001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkElementIndex; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkPositionIndex; 023import static com.google.common.base.Preconditions.checkPositionIndexes; 024import static com.google.common.base.Preconditions.checkState; 025 026import com.google.common.annotations.Beta; 027import com.google.common.annotations.GwtCompatible; 028import com.google.common.annotations.GwtIncompatible; 029import com.google.common.annotations.VisibleForTesting; 030import com.google.common.base.Function; 031import com.google.common.base.Objects; 032import com.google.common.primitives.Ints; 033 034import java.io.Serializable; 035import java.util.AbstractList; 036import java.util.AbstractSequentialList; 037import java.util.ArrayList; 038import java.util.Arrays; 039import java.util.Collection; 040import java.util.Collections; 041import java.util.Iterator; 042import java.util.LinkedList; 043import java.util.List; 044import java.util.ListIterator; 045import java.util.NoSuchElementException; 046import java.util.RandomAccess; 047import java.util.concurrent.CopyOnWriteArrayList; 048 049import javax.annotation.Nullable; 050 051/** 052 * Static utility methods pertaining to {@link List} instances. Also see this 053 * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}. 054 * 055 * <p>See the Guava User Guide article on <a href= 056 * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Lists"> 057 * {@code Lists}</a>. 058 * 059 * @author Kevin Bourrillion 060 * @author Mike Bostock 061 * @author Louis Wasserman 062 * @since 2.0 (imported from Google Collections Library) 063 */ 064@GwtCompatible(emulated = true) 065public final class Lists { 066 private Lists() {} 067 068 // ArrayList 069 070 /** 071 * Creates a <i>mutable</i>, empty {@code ArrayList} instance. 072 * 073 * <p><b>Note:</b> if mutability is not required, use {@link 074 * ImmutableList#of()} instead. 075 * 076 * @return a new, empty {@code ArrayList} 077 */ 078 @GwtCompatible(serializable = true) 079 public static <E> ArrayList<E> newArrayList() { 080 return new ArrayList<E>(); 081 } 082 083 /** 084 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 085 * elements. 086 * 087 * <p><b>Note:</b> if mutability is not required and the elements are 088 * non-null, use an overload of {@link ImmutableList#of()} (for varargs) or 089 * {@link ImmutableList#copyOf(Object[])} (for an array) instead. 090 * 091 * @param elements the elements that the list should contain, in order 092 * @return a new {@code ArrayList} containing those elements 093 */ 094 @GwtCompatible(serializable = true) 095 public static <E> ArrayList<E> newArrayList(E... elements) { 096 checkNotNull(elements); // for GWT 097 // Avoid integer overflow when a large array is passed in 098 int capacity = computeArrayListCapacity(elements.length); 099 ArrayList<E> list = new ArrayList<E>(capacity); 100 Collections.addAll(list, elements); 101 return list; 102 } 103 104 @VisibleForTesting static int computeArrayListCapacity(int arraySize) { 105 checkArgument(arraySize >= 0); 106 107 // TODO(kevinb): Figure out the right behavior, and document it 108 return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); 109 } 110 111 /** 112 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 113 * elements. 114 * 115 * <p><b>Note:</b> if mutability is not required and the elements are 116 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 117 * 118 * @param elements the elements that the list should contain, in order 119 * @return a new {@code ArrayList} containing those elements 120 */ 121 @GwtCompatible(serializable = true) 122 public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) { 123 checkNotNull(elements); // for GWT 124 // Let ArrayList's sizing logic work, if possible 125 return (elements instanceof Collection) 126 ? new ArrayList<E>(Collections2.cast(elements)) 127 : newArrayList(elements.iterator()); 128 } 129 130 /** 131 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 132 * elements. 133 * 134 * <p><b>Note:</b> if mutability is not required and the elements are 135 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 136 * 137 * @param elements the elements that the list should contain, in order 138 * @return a new {@code ArrayList} containing those elements 139 */ 140 @GwtCompatible(serializable = true) 141 public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) { 142 checkNotNull(elements); // for GWT 143 ArrayList<E> list = newArrayList(); 144 while (elements.hasNext()) { 145 list.add(elements.next()); 146 } 147 return list; 148 } 149 150 /** 151 * Creates an {@code ArrayList} instance backed by an array of the 152 * <i>exact</i> size specified; equivalent to 153 * {@link ArrayList#ArrayList(int)}. 