new ConcurrentLinkedQueue<E>(); 106 Iterables.addAll(queue, elements); 107 return queue; 108 } 109 110 // LinkedBlockingDeque 111 112 /** 113 * Creates an empty {@code LinkedBlockingDeque} instance. 114 * 115 * @return a new, empty {@code LinkedBlockingDeque} 116 * @since 12.0 117 */ 118 public static <E> LinkedBlockingDeque<E> newLinkedBlockingDeque() { 119 return new LinkedBlockingDeque<E>(); 120 } 121 122 /** 123 * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity. 124 * 125 * @param capacity the capacity of this deque 126 * @return a new, empty {@code LinkedBlockingDeque} 127 * @throws IllegalArgumentException if {@code capacity} is less than 1 128 * @since 12.0 129 */ 130 public static <E> LinkedBlockingDeque<E> newLinkedBlockingDeque(int capacity) { 131 return new LinkedBlockingDeque<E>(capacity); 132 } 133 134 /** 135 * Creates an {@code LinkedBlockingDeque} instance containing the given elements. 136 * 137 * @param elements the elements that the queue should contain, in order 138 * @return a new {@code LinkedBlockingDeque} containing those elements 139 * @since 12.0 140 */ 141 public static <E> LinkedBlockingDeque<E> newLinkedBlockingDeque(Iterable<? extends E> elements) { 142 if (elements instanceof Collection) { 143 return new LinkedBlockingDeque<E>(Collections2.cast(elements)); 144 } 145 LinkedBlockingDeque<E> deque = new LinkedBlockingDeque<E>(); 146 Iterables.addAll(deque, elements); 147 return deque; 148 } 149 150 // LinkedBlockingQueue 151 152 /** 153 * Creates an empty {@code LinkedBlockingQueue} instance. 154 * 155 * @return a new, empty {@code LinkedBlockingQueue} 156 */ 157 public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue() { 158 return new LinkedBlockingQueue<E>(); 159 } 160 161 /** 162 * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity. 163 * 164 * @param capacity the capacity of this queue 165 * @return a new, empty {@code LinkedBlockingQueue} 166 * @throws IllegalArgumentException if {@code capacity} is less than 1 167 */ 168 public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue(int capacity) { 169 return new LinkedBlockingQueue<E>(capacity); 170 } 171 172 /** 173 * Creates an {@code LinkedBlockingQueue} instance containing the given elements. 174 * 175 * @param elements the elements that the queue should contain, in order 176 * @return a new {@code LinkedBlockingQueue} containing those elements 177 */ 178 public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue(Iterable<? extends E> elements) { 179 if (elements instanceof Collection) { 180 return new LinkedBlockingQueue<E>(Collections2.cast(elements)); 181 } 182 LinkedBlockingQueue<E> queue = new LinkedBlockingQueue<E>(); 183 Iterables.addAll(queue, elements); 184 return queue; 185 } 186 187 // LinkedList: see {@link com.google.common.collect.Lists} 188 189 // PriorityBlockingQueue 190 191 /** 192 * Creates an empty {@code PriorityBlockingQueue} instance. 193 * 194 * @return a new, empty {@code PriorityBlockingQueue} 195 */ 196 public static <E> PriorityBlockingQueue<E> newPriorityBlockingQueue() { 197 return new PriorityBlockingQueue<E>(); 198 } 199 200 /** 201 * Creates an {@code PriorityBlockingQueue} instance containing the given elements. 202 * 203 * @param elements the elements that the queue should contain, in order 204 * @return a new {@code PriorityBlockingQueue} containing those elements 205 */ 206 public static <E> PriorityBlockingQueue<E> newPriorityBlockingQueue( 207 Iterable<? extends E> elements) { 208 if (elements instanceof Collection) { 209 return new PriorityBlockingQueue<E>(Collections2.cast(elements)); 210 } 211 PriorityBlockingQueue<E> queue = new PriorityBlockingQueue<E>(); 212 Iterables.addAll(queue, elements); 213 return queue; 214 } 215 216 // PriorityQueue 217 218 /** 219 * Creates an empty {@code PriorityQueue} instance. 220 * 221 * @return a new, empty {@code PriorityQueue} 222 */ 223 public static <E> PriorityQueue<E> newPriorityQueue() { 224 return new PriorityQueue<E>(); 225 } 226 227 /** 228 * Creates an {@code PriorityQueue} instance containing the given elements. 229 * 230 * @param elements the elements that the queue should contain, in order 231 * @return a new {@code PriorityQueue} containing those elements 232 */ 233 public static <E> PriorityQueue<E> newPriorityQueue(Iterable<? extends E> elements) { 234 if (elements instanceof Collection) { 235 return new PriorityQueue<E>(Collections2.cast(elements)); 236 } 237 PriorityQueue<E> queue = new PriorityQueue<E>(); 238 Iterables.addAll(queue, elements); 239 return queue; 240 } 241 242 // SynchronousQueue 243 244 /** 245 * Creates an empty {@code SynchronousQueue} instance. 246 * 247 * @return a new, empty {@code SynchronousQueue} 248 */ 249 public static <E> SynchronousQueue<E> newSynchronousQueue() { 250 return new SynchronousQueue<E>(); 251 } 252 253 /** 254 * Drains the queue as {@link BlockingQueue#drainTo(Collection, int)}, but if the requested 255 * {@code numElements} elements are not available, it will wait for them up to the specified 256 * timeout. 