001 /* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.primitives; 018 019 import static com.google.common.base.Preconditions.checkArgument; 020 import static com.google.common.base.Preconditions.checkNotNull; 021 022 import com.google.common.annotations.Beta; 023 import com.google.common.annotations.VisibleForTesting; 024 025 import sun.misc.Unsafe; 026 027 import java.lang.reflect.Field; 028 import java.nio.ByteOrder; 029 import java.security.AccessController; 030 import java.security.PrivilegedAction; 031 import java.util.Comparator; 032 033 /** 034 * Static utility methods pertaining to {@code byte} primitives that interpret 035 * values as <i>unsigned</i> (that is, any negative value {@code b} is treated 036 * as the positive value {@code 256 + b}). The corresponding methods that treat 037 * the values as signed are found in {@link SignedBytes}, and the methods for 038 * which signedness is not an issue are in {@link Bytes}. 039 * 040 * <p>See the Guava User Guide article on <a href= 041 * "http://code.google.com/p/guava-libraries/wiki/PrimitivesExplained"> 042 * primitive utilities</a>. 043 * 044 * @author Kevin Bourrillion 045 * @author Martin Buchholz 046 * @author Hiroshi Yamauchi 047 * @author Louis Wasserman 048 * @since 1.0 049 */ 050 public final class UnsignedBytes { 051 private UnsignedBytes() {} 052 053 /** 054 * The largest power of two that can be represented as an unsigned {@code 055 * byte}. 056 * 057 * @since 10.0 058 */ 059 public static final byte MAX_POWER_OF_TWO = (byte) 0x80; 060 061 /** 062 * The largest value that fits into an unsigned byte. 063 * 064 * @since 13.0 065 */ 066 public static final byte MAX_VALUE = (byte) 0xFF; 067 068 private static final int UNSIGNED_MASK = 0xFF; 069 070 /** 071 * Returns the value of the given byte as an integer, when treated as 072 * unsigned. That is, returns {@code value + 256} if {@code value} is 073 * negative; {@code value} itself otherwise. 074 * 075 * @since 6.0 076 */ 077 public static int toInt(byte value) { 078 return value & UNSIGNED_MASK; 079 } 080 081 /** 082 * Returns the {@code byte} value that, when treated as unsigned, is equal to 083 * {@code value}, if possible. 084 * 085 * @param value a value between 0 and 255 inclusive 086 * @return the {@code byte} value that, when treated as unsigned, equals 087 * {@code value} 088 * @throws IllegalArgumentException if {@code value} is negative or greater 089 * than 255 090 */ 091 public static byte checkedCast(long value) { 092 checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value); 093 return (byte) value; 094 } 095 096 /** 097 * Returns the {@code byte} value that, when treated as unsigned, is nearest 098 * in value to {@code value}. 099 * 100 * @param value any {@code long} value 101 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if 102 * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise 103 */ 104 public static byte saturatedCast(long value) { 105 if (value > toInt(MAX_VALUE)) { 106 return MAX_VALUE; // -1 107 } 108 if (value < 0) { 109 return (byte) 0; 110 } 111 return (byte) value; 112 } 113 114 /** 115 * Compares the two specified {@code byte} values, treating them as unsigned 116 * values between 0 and 255 inclusive. For example, {@code (byte) -127} is 117 * considered greater than {@code (byte) 127} because it is seen as having 118 * the value of positive {@code 129}. 119 * 120 * @param a the first {@code byte} to compare 121 * @param b the second {@code byte} to compare 122 * @return a negative value if {@code a} is less than {@code b}; a positive 123 * value if {@code a} is greater than {@code b}; or zero if they are equal 124 */ 125 public static int compare(byte a, byte b) { 126 return toInt(a) - toInt(b); 127 } 128 129 /** 130 * Returns the least value present in {@code array}. 131 * 132 * @param array a <i>nonempty</i> array of {@code byte} values 133 * @return the value present in {@code array} that is less than or equal to 134 * every other value in the array 135 * @throws IllegalArgumentException if {@code array} is empty 136 */ 137 public static byte min(byte... array) { 138 checkArgument(array.length > 0); 139 int min = toInt(array[0]); 140 for (int i = 1; i < array.length; i++) { 141 int next = toInt(array[i]); 142 if (next < min) { 143 min = next; 144 } 145 } 146 return (byte) min; 147 } 148 149 /** 150 * Returns the greatest value present in {@code array}. 