154 * 155 * <p><b>Note:</b> if you know the exact size your list will be, consider 156 * using a fixed-size list ({@link Arrays#asList(Object[])}) or an {@link 157 * ImmutableList} instead of a growable {@link ArrayList}. 158 * 159 * <p><b>Note:</b> If you have only an <i>estimate</i> of the eventual size of 160 * the list, consider padding this estimate by a suitable amount, or simply 161 * use {@link #newArrayListWithExpectedSize(int)} instead. 162 * 163 * @param initialArraySize the exact size of the initial backing array for 164 * the returned array list ({@code ArrayList} documentation calls this 165 * value the "capacity") 166 * @return a new, empty {@code ArrayList} which is guaranteed not to resize 167 * itself unless its size reaches {@code initialArraySize + 1} 168 * @throws IllegalArgumentException if {@code initialArraySize} is negative 169 */ 170 @GwtCompatible(serializable = true) 171 public static <E> ArrayList<E> newArrayListWithCapacity( 172 int initialArraySize) { 173 checkArgument(initialArraySize >= 0); // for GWT. 174 return new ArrayList<E>(initialArraySize); 175 } 176 177 /** 178 * Creates an {@code ArrayList} instance sized appropriately to hold an 179 * <i>estimated</i> number of elements without resizing. A small amount of 180 * padding is added in case the estimate is low. 181 * 182 * <p><b>Note:</b> If you know the <i>exact</i> number of elements the list 183 * will hold, or prefer to calculate your own amount of padding, refer to 184 * {@link #newArrayListWithCapacity(int)}. 185 * 186 * @param estimatedSize an estimate of the eventual {@link List#size()} of 187 * the new list 188 * @return a new, empty {@code ArrayList}, sized appropriately to hold the 189 * estimated number of elements 190 * @throws IllegalArgumentException if {@code estimatedSize} is negative 191 */ 192 @GwtCompatible(serializable = true) 193 public static <E> ArrayList<E> newArrayListWithExpectedSize( 194 int estimatedSize) { 195 return new ArrayList<E>(computeArrayListCapacity(estimatedSize)); 196 } 197 198 // LinkedList 199 200 /** 201 * Creates an empty {@code LinkedList} instance. 202 * 203 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 204 * {@link ImmutableList#of()} instead. 205 * 206 * @return a new, empty {@code LinkedList} 207 */ 208 @GwtCompatible(serializable = true) 209 public static <E> LinkedList<E> newLinkedList() { 210 return new LinkedList<E>(); 211 } 212 213 /** 214 * Creates a {@code LinkedList} instance containing the given elements. 215 * 216 * @param elements the elements that the list should contain, in order 217 * @return a new {@code LinkedList} containing those elements 218 */ 219 @GwtCompatible(serializable = true) 220 public static <E> LinkedList<E> newLinkedList( 221 Iterable<? extends E> elements) { 222 LinkedList<E> list = newLinkedList(); 223 for (E element : elements) { 224 list.add(element); 225 } 226 return list; 227 } 228 229 /** 230 * Creates an empty {@code CopyOnWriteArrayList} instance. 231 * 232 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 233 * {@link Collections#emptyList} instead. 234 * 235 * @return a new, empty {@code CopyOnWriteArrayList} 236 * @since 12.0 237 */ 238 @GwtIncompatible("CopyOnWriteArrayList") 239 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() { 240 return new CopyOnWriteArrayList<E>(); 241 } 242 243 /** 244 * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. 245 * 246 * @param elements the elements that the list should contain, in order 247 * @return a new {@code CopyOnWriteArrayList} containing those elements 248 * @since 12.0 249 */ 250 @GwtIncompatible("CopyOnWriteArrayList") 251 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList( 252 Iterable<? extends E> elements) { 253 // We copy elements to an ArrayList first, rather than incurring the 254 // quadratic cost of adding them to the COWAL directly. 255 Collection<? extends E> elementsCollection = (elements instanceof Collection) 256 ? Collections2.cast(elements) 257 : newArrayList(elements); 258 return new CopyOnWriteArrayList<E>(elementsCollection); 259 } 260 261 /** 262 * Returns an unmodifiable list containing the specified first element and 263 * backed by the specified array of additional elements. Changes to the {@code 264 * rest} array will be reflected in the returned list. Unlike {@link 265 * Arrays#asList}, the returned list is unmodifiable. 266 * 267 * <p>This is useful when a varargs method needs to use a signature such as 268 * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload 269 * ambiguity or to enforce a minimum argument count. 