001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.cache; 018 019import static com.google.common.base.Objects.firstNonNull; 020import static com.google.common.base.Preconditions.checkArgument; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkState; 023 024import com.google.common.annotations.Beta; 025import com.google.common.annotations.GwtCompatible; 026import com.google.common.annotations.GwtIncompatible; 027import com.google.common.base.Ascii; 028import com.google.common.base.Equivalence; 029import com.google.common.base.Objects; 030import com.google.common.base.Supplier; 031import com.google.common.base.Suppliers; 032import com.google.common.base.Ticker; 033import com.google.common.cache.AbstractCache.SimpleStatsCounter; 034import com.google.common.cache.AbstractCache.StatsCounter; 035import com.google.common.cache.LocalCache.Strength; 036 037import java.lang.ref.SoftReference; 038import java.lang.ref.WeakReference; 039import java.util.ConcurrentModificationException; 040import java.util.concurrent.ConcurrentHashMap; 041import java.util.concurrent.TimeUnit; 042import java.util.logging.Level; 043import java.util.logging.Logger; 044 045import javax.annotation.CheckReturnValue; 046 047/** 048 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 049 * following features: 050 * 051 * <ul> 052 * <li>automatic loading of entries into the cache 053 * <li>least-recently-used eviction when a maximum size is exceeded 054 * <li>time-based expiration of entries, measured since last access or last write 055 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references 056 * <li>values automatically wrapped in {@linkplain WeakReference weak} or 057 * {@linkplain SoftReference soft} references 058 * <li>notification of evicted (or otherwise removed) entries 059 * <li>accumulation of cache access statistics 060 * </ul> 061 * 062 * These features are all optional; caches can be created using all or none of them. By default 063 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 064 * 065 * <p>Usage example: <pre> {@code 066 * 067 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 068 * .maximumSize(10000) 069 * .expireAfterWrite(10, TimeUnit.MINUTES) 070 * .removalListener(MY_LISTENER) 071 * .build( 072 * new CacheLoader<Key, Graph>() { 073 * public Graph load(Key key) throws AnyException { 074 * return createExpensiveGraph(key); 075 * } 076 * });}</pre> 077 * 078 * Or equivalently, <pre> {@code 079 * 080 * // In real life this would come from a command-line flag or config file 081 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 082 * 083 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 084 * .removalListener(MY_LISTENER) 085 * .build( 086 * new CacheLoader<Key, Graph>() { 087 * public Graph load(Key key) throws AnyException { 088 * return createExpensiveGraph(key); 089 * } 090 * });}</pre> 091 * 092 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 093 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 094 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 095 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 096 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 097 * are reflected in that iterator. These iterators never throw {@link 098 * ConcurrentModificationException}. 099 * 100 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the 101 * {@link Object#equals equals} method) to determine equality for keys or values. However, if 102 * {@link #weakKeys} was specified, the cache uses identity ({@code ==}) 103 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was 104 * specified, the cache uses identity comparisons for values. 105 * 106 * <p>Entries are automatically evicted from the cache when any of 107 * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, 108 * {@linkplain #expireAfterWrite expireAfterWrite}, 109 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 110 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested. 111 * 112 * <p>If {@linkplain #maximumSize(long) maximumSize} or 113 * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache 114 * modification. 115 * 116 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or 117 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each 118 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired 119 * entries may be counted in {@link Cache#size}, but will never be visible to read or write 120 * operations. 121 * 122 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or 123 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in 124 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be 125 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to 126 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be 127 * visible to read or write operations. 128 * 129 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 130 * will be performed during write operations, or during occasional read operations in the absense of 131 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 132 * calling it should not be necessary with a high throughput cache. Only caches built with 133 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 134 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 135 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic 136 * maintenance. 137 * 138 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 139 * retain all the configuration properties of the original cache. Note that the serialized form does 140 * <i>not</i> include cache contents, but only configuration. 