001 /* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.cache; 018 019 import static com.google.common.base.Objects.firstNonNull; 020 import static com.google.common.base.Preconditions.checkArgument; 021 import static com.google.common.base.Preconditions.checkNotNull; 022 import static com.google.common.base.Preconditions.checkState; 023 024 import com.google.common.annotations.Beta; 025 import com.google.common.annotations.GwtCompatible; 026 import com.google.common.annotations.GwtIncompatible; 027 import com.google.common.base.Ascii; 028 import com.google.common.base.Equivalence; 029 import com.google.common.base.Objects; 030 import com.google.common.base.Supplier; 031 import com.google.common.base.Suppliers; 032 import com.google.common.base.Ticker; 033 import com.google.common.cache.AbstractCache.SimpleStatsCounter; 034 import com.google.common.cache.AbstractCache.StatsCounter; 035 import com.google.common.cache.LocalCache.Strength; 036 037 import java.lang.ref.SoftReference; 038 import java.lang.ref.WeakReference; 039 import java.util.ConcurrentModificationException; 040 import java.util.concurrent.ConcurrentHashMap; 041 import java.util.concurrent.TimeUnit; 042 import java.util.logging.Level; 043 import java.util.logging.Logger; 044 045 import javax.annotation.CheckReturnValue; 046 047 /** 048 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 049 * following features: 050 * 051 * <ul> 052 * <li>automatic loading of entries into the cache 053 * <li>least-recently-used eviction when a maximum size is exceeded 054 * <li>time-based expiration of entries, measured since last access or last write 055 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references 056 * <li>values automatically wrapped in {@linkplain WeakReference weak} or 057 * {@linkplain SoftReference soft} references 058 * <li>notification of evicted (or otherwise removed) entries 059 * <li>accumulation of cache access statistics 060 * </ul> 061 * 062 * These features are all optional; caches can be created using all or none of them. By default 063 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 064 * 065 * <p>Usage example: <pre> {@code 066 * 067 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 068 * .maximumSize(10000) 069 * .expireAfterWrite(10, TimeUnit.MINUTES) 070 * .removalListener(MY_LISTENER) 071 * .build( 072 * new CacheLoader<Key, Graph>() { 073 * public Graph load(Key key) throws AnyException { 074 * return createExpensiveGraph(key); 075 * } 076 * });}</pre> 077 * 078 * Or equivalently, <pre> {@code 079 * 080 * // In real life this would come from a command-line flag or config file 081 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 082 * 083 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 084 * .removalListener(MY_LISTENER) 085 * .build( 086 * new CacheLoader<Key, Graph>() { 087 * public Graph load(Key key) throws AnyException { 088 * return createExpensiveGraph(key); 089 * } 090 * });}</pre> 091 * 092 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 093 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 094 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 095 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 096 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 097 * are reflected in that iterator. These iterators never throw {@link 098 * ConcurrentModificationException}. 099 * 100 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the 101 * {@link Object#equals equals} method) to determine equality for keys or values. However, if 102 * {@link #weakKeys} was specified, the cache uses identity ({@code ==}) 103 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was 104 * specified, the cache uses identity comparisons for values. 105 * 106 * <p>Entries are automatically evicted from the cache when any of 107 * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, 108 * {@linkplain #expireAfterWrite expireAfterWrite}, 109 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 110 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested. 111 * 112 * <p>If {@linkplain #maximumSize(long) maximumSize} or 113 * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache 114 * modification. 115 * 116 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or 117 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each 118 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired 119 * entries may be counted in {@link Cache#size}, but will never be visible to read or write 120 * operations. 121 * 122 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or 123 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in 124 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be 125 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to 126 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be 127 * visible to read or write operations. 128 * 129 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 130 * will be performed during write operations, or during occasional read operations in the absense of 131 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 132 * calling it should not be necessary with a high throughput cache. Only caches built with 133 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 134 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 135 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic 136 * maintenance. 