270 * 271 * <p>The returned list is serializable and implements {@link RandomAccess}. 272 * 273 * @param first the first element 274 * @param rest an array of additional elements, possibly empty 275 * @return an unmodifiable list containing the specified elements 276 */ 277 public static <E> List<E> asList(@Nullable E first, E[] rest) { 278 return new OnePlusArrayList<E>(first, rest); 279 } 280 281 /** @see Lists#asList(Object, Object[]) */ 282 private static class OnePlusArrayList<E> extends AbstractList<E> 283 implements Serializable, RandomAccess { 284 final E first; 285 final E[] rest; 286 287 OnePlusArrayList(@Nullable E first, E[] rest) { 288 this.first = first; 289 this.rest = checkNotNull(rest); 290 } 291 @Override public int size() { 292 return rest.length + 1; 293 } 294 @Override public E get(int index) { 295 // check explicitly so the IOOBE will have the right message 296 checkElementIndex(index, size()); 297 return (index == 0) ? first : rest[index - 1]; 298 } 299 private static final long serialVersionUID = 0; 300 } 301 302 /** 303 * Returns an unmodifiable list containing the specified first and second 304 * element, and backed by the specified array of additional elements. Changes 305 * to the {@code rest} array will be reflected in the returned list. Unlike 306 * {@link Arrays#asList}, the returned list is unmodifiable. 307 * 308 * <p>This is useful when a varargs method needs to use a signature such as 309 * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid 310 * overload ambiguity or to enforce a minimum argument count. 311 * 312 * <p>The returned list is serializable and implements {@link RandomAccess}. 313 * 314 * @param first the first element 315 * @param second the second element 316 * @param rest an array of additional elements, possibly empty 317 * @return an unmodifiable list containing the specified elements 318 */ 319 public static <E> List<E> asList( 320 @Nullable E first, @Nullable E second, E[] rest) { 321 return new TwoPlusArrayList<E>(first, second, rest); 322 } 323 324 /** @see Lists#asList(Object, Object, Object[]) */ 325 private static class TwoPlusArrayList<E> extends AbstractList<E> 326 implements Serializable, RandomAccess { 327 final E first; 328 final E second; 329 final E[] rest; 330 331 TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) { 332 this.first = first; 333 this.second = second; 334 this.rest = checkNotNull(rest); 335 } 336 @Override public int size() { 337 return rest.length + 2; 338 } 339 @Override public E get(int index) { 340 switch (index) { 341 case 0: 342 return first; 343 case 1: 344 return second; 345 default: 346 // check explicitly so the IOOBE will have the right message 347 checkElementIndex(index, size()); 348 return rest[index - 2]; 349 } 350 } 351 private static final long serialVersionUID = 0; 352 } 353 354 /** 355 * Returns every possible list that can be formed by choosing one element 356 * from each of the given lists in order; the "n-ary 357 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 358 * product</a>" of the lists. For example: <pre> {@code 359 * 360 * Lists.cartesianProduct(ImmutableList.of( 361 * ImmutableList.of(1, 2), 362 * ImmutableList.of("A", "B", "C")))}</pre> 363 * 364 * returns a list containing six lists in the following order: 365 * 366 * <ul> 367 * <li>{@code ImmutableList.of(1, "A")} 368 * <li>{@code ImmutableList.of(1, "B")} 369 * <li>{@code ImmutableList.of(1, "C")} 370 * <li>{@code ImmutableList.of(2, "A")} 371 * <li>{@code ImmutableList.of(2, "B")} 372 * <li>{@code ImmutableList.of(2, "C")} 373 * </ul> 374 * 375 * The result is guaranteed to be in the "traditional", lexicographical 376 * order for Cartesian products that you would get from nesting for loops: 377 * <pre> {@code 378 * 379 * for (B b0 : lists.get(0)) { 380 * for (B b1 : lists.get(1)) { 381 * ... 382 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 383 * // operate on tuple 384 * } 385 * }}</pre> 386 * 387 * Note that if any input list is empty, the Cartesian product will also be 388 * empty. If no lists at all are provided (an empty list), the resulting 389 * Cartesian product has one element, an empty list (counter-intuitive, but 390 * mathematically consistent). 391 * 392 * <p><i>Performance notes:</i> while the cartesian product of lists of size 393 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 394 * consumption is much smaller. When the cartesian product is constructed, the 395 * input lists are merely copied. Only as the resulting list is iterated are 396 * the individual lists created, and these are not retained after iteration. 