141 * 142 * <p>See the Guava User Guide article on <a href= 143 * "http://code.google.com/p/guava-libraries/wiki/CachesExplained">caching</a> for a higher-level 144 * explanation. 145 * 146 * @param <K> the base key type for all caches created by this builder 147 * @param <V> the base value type for all caches created by this builder 148 * @author Charles Fry 149 * @author Kevin Bourrillion 150 * @since 10.0 151 */ 152@GwtCompatible(emulated = true) 153public final class CacheBuilder<K, V> { 154 private static final int DEFAULT_INITIAL_CAPACITY = 16; 155 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 156 private static final int DEFAULT_EXPIRATION_NANOS = 0; 157 private static final int DEFAULT_REFRESH_NANOS = 0; 158 159 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance( 160 new StatsCounter() { 161 @Override 162 public void recordHits(int count) {} 163 164 @Override 165 public void recordMisses(int count) {} 166 167 @Override 168 public void recordLoadSuccess(long loadTime) {} 169 170 @Override 171 public void recordLoadException(long loadTime) {} 172 173 @Override 174 public void recordEviction() {} 175 176 @Override 177 public CacheStats snapshot() { 178 return EMPTY_STATS; 179 } 180 }); 181 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 182 183 static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 184 new Supplier<StatsCounter>() { 185 @Override 186 public StatsCounter get() { 187 return new SimpleStatsCounter(); 188 } 189 }; 190 191 enum NullListener implements RemovalListener<Object, Object> { 192 INSTANCE; 193 194 @Override 195 public void onRemoval(RemovalNotification<Object, Object> notification) {} 196 } 197 198 enum OneWeigher implements Weigher<Object, Object> { 199 INSTANCE; 200 201 @Override 202 public int weigh(Object key, Object value) { 203 return 1; 204 } 205 } 206 207 static final Ticker NULL_TICKER = new Ticker() { 208 @Override 209 public long read() { 210 return 0; 211 } 212 }; 213 214 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 215 216 static final int UNSET_INT = -1; 217 218 boolean strictParsing = true; 219 220 int initialCapacity = UNSET_INT; 221 int concurrencyLevel = UNSET_INT; 222 long maximumSize = UNSET_INT; 223 long maximumWeight = UNSET_INT; 224 Weigher<? super K, ? super V> weigher; 225 226 Strength keyStrength; 227 Strength valueStrength; 228 229 long expireAfterWriteNanos = UNSET_INT; 230 long expireAfterAccessNanos = UNSET_INT; 231 long refreshNanos = UNSET_INT; 232 233 Equivalence<Object> keyEquivalence; 234 Equivalence<Object> valueEquivalence; 235 236 RemovalListener<? super K, ? super V> removalListener; 237 Ticker ticker; 238 239 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 240 241 // TODO(fry): make constructor private and update tests to use newBuilder 242 CacheBuilder() {} 243 244 /** 245 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 246 * strong values, and no automatic eviction of any kind. 247 */ 248 public static CacheBuilder<Object, Object> newBuilder() { 249 return new CacheBuilder<Object, Object>(); 250 } 251 252 /** 253 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 254 * 255 * @since 12.0 256 */ 257 @Beta 258 @GwtIncompatible("To be supported") 259 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 260 return spec.toCacheBuilder() 261 .lenientParsing(); 262 } 263 264 /** 265 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 266 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 267 * 268 * @param spec a String in the format specified by {@link CacheBuilderSpec} 269 * @since 12.0 270 */ 271 @Beta 272 @GwtIncompatible("To be supported") 273 public static CacheBuilder<Object, Object> from(String spec) { 274 return from(CacheBuilderSpec.parse(spec)); 275 } 276 277 /** 278 * Enables lenient parsing. Useful for tests and spec parsing. 279 */ 280 @GwtIncompatible("To be supported") 281 CacheBuilder<K, V> lenientParsing() { 282 strictParsing = false; 283 return this; 284 } 285 286 /** 287 * Sets a custom {@code Equivalence} strategy for comparing keys. 288 * 289 * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 290 * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 291 */ 292 @GwtIncompatible("To be supported") 293 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 294 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 295 keyEquivalence = checkNotNull(equivalence); 296 return this; 297 } 298 299 Equivalence<Object> getKeyEquivalence() { 300 return firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 301 } 302 303 /** 304 * Sets a custom {@code Equivalence} strategy for comparing values. 305 * 306 * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 307 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 308 * otherwise. 309 */ 310 @GwtIncompatible("To be supported") 311 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 312 checkState(valueEquivalence == null, 313 "value equivalence was already set to %s", valueEquivalence); 314 this.valueEquivalence = checkNotNull(equivalence); 315 return this; 316 } 317 318 Equivalence<Object> getValueEquivalence() { 319 return firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 320 } 321 322 /** 323 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 324 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 325 * having a hash table of size eight. Providing a large enough estimate at construction time 326 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 327 * high wastes memory. 