001 /* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.util.concurrent; 018 019 import com.google.common.annotations.Beta; 020 import com.google.common.base.Functions; 021 import com.google.common.base.Preconditions; 022 import com.google.common.base.Supplier; 023 import com.google.common.collect.Iterables; 024 import com.google.common.collect.MapMaker; 025 import com.google.common.math.IntMath; 026 import com.google.common.primitives.Ints; 027 028 import java.math.RoundingMode; 029 import java.util.Arrays; 030 import java.util.Collections; 031 import java.util.List; 032 import java.util.concurrent.ConcurrentMap; 033 import java.util.concurrent.Semaphore; 034 import java.util.concurrent.locks.Lock; 035 import java.util.concurrent.locks.ReadWriteLock; 036 import java.util.concurrent.locks.ReentrantLock; 037 import java.util.concurrent.locks.ReentrantReadWriteLock; 038 039 /** 040 * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping 041 * similar to that of {@code ConcurrentHashMap} in a reusable form, and extends it for 042 * semaphores and read-write locks. Conceptually, lock striping is the technique of dividing a lock 043 * into many <i>stripes</i>, increasing the granularity of a single lock and allowing independent 044 * operations to lock different stripes and proceed concurrently, instead of creating contention 045 * for a single lock. 046 * 047 * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore), 048 * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)} 049 * (assuming {@link Object#hashCode()} is correctly implemented for the keys). Note 050 * that if {@code key1} is <strong>not</strong> equal to {@code key2}, it is <strong>not</strong> 051 * guaranteed that {@code striped.get(key1) != striped.get(key2)}; the elements might nevertheless 052 * be mapped to the same lock. The lower the number of stripes, the higher the probability of this 053 * happening. 054 * 055 * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>}, 056 * and {@code Striped<ReadWriteLock>}. For each type, two implementations are offered: 057 * {@linkplain #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak} 058 * {@code Striped<Lock>}, {@linkplain #semaphore(int, int) strong} and {@linkplain 059 * #lazyWeakSemaphore(int, int) weak} {@code Striped<Semaphore>}, and {@linkplain 060 * #readWriteLock(int) strong} and {@linkplain #lazyWeakReadWriteLock(int) weak} 061 * {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all stripes (locks/semaphores) are 062 * initialized eagerly, and are not reclaimed unless {@code Striped} itself is reclaimable. 063 * <i>Weak</i> means that locks/semaphores are created lazily, and they are allowed to be reclaimed 064 * if nobody is holding on to them. This is useful, for example, if one wants to create a {@code 065 * Striped<Lock>} of many locks, but worries that in most cases only a small portion of these 066 * would be in use. 067 * 068 * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K} 069 * represents the task. This maximizes concurrency by having each unique key mapped to a unique 070 * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock 071 * for all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of 072 * choosing either of these extremes, {@code Striped} allows the user to trade between required 073 * concurrency and memory footprint. For example, if a set of tasks are CPU-bound, one could easily 074 * create a very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes, 075 * instead of possibly thousands of locks which could be created in a {@code Map<K, Lock>} 076 * structure. 077 * 078 * @author Dimitris Andreou 079 * @since 13.0 080 */ 081 @Beta 082 public abstract class Striped<L> { 083 private Striped() {} 084 085 /** 086 * Returns the stripe that corresponds to the passed key. It is always guaranteed that if 087 * {@code key1.equals(key2)}, then {@code get(key1) == get(key2)}. 088 * 089 * @param key an arbitrary, non-null key 090 * @return the stripe that the passed key corresponds to 091 */ 092 public abstract L get(Object key); 093 094 /** 095 * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to 096 * {@code size()}, exclusively. 097 * 098 * @param index the index of the stripe to return; must be in {@code [0...size())} 099 * @return the stripe at the specified index 100 */ 101 public abstract L getAt(int index); 102 103 /** 104 * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key). 105 */ 106 abstract int indexFor(Object key); 107 108 /** 109 * Returns the total number of stripes in this instance. 