137 * 138 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 139 * retain all the configuration properties of the original cache. Note that the serialized form does 140 * <i>not</i> include cache contents, but only configuration. 141 * 142 * <p>See the Guava User Guide article on <a href= 143 * "http://code.google.com/p/guava-libraries/wiki/CachesExplained">caching</a> for a higher-level 144 * explanation. 145 * 146 * @param <K> the base key type for all caches created by this builder 147 * @param <V> the base value type for all caches created by this builder 148 * @author Charles Fry 149 * @author Kevin Bourrillion 150 * @since 10.0 151 */ 152 @GwtCompatible(emulated = true) 153 public final class CacheBuilder<K, V> { 154 private static final int DEFAULT_INITIAL_CAPACITY = 16; 155 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 156 private static final int DEFAULT_EXPIRATION_NANOS = 0; 157 private static final int DEFAULT_REFRESH_NANOS = 0; 158 159 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance( 160 new StatsCounter() { 161 @Override 162 public void recordHits(int count) {} 163 164 @Override 165 public void recordMisses(int count) {} 166 167 @Override 168 public void recordLoadSuccess(long loadTime) {} 169 170 @Override 171 public void recordLoadException(long loadTime) {} 172 173 @Override 174 public void recordEviction() {} 175 176 @Override 177 public CacheStats snapshot() { 178 return EMPTY_STATS; 179 } 180 }); 181 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 182 183 static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 184 new Supplier<StatsCounter>() { 185 @Override 186 public StatsCounter get() { 187 return new SimpleStatsCounter(); 188 } 189 }; 190 191 enum NullListener implements RemovalListener<Object, Object> { 192 INSTANCE; 193 194 @Override 195 public void onRemoval(RemovalNotification<Object, Object> notification) {} 196 } 197 198 enum OneWeigher implements Weigher<Object, Object> { 199 INSTANCE; 200 201 @Override 202 public int weigh(Object key, Object value) { 203 return 1; 204 } 205 } 206 207 static final Ticker NULL_TICKER = new Ticker() { 208 @Override 209 public long read() { 210 return 0; 211 } 212 }; 213 214 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 215 216 static final int UNSET_INT = -1; 217 218 boolean strictParsing = true; 219 220 int initialCapacity = UNSET_INT; 221 int concurrencyLevel = UNSET_INT; 222 long maximumSize = UNSET_INT; 223 long maximumWeight = UNSET_INT; 224 Weigher<? super K, ? super V> weigher; 225 226 Strength keyStrength; 227 Strength valueStrength; 228 229 long expireAfterWriteNanos = UNSET_INT; 230 long expireAfterAccessNanos = UNSET_INT; 231 long refreshNanos = UNSET_INT; 232 233 Equivalence<Object> keyEquivalence; 234 Equivalence<Object> valueEquivalence; 235 236 RemovalListener<? super K, ? super V> removalListener; 237 Ticker ticker; 238 239 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 240 241 // TODO(fry): make constructor private and update tests to use newBuilder 242 CacheBuilder() {} 243 244 /** 245 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 246 * strong values, and no automatic eviction of any kind. 247 */ 248 public static CacheBuilder<Object, Object> newBuilder() { 249 return new CacheBuilder<Object, Object>(); 250 } 251 252 /** 253 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 254 * 255 * @since 12.0 256 */ 257 @Beta 258 @GwtIncompatible("To be supported") 259 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 260 return spec.toCacheBuilder() 261 .lenientParsing(); 262 } 263 264 /** 265 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 266 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 267 * 268 * @param spec a String in the format specified by {@link CacheBuilderSpec} 269 * @since 12.0 270 */ 271 @Beta 272 @GwtIncompatible("To be supported") 273 public static CacheBuilder<Object, Object> from(String spec) { 274 return from(CacheBuilderSpec.parse(spec)); 275 } 276 277 /** 278 * Enables lenient parsing. Useful for tests and spec parsing. 279 */ 280 CacheBuilder<K, V> lenientParsing() { 281 strictParsing = false; 282 return this; 283 } 284 285 /** 286 * Sets a custom {@code Equivalence} strategy for comparing keys. 287 * 288 * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 289 * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 290 */ 291 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 292 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 293 keyEquivalence = checkNotNull(equivalence); 294 return this; 295 } 296 297 Equivalence<Object> getKeyEquivalence() { 298 return firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 299 } 300 301 /** 302 * Sets a custom {@code Equivalence} strategy for comparing values. 303 * 304 * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 305 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 306 * otherwise. 