397 * 398 * @param lists the lists to choose elements from, in the order that 399 * the elements chosen from those lists should appear in the resulting 400 * lists 401 * @param <B> any common base class shared by all axes (often just {@link 402 * Object}) 403 * @return the Cartesian product, as an immutable list containing immutable 404 * lists 405 * @throws IllegalArgumentException if the size of the cartesian product would 406 * be greater than {@link Integer#MAX_VALUE} 407 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, 408 * or any element of a provided list is null 409 */ 410 static <B> List<List<B>> cartesianProduct( 411 List<? extends List<? extends B>> lists) { 412 return CartesianList.create(lists); 413 } 414 415 /** 416 * Returns every possible list that can be formed by choosing one element 417 * from each of the given lists in order; the "n-ary 418 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 419 * product</a>" of the lists. For example: <pre> {@code 420 * 421 * Lists.cartesianProduct(ImmutableList.of( 422 * ImmutableList.of(1, 2), 423 * ImmutableList.of("A", "B", "C")))}</pre> 424 * 425 * returns a list containing six lists in the following order: 426 * 427 * <ul> 428 * <li>{@code ImmutableList.of(1, "A")} 429 * <li>{@code ImmutableList.of(1, "B")} 430 * <li>{@code ImmutableList.of(1, "C")} 431 * <li>{@code ImmutableList.of(2, "A")} 432 * <li>{@code ImmutableList.of(2, "B")} 433 * <li>{@code ImmutableList.of(2, "C")} 434 * </ul> 435 * 436 * The result is guaranteed to be in the "traditional", lexicographical 437 * order for Cartesian products that you would get from nesting for loops: 438 * <pre> {@code 439 * 440 * for (B b0 : lists.get(0)) { 441 * for (B b1 : lists.get(1)) { 442 * ... 443 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 444 * // operate on tuple 445 * } 446 * }}</pre> 447 * 448 * Note that if any input list is empty, the Cartesian product will also be 449 * empty. If no lists at all are provided (an empty list), the resulting 450 * Cartesian product has one element, an empty list (counter-intuitive, but 451 * mathematically consistent). 452 * 453 * <p><i>Performance notes:</i> while the cartesian product of lists of size 454 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 455 * consumption is much smaller. When the cartesian product is constructed, the 456 * input lists are merely copied. Only as the resulting list is iterated are 457 * the individual lists created, and these are not retained after iteration. 458 * 459 * @param lists the lists to choose elements from, in the order that 460 * the elements chosen from those lists should appear in the resulting 461 * lists 462 * @param <B> any common base class shared by all axes (often just {@link 463 * Object}) 464 * @return the Cartesian product, as an immutable list containing immutable 465 * lists 466 * @throws IllegalArgumentException if the size of the cartesian product would 467 * be greater than {@link Integer#MAX_VALUE} 468 * @throws NullPointerException if {@code lists}, any one of the 469 * {@code lists}, or any element of a provided list is null 470 */ 471 static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) { 472 return cartesianProduct(Arrays.asList(lists)); 473 } 474 475 /** 476 * Returns a list that applies {@code function} to each element of {@code 477 * fromList}. The returned list is a transformed view of {@code fromList}; 478 * changes to {@code fromList} will be reflected in the returned list and vice 479 * versa. 480 * 481 * <p>Since functions are not reversible, the transform is one-way and new 482 * items cannot be stored in the returned list. The {@code add}, 483 * {@code addAll} and {@code set} methods are unsupported in the returned 484 * list. 485 * 486 * <p>The function is applied lazily, invoked when needed. This is necessary 487 * for the returned list to be a view, but it means that the function will be 488 * applied many times for bulk operations like {@link List#contains} and 489 * {@link List#hashCode}. For this to perform well, {@code function} should be 490 * fast. To avoid lazy evaluation when the returned list doesn't need to be a 491 * view, copy the returned list into a new list of your choosing. 492 * 493 * <p>If {@code fromList} implements {@link RandomAccess}, so will the 494 * returned list. The returned list is threadsafe if the supplied list and 495 * function are. 496 * 497 * <p>If only a {@code Collection} or {@code Iterable} input is available, use 498 * {@link Collections2#transform} or {@link Iterables#transform}. 