328 * 329 * @throws IllegalArgumentException if {@code initialCapacity} is negative 330 * @throws IllegalStateException if an initial capacity was already set 331 */ 332 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 333 checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s", 334 this.initialCapacity); 335 checkArgument(initialCapacity >= 0); 336 this.initialCapacity = initialCapacity; 337 return this; 338 } 339 340 int getInitialCapacity() { 341 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 342 } 343 344 /** 345 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 346 * table is internally partitioned to try to permit the indicated number of concurrent updates 347 * without contention. Because assignment of entries to these partitions is not necessarily 348 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 349 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 350 * higher value than you need can waste space and time, and a significantly lower value can lead 351 * to thread contention. But overestimates and underestimates within an order of magnitude do not 352 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 353 * at a time, but since read operations and cache loading computations can proceed concurrently, 354 * this still yields higher concurrency than full synchronization. 355 * 356 * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 357 * value, you should always choose it explicitly. 358 * 359 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 360 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 361 * write, and twice for each cache loading computation (once prior to loading the new value, 362 * and once after loading completes). Much internal cache management is performed at the segment 363 * granularity. For example, access queues and write queues are kept per segment when they are 364 * required by the selected eviction algorithm. As such, when writing unit tests it is not 365 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 366 * behavior. 367 * 368 * <p>Note that future implementations may abandon segment locking in favor of more advanced 369 * concurrency controls. 370 * 371 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 372 * @throws IllegalStateException if a concurrency level was already set 373 */ 374 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 375 checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s", 376 this.concurrencyLevel); 377 checkArgument(concurrencyLevel > 0); 378 this.concurrencyLevel = concurrencyLevel; 379 return this; 380 } 381 382 int getConcurrencyLevel() { 383 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 384 } 385 386 /** 387 * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict 388 * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the 389 * cache evicts entries that are less likely to be used again. For example, the cache may evict an 390 * entry because it hasn't been used recently or very often. 391 * 392 * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the 393 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 394 * 395 * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 396 * 397 * @param size the maximum size of the cache 398 * @throws IllegalArgumentException if {@code size} is negative 399 * @throws IllegalStateException if a maximum size or weight was already set 400 */ 401 public CacheBuilder<K, V> maximumSize(long size) { 402 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 403 this.maximumSize); 404 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 405 this.maximumWeight); 406 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 407 checkArgument(size >= 0, "maximum size must not be negative"); 408 this.maximumSize = size; 409 return this; 410 } 411 412 /** 413 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 414 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 415 * corresponding call to {@link #weigher} prior to calling {@link #build}. 416 * 417 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache 418 * size grows close to the maximum, the cache evicts entries that are less likely to be used 419 * again. For example, the cache may evict an entry because it hasn't been used recently or very 420 * often. 421 * 422 * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into 423 * cache. This can be useful in testing, or to disable caching temporarily without a code 424 * change. 425 * 426 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 427 * effect on selecting which entry should be evicted next. 428 * 429 * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 430 * 431 * @param weight the maximum total weight of entries the cache may contain 432 * @throws IllegalArgumentException if {@code weight} is negative 433 * @throws IllegalStateException if a maximum weight or size was already set 434 * @since 11.0 435 */ 436 @GwtIncompatible("To be supported") 437 public CacheBuilder<K, V> maximumWeight(long weight) { 438 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 439 this.maximumWeight); 440 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 441 this.maximumSize); 442 this.maximumWeight = weight; 443 checkArgument(weight >= 0, "maximum weight must not be negative"); 444 return this; 445 } 446 447 /** 448 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken 449 * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and 450 * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to 451 * calling {@link #build}. Weights are measured and recorded when entries are inserted into the 452 * cache, and are thus effectively static during the lifetime of a cache entry. 