151 * 152 * @param array a <i>nonempty</i> array of {@code byte} values 153 * @return the value present in {@code array} that is greater than or equal 154 * to every other value in the array 155 * @throws IllegalArgumentException if {@code array} is empty 156 */ 157 public static byte max(byte... array) { 158 checkArgument(array.length > 0); 159 int max = toInt(array[0]); 160 for (int i = 1; i < array.length; i++) { 161 int next = toInt(array[i]); 162 if (next > max) { 163 max = next; 164 } 165 } 166 return (byte) max; 167 } 168 169 /** 170 * Returns a string representation of x, where x is treated as unsigned. 171 * 172 * @since 13.0 173 */ 174 @Beta 175 public static String toString(byte x) { 176 return toString(x, 10); 177 } 178 179 /** 180 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated 181 * as unsigned. 182 * 183 * @param x the value to convert to a string. 184 * @param radix the radix to use while working with {@code x} 185 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 186 * and {@link Character#MAX_RADIX}. 187 * @since 13.0 188 */ 189 @Beta 190 public static String toString(byte x, int radix) { 191 checkArgument(radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 192 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix); 193 // Benchmarks indicate this is probably not worth optimizing. 194 return Integer.toString(toInt(x), radix); 195 } 196 197 /** 198 * Returns the unsigned {@code byte} value represented by the given decimal string. 199 * 200 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} 201 * value 202 * @since 13.0 203 */ 204 @Beta 205 public static byte parseUnsignedByte(String string) { 206 return parseUnsignedByte(string, 10); 207 } 208 209 /** 210 * Returns the unsigned {@code byte} value represented by a string with the given radix. 211 * 212 * @param string the string containing the unsigned {@code byte} representation to be parsed. 213 * @param radix the radix to use while parsing {@code string} 214 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 215 * with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} 216 * and {@link Character#MAX_RADIX}. 217 * @since 13.0 218 */ 219 @Beta 220 public static byte parseUnsignedByte(String string, int radix) { 221 int parse = Integer.parseInt(checkNotNull(string), radix); 222 // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( 223 if (parse >> Byte.SIZE == 0) { 224 return (byte) parse; 225 } else { 226 throw new NumberFormatException("out of range: " + parse); 227 } 228 } 229 230 /** 231 * Returns a string containing the supplied {@code byte} values separated by 232 * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2, 233 * (byte) 255)} returns the string {@code "1:2:255"}. 234 * 235 * @param separator the text that should appear between consecutive values in 236 * the resulting string (but not at the start or end) 237 * @param array an array of {@code byte} values, possibly empty 238 */ 239 public static String join(String separator, byte... array) { 240 checkNotNull(separator); 241 if (array.length == 0) { 242 return ""; 243 } 244 245 // For pre-sizing a builder, just get the right order of magnitude 246 StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); 247 builder.append(toInt(array[0])); 248 for (int i = 1; i < array.length; i++) { 249 builder.append(separator).append(toString(array[i])); 250 } 251 return builder.toString(); 252 } 253 254 /** 255 * Returns a comparator that compares two {@code byte} arrays 256 * lexicographically. That is, it compares, using {@link 257 * #compare(byte, byte)}), the first pair of values that follow any common 258 * prefix, or when one array is a prefix of the other, treats the shorter 259 * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] < 260 * [0x01, 0x80] < [0x02]}. Values are treated as unsigned. 261 * 262 * <p>The returned comparator is inconsistent with {@link 263 * Object#equals(Object)} (since arrays support only identity equality), but 264 * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. 265 * 266 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order"> 267 * Lexicographical order article at Wikipedia</a> 268 * @since 2.0 269 */ 270 public static Comparator<byte[]> lexicographicalComparator() { 271 return LexicographicalComparatorHolder.BEST_COMPARATOR; 272 } 273 274 @VisibleForTesting 275 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 276 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 277 } 278 279 /** 280 * Provides a lexicographical comparator implementation; either a Java 281 * implementation or a faster implementation based on {@link Unsafe}. 282 * 283 * <p>Uses reflection to gracefully fall back to the Java implementation if 284 * {@code Unsafe} isn't available. 