307 */ 308 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 309 checkState(valueEquivalence == null, 310 "value equivalence was already set to %s", valueEquivalence); 311 this.valueEquivalence = checkNotNull(equivalence); 312 return this; 313 } 314 315 Equivalence<Object> getValueEquivalence() { 316 return firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 317 } 318 319 /** 320 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 321 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 322 * having a hash table of size eight. Providing a large enough estimate at construction time 323 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 324 * high wastes memory. 325 * 326 * @throws IllegalArgumentException if {@code initialCapacity} is negative 327 * @throws IllegalStateException if an initial capacity was already set 328 */ 329 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 330 checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s", 331 this.initialCapacity); 332 checkArgument(initialCapacity >= 0); 333 this.initialCapacity = initialCapacity; 334 return this; 335 } 336 337 int getInitialCapacity() { 338 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 339 } 340 341 /** 342 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 343 * table is internally partitioned to try to permit the indicated number of concurrent updates 344 * without contention. Because assignment of entries to these partitions is not necessarily 345 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 346 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 347 * higher value than you need can waste space and time, and a significantly lower value can lead 348 * to thread contention. But overestimates and underestimates within an order of magnitude do not 349 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 350 * at a time, but since read operations and cache loading computations can proceed concurrently, 351 * this still yields higher concurrency than full synchronization. 352 * 353 * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 354 * value, you should always choose it explicitly. 355 * 356 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 357 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 358 * write, and twice for each cache loading computation (once prior to loading the new value, 359 * and once after loading completes). Much internal cache management is performed at the segment 360 * granularity. For example, access queues and write queues are kept per segment when they are 361 * required by the selected eviction algorithm. As such, when writing unit tests it is not 362 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 363 * behavior. 364 * 365 * <p>Note that future implementations may abandon segment locking in favor of more advanced 366 * concurrency controls. 367 * 368 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 369 * @throws IllegalStateException if a concurrency level was already set 370 */ 371 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 372 checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s", 373 this.concurrencyLevel); 374 checkArgument(concurrencyLevel > 0); 375 this.concurrencyLevel = concurrencyLevel; 376 return this; 377 } 378 379 int getConcurrencyLevel() { 380 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 381 } 382 383 /** 384 * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict 385 * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the 386 * cache evicts entries that are less likely to be used again. For example, the cache may evict an 387 * entry because it hasn't been used recently or very often. 388 * 389 * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the 390 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 391 * 392 * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 393 * 394 * @param size the maximum size of the cache 395 * @throws IllegalArgumentException if {@code size} is negative 396 * @throws IllegalStateException if a maximum size or weight was already set 397 */ 398 public CacheBuilder<K, V> maximumSize(long size) { 399 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 400 this.maximumSize); 401 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 402 this.maximumWeight); 403 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 404 checkArgument(size >= 0, "maximum size must not be negative"); 405 this.maximumSize = size; 406 return this; 407 } 408 409 /** 410 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 411 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 412 * corresponding call to {@link #weigher} prior to calling {@link #build}. 413 * 414 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache 415 * size grows close to the maximum, the cache evicts entries that are less likely to be used 416 * again. For example, the cache may evict an entry because it hasn't been used recently or very 417 * often. 418 * 419 * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into 420 * cache. This can be useful in testing, or to disable caching temporarily without a code 421 * change. 