110 */ 111 public abstract int size(); 112 113 /** 114 * Returns the stripes that correspond to the passed objects, in ascending (as per 115 * {@link #getAt(int)}) order. Thus, threads that use the stripes in the order returned 116 * by this method are guaranteed to not deadlock each other. 117 * 118 * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and 119 * {@code bulkGet(keys)} with a relative large number of keys can cause an excessive number 120 * of shared stripes (much like the birthday paradox, where much fewer than anticipated birthdays 121 * are needed for a pair of them to match). Please consider carefully the implications of the 122 * number of stripes, the intended concurrency level, and the typical number of keys used in a 123 * {@code bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls 124 * in Bins model</a> for mathematical formulas that can be used to estimate the probability of 125 * collisions. 126 * 127 * @param keys arbitrary non-null keys 128 * @return the stripes corresponding to the objects (one per each object, derived by delegating 129 * to {@link #get(Object)}; may contain duplicates), in an increasing index order. 130 */ 131 public Iterable<L> bulkGet(Iterable<?> keys) { 132 // Initially using the array to store the keys, then reusing it to store the respective L's 133 final Object[] array = Iterables.toArray(keys, Object.class); 134 int[] stripes = new int[array.length]; 135 for (int i = 0; i < array.length; i++) { 136 stripes[i] = indexFor(array[i]); 137 } 138 Arrays.sort(stripes); 139 for (int i = 0; i < array.length; i++) { 140 array[i] = getAt(stripes[i]); 141 } 142 /* 143 * Note that the returned Iterable holds references to the returned stripes, to avoid 144 * error-prone code like: 145 * 146 * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)' 147 * Iterable<Lock> locks = stripedLock.bulkGet(keys); 148 * for (Lock lock : locks) { 149 * lock.lock(); 150 * } 151 * operation(); 152 * for (Lock lock : locks) { 153 * lock.unlock(); 154 * } 155 * 156 * If we only held the int[] stripes, translating it on the fly to L's, the original locks 157 * might be garbage collected after locking them, ending up in a huge mess. 158 */ 159 @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's 160 List<L> asList = (List<L>) Arrays.asList(array); 161 return Collections.unmodifiableList(asList); 162 } 163 164 // Static factories 165 166 /** 167 * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks, with the 168 * specified fairness. Every lock is reentrant. 169 * 170 * @param stripes the minimum number of stripes (locks) required 171 * @return a new {@code Striped<Lock>} 172 */ 173 public static Striped<Lock> lock(int stripes) { 174 return new CompactStriped<Lock>(stripes, new Supplier<Lock>() { 175 public Lock get() { 176 return new PaddedLock(); 177 } 178 }); 179 } 180 181 /** 182 * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks, with the 183 * specified fairness. Every lock is reentrant. 184 * 185 * @param stripes the minimum number of stripes (locks) required 186 * @return a new {@code Striped<Lock>} 187 */ 188 public static Striped<Lock> lazyWeakLock(int stripes) { 189 return new LazyStriped<Lock>(stripes, new Supplier<Lock>() { 190 public Lock get() { 191 return new ReentrantLock(false); 192 } 193 }); 194 } 195 196 /** 197 * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores, 198 * with the specified number of permits and fairness. 199 * 200 * @param stripes the minimum number of stripes (semaphores) required 201 * @param permits the number of permits in each semaphore 202 * @return a new {@code Striped<Semaphore>} 203 */ 204 public static Striped<Semaphore> semaphore(int stripes, final int permits) { 205 return new CompactStriped<Semaphore>(stripes, new Supplier<Semaphore>() { 206 public Semaphore get() { 207 return new PaddedSemaphore(permits); 208 } 209 }); 210 } 211 212 /** 213 * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores, 214 * with the specified number of permits and fairness. 215 * 216 * @param stripes the minimum number of stripes (semaphores) required 217 * @param permits the number of permits in each semaphore 218 * @return a new {@code Striped<Semaphore>} 219 */ 220 public static Striped<Semaphore> lazyWeakSemaphore(int stripes, final int permits) { 221 return new LazyStriped<Semaphore>(stripes, new Supplier<Semaphore>() { 222 public Semaphore get() { 223 return new Semaphore(permits, false); 224 } 225 }); 226 } 227 228 /** 229 * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced 230 * read-write locks, with the specified fairness. Every lock is reentrant. 