453 * 454 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 455 * (though it still may be evicted by other means). 456 * 457 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 458 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 459 * original reference or the returned reference may be used to complete configuration and build 460 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 461 * building caches whose key or value types are incompatible with the types accepted by the 462 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 463 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 464 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 465 * 466 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 467 * a cache whose key or value type is incompatible with the weigher, you will likely experience 468 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 469 * 470 * @param weigher the weigher to use in calculating the weight of cache entries 471 * @throws IllegalArgumentException if {@code size} is negative 472 * @throws IllegalStateException if a maximum size was already set 473 * @since 11.0 474 */ 475 @GwtIncompatible("To be supported") 476 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 477 Weigher<? super K1, ? super V1> weigher) { 478 checkState(this.weigher == null); 479 if (strictParsing) { 480 checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size", 481 this.maximumSize); 482 } 483 484 // safely limiting the kinds of caches this can produce 485 @SuppressWarnings("unchecked") 486 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 487 me.weigher = checkNotNull(weigher); 488 return me; 489 } 490 491 long getMaximumWeight() { 492 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 493 return 0; 494 } 495 return (weigher == null) ? maximumSize : maximumWeight; 496 } 497 498 // Make a safe contravariant cast now so we don't have to do it over and over. 499 @SuppressWarnings("unchecked") 500 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 501 return (Weigher<K1, V1>) Objects.firstNonNull(weigher, OneWeigher.INSTANCE); 502 } 503 504 /** 505 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 506 * WeakReference} (by default, strong references are used). 507 * 508 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 509 * comparison to determine equality of keys. 510 * 511 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, 512 * but will never be visible to read or write operations; such entries are cleaned up as part of 513 * the routine maintenance described in the class javadoc. 514 * 515 * @throws IllegalStateException if the key strength was already set 516 */ 517 @GwtIncompatible("java.lang.ref.WeakReference") 518 public CacheBuilder<K, V> weakKeys() { 519 return setKeyStrength(Strength.WEAK); 520 } 521 522 CacheBuilder<K, V> setKeyStrength(Strength strength) { 523 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 524 keyStrength = checkNotNull(strength); 525 return this; 526 } 527 528 Strength getKeyStrength() { 529 return firstNonNull(keyStrength, Strength.STRONG); 530 } 531 532 /** 533 * Specifies that each value (not key) stored in the cache should be wrapped in a 534 * {@link WeakReference} (by default, strong references are used). 535 * 536 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 537 * candidate for caching; consider {@link #softValues} instead. 538 * 539 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 540 * comparison to determine equality of values. 541 * 542 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 543 * but will never be visible to read or write operations; such entries are cleaned up as part of 544 * the routine maintenance described in the class javadoc. 545 * 546 * @throws IllegalStateException if the value strength was already set 547 */ 548 @GwtIncompatible("java.lang.ref.WeakReference") 549 public CacheBuilder<K, V> weakValues() { 550 return setValueStrength(Strength.WEAK); 551 } 552 553 /** 554 * Specifies that each value (not key) stored in the cache should be wrapped in a 555 * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will 556 * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 557 * demand. 558 * 559 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 560 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 561 * method if you are well familiar with the practical consequences of soft references. 562 * 563 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 564 * comparison to determine equality of values. 565 * 566 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 567 * but will never be visible to read or write operations; such entries are cleaned up as part of 568 * the routine maintenance described in the class javadoc. 569 * 570 * @throws IllegalStateException if the value strength was already set 571 */ 572 @GwtIncompatible("java.lang.ref.SoftReference") 573 public CacheBuilder<K, V> softValues() { 574 return setValueStrength(Strength.SOFT); 575 } 576 577 CacheBuilder<K, V> setValueStrength(Strength strength) { 578 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 579 valueStrength = checkNotNull(strength); 580 return this; 581 } 582 583 Strength getValueStrength() { 584 return firstNonNull(valueStrength, Strength.STRONG); 585 } 586 587 /** 588 * Specifies that each entry should be automatically removed from the cache once a fixed duration 589 * has elapsed after the entry's creation, or the most recent replacement of its value. 