499 * 500 * <p><b>Note:</b> serializing the returned list is implemented by serializing 501 * {@code fromList}, its contents, and {@code function} -- <i>not</i> by 502 * serializing the transformed values. This can lead to surprising behavior, 503 * so serializing the returned list is <b>not recommended</b>. Instead, 504 * copy the list using {@link ImmutableList#copyOf(Collection)} (for example), 505 * then serialize the copy. Other methods similar to this do not implement 506 * serialization at all for this reason. 507 */ 508 public static <F, T> List<T> transform( 509 List<F> fromList, Function<? super F, ? extends T> function) { 510 return (fromList instanceof RandomAccess) 511 ? new TransformingRandomAccessList<F, T>(fromList, function) 512 : new TransformingSequentialList<F, T>(fromList, function); 513 } 514 515 /** 516 * Implementation of a sequential transforming list. 517 * 518 * @see Lists#transform 519 */ 520 private static class TransformingSequentialList<F, T> 521 extends AbstractSequentialList<T> implements Serializable { 522 final List<F> fromList; 523 final Function<? super F, ? extends T> function; 524 525 TransformingSequentialList( 526 List<F> fromList, Function<? super F, ? extends T> function) { 527 this.fromList = checkNotNull(fromList); 528 this.function = checkNotNull(function); 529 } 530 /** 531 * The default implementation inherited is based on iteration and removal of 532 * each element which can be overkill. That's why we forward this call 533 * directly to the backing list. 534 */ 535 @Override public void clear() { 536 fromList.clear(); 537 } 538 @Override public int size() { 539 return fromList.size(); 540 } 541 @Override public ListIterator<T> listIterator(final int index) { 542 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 543 @Override 544 T transform(F from) { 545 return function.apply(from); 546 } 547 }; 548 } 549 550 private static final long serialVersionUID = 0; 551 } 552 553 /** 554 * Implementation of a transforming random access list. We try to make as many 555 * of these methods pass-through to the source list as possible so that the 556 * performance characteristics of the source list and transformed list are 557 * similar. 558 * 559 * @see Lists#transform 560 */ 561 private static class TransformingRandomAccessList<F, T> 562 extends AbstractList<T> implements RandomAccess, Serializable { 563 final List<F> fromList; 564 final Function<? super F, ? extends T> function; 565 566 TransformingRandomAccessList( 567 List<F> fromList, Function<? super F, ? extends T> function) { 568 this.fromList = checkNotNull(fromList); 569 this.function = checkNotNull(function); 570 } 571 @Override public void clear() { 572 fromList.clear(); 573 } 574 @Override public T get(int index) { 575 return function.apply(fromList.get(index)); 576 } 577 @Override public boolean isEmpty() { 578 return fromList.isEmpty(); 579 } 580 @Override public T remove(int index) { 581 return function.apply(fromList.remove(index)); 582 } 583 @Override public int size() { 584 return fromList.size(); 585 } 586 private static final long serialVersionUID = 0; 587 } 588 589 /** 590 * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, 591 * each of the same size (the final list may be smaller). For example, 592 * partitioning a list containing {@code [a, b, c, d, e]} with a partition 593 * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing 594 * two inner lists of three and two elements, all in the original order. 595 * 596 * <p>The outer list is unmodifiable, but reflects the latest state of the 597 * source list. The inner lists are sublist views of the original list, 598 * produced on demand using {@link List#subList(int, int)}, and are subject 599 * to all the usual caveats about modification as explained in that API. 600 * 601 * @param list the list to return consecutive sublists of 602 * @param size the desired size of each sublist (the last may be 603 * smaller) 604 * @return a list of consecutive sublists 605 * @throws IllegalArgumentException if {@code partitionSize} is nonpositive 606 */ 607 public static <T> List<List<T>> partition(List<T> list, int size) { 608 checkNotNull(list); 609 checkArgument(size > 0); 610 return (list instanceof RandomAccess) 611 ? new RandomAccessPartition<T>(list, size) 612 : new Partition<T>(list, size); 613 } 614 615 private static class Partition<T> extends AbstractList<List<T>> { 616 final List<T> list; 617 final int size; 618 619 Partition(List<T> list, int size) { 620 this.list = list; 621 this.size = size; 622 } 623 624 @Override public List<T> get(int index) { 625 int listSize = size(); 626 checkElementIndex(index, listSize); 627 int start = index * size; 628 int end = Math.min(start + size, list.size()); 629 return list.subList(start, end); 630 } 631 632 @Override public int size() { 633 // TODO(user): refactor to common.math.IntMath.divide 634 int result = list.size() / size; 635 if (result * size != list.size()) { 636 result++; 637 } 638 return result; 639 } 640 641 @Override public boolean isEmpty() { 642 return list.isEmpty(); 643 } 644 } 645 646 private static class RandomAccessPartition<T> extends Partition<T> 647 implements RandomAccess { 648 RandomAccessPartition(List<T> list, int size) { 649 super(list, size); 650 } 651 } 652 653 /** 654 * Returns a view of the specified string as an immutable list of {@code 655 * Character} values. 