422 * 423 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 424 * effect on selecting which entry should be evicted next. 425 * 426 * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 427 * 428 * @param weight the maximum total weight of entries the cache may contain 429 * @throws IllegalArgumentException if {@code weight} is negative 430 * @throws IllegalStateException if a maximum weight or size was already set 431 * @since 11.0 432 */ 433 public CacheBuilder<K, V> maximumWeight(long weight) { 434 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 435 this.maximumWeight); 436 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 437 this.maximumSize); 438 this.maximumWeight = weight; 439 checkArgument(weight >= 0, "maximum weight must not be negative"); 440 return this; 441 } 442 443 /** 444 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken 445 * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and 446 * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to 447 * calling {@link #build}. Weights are measured and recorded when entries are inserted into the 448 * cache, and are thus effectively static during the lifetime of a cache entry. 449 * 450 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 451 * (though it still may be evicted by other means). 452 * 453 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 454 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 455 * original reference or the returned reference may be used to complete configuration and build 456 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 457 * building caches whose key or value types are incompatible with the types accepted by the 458 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 459 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 460 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 461 * 462 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 463 * a cache whose key or value type is incompatible with the weigher, you will likely experience 464 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 465 * 466 * @param weigher the weigher to use in calculating the weight of cache entries 467 * @throws IllegalArgumentException if {@code size} is negative 468 * @throws IllegalStateException if a maximum size was already set 469 * @since 11.0 470 */ 471 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 472 Weigher<? super K1, ? super V1> weigher) { 473 checkState(this.weigher == null); 474 if (strictParsing) { 475 checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size", 476 this.maximumSize); 477 } 478 479 // safely limiting the kinds of caches this can produce 480 @SuppressWarnings("unchecked") 481 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 482 me.weigher = checkNotNull(weigher); 483 return me; 484 } 485 486 long getMaximumWeight() { 487 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 488 return 0; 489 } 490 return (weigher == null) ? maximumSize : maximumWeight; 491 } 492 493 // Make a safe contravariant cast now so we don't have to do it over and over. 494 @SuppressWarnings("unchecked") 495 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 496 return (Weigher<K1, V1>) Objects.firstNonNull(weigher, OneWeigher.INSTANCE); 497 } 498 499 /** 500 * Specifies that each key (not value) stored in the cache should be strongly referenced. 501 * 502 * @throws IllegalStateException if the key strength was already set 503 */ 504 CacheBuilder<K, V> strongKeys() { 505 return setKeyStrength(Strength.STRONG); 506 } 507 508 /** 509 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 510 * WeakReference} (by default, strong references are used). 511 * 512 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 513 * comparison to determine equality of keys. 514 * 515 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, 516 * but will never be visible to read or write operations; such entries are cleaned up as part of 517 * the routine maintenance described in the class javadoc. 518 * 519 * @throws IllegalStateException if the key strength was already set 520 */ 521 @GwtIncompatible("java.lang.ref.WeakReference") 522 public CacheBuilder<K, V> weakKeys() { 523 return setKeyStrength(Strength.WEAK); 524 } 525 526 CacheBuilder<K, V> setKeyStrength(Strength strength) { 527 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 528 keyStrength = checkNotNull(strength); 529 return this; 530 } 531 532 Strength getKeyStrength() { 533 return firstNonNull(keyStrength, Strength.STRONG); 534 } 535 536 /** 537 * Specifies that each value (not key) stored in the cache should be strongly referenced. 538 * 539 * @throws IllegalStateException if the value strength was already set 540 */ 541 CacheBuilder<K, V> strongValues() { 542 return setValueStrength(Strength.STRONG); 543 } 544 545 /** 546 * Specifies that each value (not key) stored in the cache should be wrapped in a 547 * {@link WeakReference} (by default, strong references are used). 548 * 549 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 550 * candidate for caching; consider {@link #softValues} instead. 551 * 552 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 553 * comparison to determine equality of values. 554 * 555 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 556 * but will never be visible to read or write operations; such entries are cleaned up as part of 557 * the routine maintenance described in the class javadoc. 