590 * 591 * <p>When {@code duration} is zero, this method hands off to 592 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 593 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 594 * change. 595 * 596 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 597 * write operations. Expired entries are cleaned up as part of the routine maintenance described 598 * in the class javadoc. 599 * 600 * @param duration the length of time after an entry is created that it should be automatically 601 * removed 602 * @param unit the unit that {@code duration} is expressed in 603 * @throws IllegalArgumentException if {@code duration} is negative 604 * @throws IllegalStateException if the time to live or time to idle was already set 605 */ 606 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 607 checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns", 608 expireAfterWriteNanos); 609 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 610 this.expireAfterWriteNanos = unit.toNanos(duration); 611 return this; 612 } 613 614 long getExpireAfterWriteNanos() { 615 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 616 } 617 618 /** 619 * Specifies that each entry should be automatically removed from the cache once a fixed duration 620 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 621 * access. Access time is reset by all cache read and write operations (including 622 * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations 623 * on the collection-views of {@link Cache#asMap}. 624 * 625 * <p>When {@code duration} is zero, this method hands off to 626 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 627 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 628 * change. 629 * 630 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 631 * write operations. Expired entries are cleaned up as part of the routine maintenance described 632 * in the class javadoc. 633 * 634 * @param duration the length of time after an entry is last accessed that it should be 635 * automatically removed 636 * @param unit the unit that {@code duration} is expressed in 637 * @throws IllegalArgumentException if {@code duration} is negative 638 * @throws IllegalStateException if the time to idle or time to live was already set 639 */ 640 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 641 checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns", 642 expireAfterAccessNanos); 643 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 644 this.expireAfterAccessNanos = unit.toNanos(duration); 645 return this; 646 } 647 648 long getExpireAfterAccessNanos() { 649 return (expireAfterAccessNanos == UNSET_INT) 650 ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos; 651 } 652 653 /** 654 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 655 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 656 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling 657 * {@link CacheLoader#reload}. 658 * 659 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 660 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 661 * implementation; otherwise refreshes will be performed during unrelated cache read and write 662 * operations. 663 * 664 * <p>Currently automatic refreshes are performed when the first stale request for an entry 665 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 666 * and immediately return the new value if the returned future is complete, and the old value 667 * otherwise. 668 * 669 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 670 * 671 * @param duration the length of time after an entry is created that it should be considered 672 * stale, and thus eligible for refresh 673 * @param unit the unit that {@code duration} is expressed in 674 * @throws IllegalArgumentException if {@code duration} is negative 675 * @throws IllegalStateException if the refresh interval was already set 676 * @since 11.0 677 */ 678 @Beta 679 @GwtIncompatible("To be supported (synchronously).") 680 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 681 checkNotNull(unit); 682 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 683 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 684 this.refreshNanos = unit.toNanos(duration); 685 return this; 686 } 687 688 long getRefreshNanos() { 689 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 690 } 691 692 /** 693 * Specifies a nanosecond-precision time source for use in determining when entries should be 694 * expired. By default, {@link System#nanoTime} is used. 695 * 696 * <p>The primary intent of this method is to facilitate testing of caches which have been 697 * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}. 698 * 699 * @throws IllegalStateException if a ticker was already set 700 */ 701 public CacheBuilder<K, V> ticker(Ticker ticker) { 702 checkState(this.ticker == null); 703 this.ticker = checkNotNull(ticker); 704 return this; 705 } 706 707 Ticker getTicker(boolean recordsTime) { 708 if (ticker != null) { 709 return ticker; 710 } 711 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 712 } 713 714 /** 715 * Specifies a listener instance that caches should notify each time an entry is removed for any 716 * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener 717 * as part of the routine maintenance described in the class documentation above. 