656 * 657 * @since 7.0 658 */ 659 @Beta public static ImmutableList<Character> charactersOf(String string) { 660 return new StringAsImmutableList(checkNotNull(string)); 661 } 662 663 @SuppressWarnings("serial") // serialized using ImmutableList serialization 664 private static final class StringAsImmutableList 665 extends ImmutableList<Character> { 666 667 private final String string; 668 669 StringAsImmutableList(String string) { 670 this.string = string; 671 } 672 673 @Override public int indexOf(@Nullable Object object) { 674 return (object instanceof Character) 675 ? string.indexOf((Character) object) : -1; 676 } 677 678 @Override public int lastIndexOf(@Nullable Object object) { 679 return (object instanceof Character) 680 ? string.lastIndexOf((Character) object) : -1; 681 } 682 683 @Override public ImmutableList<Character> subList( 684 int fromIndex, int toIndex) { 685 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 686 return charactersOf(string.substring(fromIndex, toIndex)); 687 } 688 689 @Override boolean isPartialView() { 690 return false; 691 } 692 693 @Override public Character get(int index) { 694 checkElementIndex(index, size()); // for GWT 695 return string.charAt(index); 696 } 697 698 @Override public int size() { 699 return string.length(); 700 } 701 702 @Override public boolean equals(@Nullable Object obj) { 703 if (!(obj instanceof List)) { 704 return false; 705 } 706 List<?> list = (List<?>) obj; 707 int n = string.length(); 708 if (n != list.size()) { 709 return false; 710 } 711 Iterator<?> iterator = list.iterator(); 712 for (int i = 0; i < n; i++) { 713 Object elem = iterator.next(); 714 if (!(elem instanceof Character) 715 || ((Character) elem).charValue() != string.charAt(i)) { 716 return false; 717 } 718 } 719 return true; 720 } 721 722 int hash = 0; 723 724 @Override public int hashCode() { 725 int h = hash; 726 if (h == 0) { 727 h = 1; 728 for (int i = 0; i < string.length(); i++) { 729 h = h * 31 + string.charAt(i); 730 } 731 hash = h; 732 } 733 return h; 734 } 735 } 736 737 /** 738 * Returns a view of the specified {@code CharSequence} as a {@code 739 * List<Character>}, viewing {@code sequence} as a sequence of Unicode code 740 * units. The view does not support any modification operations, but reflects 741 * any changes to the underlying character sequence. 742 * 743 * @param sequence the character sequence to view as a {@code List} of 744 * characters 745 * @return an {@code List<Character>} view of the character sequence 746 * @since 7.0 747 */ 748 @Beta public static List<Character> charactersOf(CharSequence sequence) { 749 return new CharSequenceAsList(checkNotNull(sequence)); 750 } 751 752 private static final class CharSequenceAsList 753 extends AbstractList<Character> { 754 private final CharSequence sequence; 755 756 CharSequenceAsList(CharSequence sequence) { 757 this.sequence = sequence; 758 } 759 760 @Override public Character get(int index) { 761 checkElementIndex(index, size()); // for GWT 762 return sequence.charAt(index); 763 } 764 765 @Override public boolean contains(@Nullable Object o) { 766 return indexOf(o) >= 0; 767 } 768 769 @Override public int indexOf(@Nullable Object o) { 770 if (o instanceof Character) { 771 char c = (Character) o; 772 for (int i = 0; i < sequence.length(); i++) { 773 if (sequence.charAt(i) == c) { 774 return i; 775 } 776 } 777 } 778 return -1; 779 } 780 781 @Override public int lastIndexOf(@Nullable Object o) { 782 if (o instanceof Character) { 783 char c = ((Character) o).charValue(); 784 for (int i = sequence.length() - 1; i >= 0; i--) { 785 if (sequence.charAt(i) == c) { 786 return i; 787 } 788 } 789 } 790 return -1; 791 } 792 793 @Override public int size() { 794 return sequence.length(); 795 } 796 797 @Override public List<Character> subList(int fromIndex, int toIndex) { 798 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 799 return charactersOf(sequence.subSequence(fromIndex, toIndex)); 800 } 801 802 @Override public int hashCode() { 803 int hash = 1; 804 for (int i = 0; i < sequence.length(); i++) { 805 hash = hash * 31 + sequence.charAt(i); 806 } 807 return hash; 808 } 809 810 @Override public boolean equals(@Nullable Object o) { 811 if (!