285 */ 286 @VisibleForTesting 287 static class LexicographicalComparatorHolder { 288 static final String UNSAFE_COMPARATOR_NAME = 289 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 290 291 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 292 293 @VisibleForTesting 294 enum UnsafeComparator implements Comparator<byte[]> { 295 INSTANCE; 296 297 static final boolean littleEndian = 298 ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN); 299 300 /* 301 * The following static final fields exist for performance reasons. 302 * 303 * In UnsignedBytesBenchmark, accessing the following objects via static 304 * final fields is the fastest (more than twice as fast as the Java 305 * implementation, vs ~1.5x with non-final static fields, on x86_32) 306 * under the Hotspot server compiler. The reason is obviously that the 307 * non-final fields need to be reloaded inside the loop. 308 * 309 * And, no, defining (final or not) local variables out of the loop still 310 * isn't as good because the null check on the theUnsafe object remains 311 * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get 312 * constant-folded. 313 * 314 * The compiler can treat static final fields as compile-time constants 315 * and can constant-fold them while (final or not) local variables are 316 * run time values. 317 */ 318 319 static final Unsafe theUnsafe; 320 321 /** The offset to the first element in a byte array. */ 322 static final int BYTE_ARRAY_BASE_OFFSET; 323 324 static { 325 theUnsafe = (Unsafe) AccessController.doPrivileged( 326 new PrivilegedAction<Object>() { 327 @Override 328 public Object run() { 329 try { 330 Field f = Unsafe.class.getDeclaredField("theUnsafe"); 331 f.setAccessible(true); 332 return f.get(null); 333 } catch (NoSuchFieldException e) { 334 // It doesn't matter what we throw; 335 // it's swallowed in getBestComparator(). 336 throw new Error(); 337 } catch (IllegalAccessException e) { 338 throw new Error(); 339 } 340 } 341 }); 342 343 BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 344 345 // sanity check - this should never fail 346 if (theUnsafe.arrayIndexScale(byte[].class) != 1) { 347 throw new AssertionError(); 348 } 349 } 350 351 @Override public int compare(byte[] left, byte[] right) { 352 int minLength = Math.min(left.length, right.length); 353 int minWords = minLength / Longs.BYTES; 354 355 /* 356 * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a 357 * time is no slower than comparing 4 bytes at a time even on 32-bit. 358 * On the other hand, it is substantially faster on 64-bit. 359 */ 360 for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { 361 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 362 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 363 long diff = lw ^ rw; 364 365 if (diff != 0) { 366 if (!littleEndian) { 367 return UnsignedLongs.compare(lw, rw); 368 } 369 370 // Use binary search 371 int n = 0; 372 int y; 373 int x = (int) diff; 374 if (x == 0) { 375 x = (int) (diff >>> 32); 376 n = 32; 377 } 378 379 y = x << 16; 380 if (y == 0) { 381 n += 16; 382 } else { 383 x = y; 384 } 385 386 y = x << 8; 387 if (y == 0) { 388 n += 8; 389 } 390 return (int) (((lw >>> n) & UNSIGNED_MASK) - ((rw >>> n) & UNSIGNED_MASK)); 391 } 392 } 393 394 // The epilogue to cover the last (minLength % 8) elements. 395 for (int i = minWords * Longs.BYTES; i < minLength; i++) { 396 int result = UnsignedBytes.compare(left[i], right[i]); 397 if (result != 0) { 398 return result; 399 } 400 } 401 return left.length - right.length; 402 } 403 } 404 405 enum PureJavaComparator implements Comparator<byte[]> { 406 INSTANCE; 407 408 @Override public int compare(byte[] left, byte[] right) { 409 int minLength = Math.min(left.length, right.length); 410 for (int i = 0; i < minLength; i++) { 411 int result = UnsignedBytes.compare(left[i], right[i]); 412 if (result != 0) { 413 return result; 414 } 415 } 416 return left.length - right.length; 417 } 418 } 419 420 /** 421 * Returns the Unsafe-using Comparator, or falls back to the pure-Java 422 * implementation if unable to do so. 423 */ 424 static Comparator<byte[]> getBestComparator() { 425 try { 426 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 427 428 // yes, UnsafeComparator does implement Comparator<byte[]> 429 @SuppressWarnings("unchecked") 430 Comparator<byte[]> comparator = 431 (Comparator<byte[]>) theClass.getEnumConstants()[0]; 432 return comparator; 433 } catch (Throwable t) { // ensure we really catch *everything* 434 return lexicographicalComparatorJavaImpl(); 435 } 436 } 437 } 438 }