231 * 232 * @param stripes the minimum number of stripes (locks) required 233 * @return a new {@code Striped<ReadWriteLock>} 234 */ 235 public static Striped<ReadWriteLock> readWriteLock(int stripes) { 236 return new CompactStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER); 237 } 238 239 /** 240 * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced 241 * read-write locks, with the specified fairness. Every lock is reentrant. 242 * 243 * @param stripes the minimum number of stripes (locks) required 244 * @return a new {@code Striped<ReadWriteLock>} 245 */ 246 public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) { 247 return new LazyStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER); 248 } 249 250 // ReentrantReadWriteLock is large enough to make padding probably unnecessary 251 private static final Supplier<ReadWriteLock> READ_WRITE_LOCK_SUPPLIER = 252 new Supplier<ReadWriteLock>() { 253 public ReadWriteLock get() { 254 return new ReentrantReadWriteLock(); 255 } 256 }; 257 258 private abstract static class PowerOfTwoStriped<L> extends Striped<L> { 259 /** Capacity (power of two) minus one, for fast mod evaluation */ 260 final int mask; 261 262 PowerOfTwoStriped(int stripes) { 263 Preconditions.checkArgument(stripes > 0, "Stripes must be positive"); 264 this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1; 265 } 266 267 @Override final int indexFor(Object key) { 268 int hash = smear(key.hashCode()); 269 return hash & mask; 270 } 271 272 @Override public final L get(Object key) { 273 return getAt(indexFor(key)); 274 } 275 } 276 277 /** 278 * Implementation of Striped where 2^k stripes are represented as an array of the same length, 279 * eagerly initialized. 280 */ 281 private static class CompactStriped<L> extends PowerOfTwoStriped<L> { 282 /** Size is a power of two. */ 283 private final Object[] array; 284 285 private CompactStriped(int stripes, Supplier<L> supplier) { 286 super(stripes); 287 Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)"); 288 289 this.array = new Object[mask + 1]; 290 for (int i = 0; i < array.length; i++) { 291 array[i] = supplier.get(); 292 } 293 } 294 295 @SuppressWarnings("unchecked") // we only put L's in the array 296 @Override public L getAt(int index) { 297 return (L) array[index]; 298 } 299 300 @Override public int size() { 301 return array.length; 302 } 303 } 304 305 /** 306 * Implementation of Striped where up to 2^k stripes can be represented, using a Cache 307 * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the 308 * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced. 309 */ 310 private static class LazyStriped<L> extends PowerOfTwoStriped<L> { 311 final ConcurrentMap<Integer, L> cache; 312 final int size; 313 314 LazyStriped(int stripes, Supplier<L> supplier) { 315 super(stripes); 316 this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; 317 this.cache = new MapMaker().weakValues().makeComputingMap(Functions.forSupplier(supplier)); 318 } 319 320 @Override public L getAt(int index) { 321 Preconditions.checkElementIndex(index, size()); 322 return cache.get(index); 323 } 324 325 @Override public int size() { 326 return size; 327 } 328 } 329 330 /** 331 * A bit mask were all bits are set. 332 */ 333 private static final int ALL_SET = ~0; 334 335 private static int ceilToPowerOfTwo(int x) { 336 return 1 << IntMath.log2(x, RoundingMode.CEILING); 337 } 338 339 /* 340 * This method was written by Doug Lea with assistance from members of JCP 341 * JSR-166 Expert Group and released to the public domain, as explained at 342 * http://creativecommons.org/licenses/publicdomain 343 * 344 * As of 2010/06/11, this method is identical to the (package private) hash 345 * method in OpenJDK 7's java.util.HashMap class. 346 */ 347 // Copied from java/com/google/common/collect/Hashing.java 348 private static int smear(int hashCode) { 349 hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12); 350 return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4); 351 } 352 353 private static class PaddedLock extends ReentrantLock { 354 /* 355 * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add 356 * a fourth long here, to minimize chance of interference between consecutive locks, 357 * but I couldn't observe any benefit from that. 358 */ 359 @SuppressWarnings("unused") 360 long q1, q2, q3; 361 362 PaddedLock() { 363 super(false); 364 } 365 } 366 367 private static class PaddedSemaphore extends Semaphore { 368 // See PaddedReentrantLock comment 369 @SuppressWarnings("unused") 370 long q1, q2, q3; 371 372 PaddedSemaphore(int permits) { 373 super(permits, false); 374 } 375 } 376 }