(o instanceof List)) { 812 return false; 813 } 814 List<?> list = (List<?>) o; 815 int n = sequence.length(); 816 if (n != list.size()) { 817 return false; 818 } 819 Iterator<?> iterator = list.iterator(); 820 for (int i = 0; i < n; i++) { 821 Object elem = iterator.next(); 822 if (!(elem instanceof Character) 823 || ((Character) elem).charValue() != sequence.charAt(i)) { 824 return false; 825 } 826 } 827 return true; 828 } 829 } 830 831 /** 832 * Returns a reversed view of the specified list. For example, {@code 833 * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 834 * 2, 1}. The returned list is backed by this list, so changes in the returned 835 * list are reflected in this list, and vice-versa. The returned list supports 836 * all of the optional list operations supported by this list. 837 * 838 * <p>The returned list is random-access if the specified list is random 839 * access. 840 * 841 * @since 7.0 842 */ 843 public static <T> List<T> reverse(List<T> list) { 844 if (list instanceof ReverseList) { 845 return ((ReverseList<T>) list).getForwardList(); 846 } else if (list instanceof RandomAccess) { 847 return new RandomAccessReverseList<T>(list); 848 } else { 849 return new ReverseList<T>(list); 850 } 851 } 852 853 private static class ReverseList<T> extends AbstractList<T> { 854 private final List<T> forwardList; 855 856 ReverseList(List<T> forwardList) { 857 this.forwardList = checkNotNull(forwardList); 858 } 859 860 List<T> getForwardList() { 861 return forwardList; 862 } 863 864 private int reverseIndex(int index) { 865 int size = size(); 866 checkElementIndex(index, size); 867 return (size - 1) - index; 868 } 869 870 private int reversePosition(int index) { 871 int size = size(); 872 checkPositionIndex(index, size); 873 return size - index; 874 } 875 876 @Override public void add(int index, @Nullable T element) { 877 forwardList.add(reversePosition(index), element); 878 } 879 880 @Override public void clear() { 881 forwardList.clear(); 882 } 883 884 @Override public T remove(int index) { 885 return forwardList.remove(reverseIndex(index)); 886 } 887 888 @Override protected void removeRange(int fromIndex, int toIndex) { 889 subList(fromIndex, toIndex).clear(); 890 } 891 892 @Override public T set(int index, @Nullable T element) { 893 return forwardList.set(reverseIndex(index), element); 894 } 895 896 @Override public T get(int index) { 897 return forwardList.get(reverseIndex(index)); 898 } 899 900 @Override public boolean isEmpty() { 901 return forwardList.isEmpty(); 902 } 903 904 @Override public int size() { 905 return forwardList.size(); 906 } 907 908 @Override public boolean contains(@Nullable Object o) { 909 return forwardList.contains(o); 910 } 911 912 @Override public boolean containsAll(Collection<?> c) { 913 return forwardList.containsAll(c); 914 } 915 916 @Override public List<T> subList(int fromIndex, int toIndex) { 917 checkPositionIndexes(fromIndex, toIndex, size()); 918 return reverse(forwardList.subList( 919 reversePosition(toIndex), reversePosition(fromIndex))); 920 } 921 922 @Override public int indexOf(@Nullable Object o) { 923 int index = forwardList.lastIndexOf(o); 924 return (index >= 0) ? reverseIndex(index) : -1; 925 } 926 927 @Override public int lastIndexOf(@Nullable Object o) { 928 int index = forwardList.indexOf(o); 929 return (index >= 0) ? reverseIndex(index) : -1; 930 } 931 932 @Override public Iterator<T> iterator() { 933 return listIterator(); 934 } 935 936 @Override public ListIterator<T> listIterator(int index) { 937 int start = reversePosition(index); 938 final ListIterator<T> forwardIterator = forwardList.listIterator(start); 939 return new ListIterator<T>() { 940 941 boolean canRemove; 942 boolean canSet; 943 944 @Override public void add(T e) { 945 forwardIterator.add(e); 946 forwardIterator.previous(); 947 canSet = canRemove = false; 948 } 949 950 @Override public boolean hasNext() { 951 return forwardIterator.hasPrevious(); 952 } 953 954 @Override public boolean hasPrevious() { 955 return forwardIterator.hasNext(); 956 } 957 958 @Override public T next() { 959 if (!hasNext()) { 960 throw new NoSuchElementException(); 961 } 962 canSet = canRemove = true; 963 return forwardIterator.previous(); 964 } 965 966 @Override public int nextIndex() { 967 return reversePosition(forwardIterator.nextIndex()); 968 } 969 970 @Override public T previous() { 971 if (!hasPrevious()) { 972 throw new NoSuchElementException(); 973 } 974 canSet = canRemove = true; 975 return forwardIterator.next(); 976 } 977 978 @Override public int previousIndex() { 979 return nextIndex() - 1; 980 } 981 982 @Override public void remove() { 983 checkState(canRemove); 984 forwardIterator.remove(); 985 canRemove = canSet = false; 986 } 987 988 @Override public void set(T e) { 989 checkState(canSet); 990 forwardIterator.set(e); 991 } 992 }; 993 } 994 } 995 996 private static class RandomAccessReverseList<T> extends ReverseList<T> 997 implements RandomAccess { 998 RandomAccessReverseList(List<T> forwardList) { 999 super(forwardList); 1000 } 1001 } 1002 1003 /** 1004 * An implementation of {@link List#hashCode()}. 