718 * 719 * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache 720 * builder reference; instead use the reference this method <i>returns</i>. At runtime, these 721 * point to the same instance, but only the returned reference has the correct generic type 722 * information so as to ensure type safety. For best results, use the standard method-chaining 723 * idiom illustrated in the class documentation above, configuring a builder and building your 724 * cache in a single statement. Failure to heed this advice can result in a {@link 725 * ClassCastException} being thrown by a cache operation at some <i>undefined</i> point in the 726 * future. 727 * 728 * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to 729 * the {@code Cache} user, only logged via a {@link Logger}. 730 * 731 * @return the cache builder reference that should be used instead of {@code this} for any 732 * remaining configuration and cache building 733 * @throws IllegalStateException if a removal listener was already set 734 */ 735 @CheckReturnValue 736 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 737 RemovalListener<? super K1, ? super V1> listener) { 738 checkState(this.removalListener == null); 739 740 // safely limiting the kinds of caches this can produce 741 @SuppressWarnings("unchecked") 742 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 743 me.removalListener = checkNotNull(listener); 744 return me; 745 } 746 747 // Make a safe contravariant cast now so we don't have to do it over and over. 748 @SuppressWarnings("unchecked") 749 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 750 return (RemovalListener<K1, V1>) Objects.firstNonNull(removalListener, NullListener.INSTANCE); 751 } 752 753 /** 754 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 755 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 756 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 757 * cache operation. 758 * 759 * @since 12.0 (previously, stats collection was automatic) 760 */ 761 public CacheBuilder<K, V> recordStats() { 762 statsCounterSupplier = CACHE_STATS_COUNTER; 763 return this; 764 } 765 766 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 767 return statsCounterSupplier; 768 } 769 770 /** 771 * Builds a cache, which either returns an already-loaded value for a given key or atomically 772 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 773 * loading the value for this key, simply waits for that thread to finish and returns its 774 * loaded value. Note that multiple threads can concurrently load values for distinct keys. 775 * 776 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 777 * invoked again to create multiple independent caches. 778 * 779 * @param loader the cache loader used to obtain new values 780 * @return a cache having the requested features 781 */ 782 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 783 CacheLoader<? super K1, V1> loader) { 784 checkWeightWithWeigher(); 785 return new LocalCache.LocalLoadingCache<K1, V1>(this, loader); 786 } 787 788 /** 789 * Builds a cache which does not automatically load values when keys are requested. 790 * 791 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a 792 * {@code CacheLoader}. 793 * 794 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 795 * invoked again to create multiple independent caches. 796 * 797 * @return a cache having the requested features 798 * @since 11.0 799 */ 800 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 801 checkWeightWithWeigher(); 802 checkNonLoadingCache(); 803 return new LocalCache.LocalManualCache<K1, V1>(this); 804 } 805 806 private void checkNonLoadingCache() { 807 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 808 } 809 810 private void checkWeightWithWeigher() { 811 if (weigher == null) { 812 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 813 } else { 814 if (strictParsing) { 815 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 816 } else { 817 if (maximumWeight == UNSET_INT) { 818 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 819 } 820 } 821 } 822 } 823 824 /** 825 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 826 * string is not specified. 827 */ 828 @Override 829 public String toString() { 830 Objects.ToStringHelper s = Objects.toStringHelper(this); 831 if (initialCapacity != UNSET_INT) { 832 s.add("initialCapacity", initialCapacity); 833 } 834 if (concurrencyLevel != UNSET_INT) { 835 s.add("concurrencyLevel", concurrencyLevel); 836 } 837 if (maximumSize != UNSET_INT) { 838 s.add("maximumSize", maximumSize); 839 } 840 if (maximumWeight != UNSET_INT) { 841 s.add("maximumWeight", maximumWeight); 842 } 843 if (expireAfterWriteNanos != UNSET_INT) { 844 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 845 } 846 if (expireAfterAccessNanos != UNSET_INT) { 847 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 848 } 849 if (keyStrength != null) { 850 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 851 } 852 if (valueStrength != null) { 853 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 854 } 855 if (keyEquivalence != null) { 856 s.addValue("keyEquivalence"); 857 } 858 if (valueEquivalence != null) { 859 s.addValue("valueEquivalence"); 860 } 861 if (removalListener != null) { 862 s.addValue("removalListener"); 863 } 864 return s.toString(); 865 } 866}