257 * 258 * @param q the blocking queue to be drained 259 * @param buffer where to add the transferred elements 260 * @param numElements the number of elements to be waited for 261 * @param timeout how long to wait before giving up, in units of {@code unit} 262 * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter 263 * @return the number of elements transferred 264 * @throws InterruptedException if interrupted while waiting 265 */ 266 @Beta 267 public static <E> int drain(BlockingQueue<E> q, Collection<? super E> buffer, int numElements, 268 long timeout, TimeUnit unit) throws InterruptedException { 269 Preconditions.checkNotNull(buffer); 270 /* 271 * This code performs one System.nanoTime() more than necessary, and in return, the time to 272 * execute Queue#drainTo is not added *on top* of waiting for the timeout (which could make 273 * the timeout arbitrarily inaccurate, given a queue that is slow to drain). 274 */ 275 long deadline = System.nanoTime() + unit.toNanos(timeout); 276 int added = 0; 277 while (added < numElements) { 278 // we could rely solely on #poll, but #drainTo might be more efficient when there are multiple 279 // elements already available (e.g. LinkedBlockingQueue#drainTo locks only once) 280 added += q.drainTo(buffer, numElements - added); 281 if (added < numElements) { // not enough elements immediately available; will have to poll 282 E e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS); 283 if (e == null) { 284 break; // we already waited enough, and there are no more elements in sight 285 } 286 buffer.add(e); 287 added++; 288 } 289 } 290 return added; 291 } 292 293 /** 294 * Drains the queue as {@linkplain #drain(BlockingQueue, Collection, int, long, TimeUnit)}, 295 * but with a different behavior in case it is interrupted while waiting. In that case, the 296 * operation will continue as usual, and in the end the thread's interruption status will be set 297 * (no {@code InterruptedException} is thrown). 298 * 299 * @param q the blocking queue to be drained 300 * @param buffer where to add the transferred elements 301 * @param numElements the number of elements to be waited for 302 * @param timeout how long to wait before giving up, in units of {@code unit} 303 * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter 304 * @return the number of elements transferred 305 */ 306 @Beta 307 public static <E> int drainUninterruptibly(BlockingQueue<E> q, Collection<? super E> buffer, 308 int numElements, long timeout, TimeUnit unit) { 309 Preconditions.checkNotNull(buffer); 310 long deadline = System.nanoTime() + unit.toNanos(timeout); 311 int added = 0; 312 boolean interrupted = false; 313 try { 314 while (added < numElements) { 315 // we could rely solely on #poll, but #drainTo might be more efficient when there are 316 // multiple elements already available (e.g. LinkedBlockingQueue#drainTo locks only once) 317 added += q.drainTo(buffer, numElements - added); 318 if (added < numElements) { // not enough elements immediately available; will have to poll 319 E e; // written exactly once, by a successful (uninterrupted) invocation of #poll 320 while (true) { 321 try { 322 e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS); 323 break; 324 } catch (InterruptedException ex) { 325 interrupted = true; // note interruption and retry 326 } 327 } 328 if (e == null) { 329 break; // we already waited enough, and there are no more elements in sight 330 } 331 buffer.add(e); 332 added++; 333 } 334 } 335 } finally { 336 if (interrupted) { 337 Thread.currentThread().interrupt(); 338 } 339 } 340 return added; 341 } 342 343 /** 344 * Returns a synchronized (thread-safe) queue backed by the specified queue. In order to 345 * guarantee serial access, it is critical that <b>all</b> access to the backing queue is 346 * accomplished through the returned queue. 347 * 348 * <p>It is imperative that the user manually synchronize on the returned queue when accessing 349 * the queue's iterator: <pre> {@code 350 * 351 * Queue<E> queue = Queues.synchronizedQueue(MinMaxPriorityQueue<E>.create()); 352 * ... 353 * queue.add(element); // Needn't be in synchronized block 354 * ... 355 * synchronized (queue) { // Must synchronize on queue! 356 * Iterator<E> i = queue.iterator(); // Must be in synchronized block 357 * while (i.hasNext()) { 358 * foo(i.next()); 359 * } 360 * }}</pre> 361 * 362 * Failure to follow this advice may result in non-deterministic behavior. 363 * 364 * <p>The returned queue will be serializable if the specified queue is serializable. 365 * 366 * @param queue the queue to be wrapped in a synchronized view 367 * @return a synchronized view of the specified queue 368 * @since 14.0 369 */ 370 @Beta 371 public static <E> Queue<E> synchronizedQueue(Queue<E> queue) { 372 return Synchronized.queue(queue, null); 373 } 374}