1005 */ 1006 static int hashCodeImpl(List<?> list) { 1007 int hashCode = 1; 1008 for (Object o : list) { 1009 hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); 1010 1011 hashCode = ~~hashCode; 1012 // needed to deal with GWT integer overflow 1013 } 1014 return hashCode; 1015 } 1016 1017 /** 1018 * An implementation of {@link List#equals(Object)}. 1019 */ 1020 static boolean equalsImpl(List<?> list, @Nullable Object object) { 1021 if (object == checkNotNull(list)) { 1022 return true; 1023 } 1024 if (!(object instanceof List)) { 1025 return false; 1026 } 1027 1028 List<?> o = (List<?>) object; 1029 1030 return list.size() == o.size() 1031 && Iterators.elementsEqual(list.iterator(), o.iterator()); 1032 } 1033 1034 /** 1035 * An implementation of {@link List#addAll(int, Collection)}. 1036 */ 1037 static <E> boolean addAllImpl( 1038 List<E> list, int index, Iterable<? extends E> elements) { 1039 boolean changed = false; 1040 ListIterator<E> listIterator = list.listIterator(index); 1041 for (E e : elements) { 1042 listIterator.add(e); 1043 changed = true; 1044 } 1045 return changed; 1046 } 1047 1048 /** 1049 * An implementation of {@link List#indexOf(Object)}. 1050 */ 1051 static int indexOfImpl(List<?> list, @Nullable Object element){ 1052 ListIterator<?> listIterator = list.listIterator(); 1053 while (listIterator.hasNext()) { 1054 if (Objects.equal(element, listIterator.next())) { 1055 return listIterator.previousIndex(); 1056 } 1057 } 1058 return -1; 1059 } 1060 1061 /** 1062 * An implementation of {@link List#lastIndexOf(Object)}. 1063 */ 1064 static int lastIndexOfImpl(List<?> list, @Nullable Object element){ 1065 ListIterator<?> listIterator = list.listIterator(list.size()); 1066 while (listIterator.hasPrevious()) { 1067 if (Objects.equal(element, listIterator.previous())) { 1068 return listIterator.nextIndex(); 1069 } 1070 } 1071 return -1; 1072 } 1073 1074 /** 1075 * Returns an implementation of {@link List#listIterator(int)}. 1076 */ 1077 static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) { 1078 return new AbstractListWrapper<E>(list).listIterator(index); 1079 } 1080 1081 /** 1082 * An implementation of {@link List#subList(int, int)}. 1083 */ 1084 static <E> List<E> subListImpl( 1085 final List<E> list, int fromIndex, int toIndex) { 1086 List<E> wrapper; 1087 if (list instanceof RandomAccess) { 1088 wrapper = new RandomAccessListWrapper<E>(list) { 1089 @Override public ListIterator<E> listIterator(int index) { 1090 return backingList.listIterator(index); 1091 } 1092 1093 private static final long serialVersionUID = 0; 1094 }; 1095 } else { 1096 wrapper = new AbstractListWrapper<E>(list) { 1097 @Override public ListIterator<E> listIterator(int index) { 1098 return backingList.listIterator(index); 1099 } 1100 1101 private static final long serialVersionUID = 0; 1102 }; 1103 } 1104 return wrapper.subList(fromIndex, toIndex); 1105 } 1106 1107 private static class AbstractListWrapper<E> extends AbstractList<E> { 1108 final List<E> backingList; 1109 1110 AbstractListWrapper(List<E> backingList) { 1111 this.backingList = checkNotNull(backingList); 1112 } 1113 1114 @Override public void add(int index, E element) { 1115 backingList.add(index, element); 1116 } 1117 1118 @Override public boolean addAll(int index, Collection<? extends E> c) { 1119 return backingList.addAll(index, c); 1120 } 1121 1122 @Override public E get(int index) { 1123 return backingList.get(index); 1124 } 1125 1126 @Override public E remove(int index) { 1127 return backingList.remove(index); 1128 } 1129 1130 @Override public E set(int index, E element) { 1131 return backingList.set(index, element); 1132 } 1133 1134 @Override public boolean contains(Object o) { 1135 return backingList.contains(o); 1136 } 1137 1138 @Override public int size() { 1139 return backingList.size(); 1140 } 1141 } 1142 1143 private static class RandomAccessListWrapper<E> 1144 extends AbstractListWrapper<E> implements RandomAccess { 1145 RandomAccessListWrapper(List<E> backingList) { 1146 super(backingList); 1147 } 1148 } 1149 1150 /** 1151 * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 1152 */ 1153 static <T> List<T> cast(Iterable<T> iterable) { 1154 return (List<T>) iterable; 1155 } 1156}