558 * 559 * @throws IllegalStateException if the value strength was already set 560 */ 561 @GwtIncompatible("java.lang.ref.WeakReference") 562 public CacheBuilder<K, V> weakValues() { 563 return setValueStrength(Strength.WEAK); 564 } 565 566 /** 567 * Specifies that each value (not key) stored in the cache should be wrapped in a 568 * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will 569 * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 570 * demand. 571 * 572 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 573 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 574 * method if you are well familiar with the practical consequences of soft references. 575 * 576 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 577 * comparison to determine equality of values. 578 * 579 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 580 * but will never be visible to read or write operations; such entries are cleaned up as part of 581 * the routine maintenance described in the class javadoc. 582 * 583 * @throws IllegalStateException if the value strength was already set 584 */ 585 @GwtIncompatible("java.lang.ref.SoftReference") 586 public CacheBuilder<K, V> softValues() { 587 return setValueStrength(Strength.SOFT); 588 } 589 590 CacheBuilder<K, V> setValueStrength(Strength strength) { 591 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 592 valueStrength = checkNotNull(strength); 593 return this; 594 } 595 596 Strength getValueStrength() { 597 return firstNonNull(valueStrength, Strength.STRONG); 598 } 599 600 /** 601 * Specifies that each entry should be automatically removed from the cache once a fixed duration 602 * has elapsed after the entry's creation, or the most recent replacement of its value. 603 * 604 * <p>When {@code duration} is zero, this method hands off to 605 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 606 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 607 * change. 608 * 609 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 610 * write operations. Expired entries are cleaned up as part of the routine maintenance described 611 * in the class javadoc. 612 * 613 * @param duration the length of time after an entry is created that it should be automatically 614 * removed 615 * @param unit the unit that {@code duration} is expressed in 616 * @throws IllegalArgumentException if {@code duration} is negative 617 * @throws IllegalStateException if the time to live or time to idle was already set 618 */ 619 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 620 checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns", 621 expireAfterWriteNanos); 622 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 623 this.expireAfterWriteNanos = unit.toNanos(duration); 624 return this; 625 } 626 627 long getExpireAfterWriteNanos() { 628 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 629 } 630 631 /** 632 * Specifies that each entry should be automatically removed from the cache once a fixed duration 633 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 634 * access. Access time is reset by all cache read and write operations (including 635 * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations 636 * on the collection-views of {@link Cache#asMap}. 637 * 638 * <p>When {@code duration} is zero, this method hands off to 639 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 640 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 641 * change. 642 * 643 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 644 * write operations. Expired entries are cleaned up as part of the routine maintenance described 645 * in the class javadoc. 646 * 647 * @param duration the length of time after an entry is last accessed that it should be 648 * automatically removed 649 * @param unit the unit that {@code duration} is expressed in 650 * @throws IllegalArgumentException if {@code duration} is negative 651 * @throws IllegalStateException if the time to idle or time to live was already set 652 */ 653 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 654 checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns", 655 expireAfterAccessNanos); 656 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 657 this.expireAfterAccessNanos = unit.toNanos(duration); 658 return this; 659 } 660 661 long getExpireAfterAccessNanos() { 662 return (expireAfterAccessNanos == UNSET_INT) 663 ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos; 664 } 665 666 /** 667 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 668 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 669 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling 670 * {@link CacheLoader#reload}. 671 * 672 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 673 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 674 * implementation; otherwise refreshes will be performed during unrelated cache read and write 675 * operations. 676 * 677 * <p>Currently automatic refreshes are performed when the first stale request for an entry 678 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 679 * and immediately return the new value if the returned future is complete, and the old value 680 * otherwise. 681 * 682 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 683 * 684 * @param duration the length of time after an entry is created that it should be considered 685 * stale, and thus eligible for refresh 686 * @param unit the unit that {@code duration} is expressed in 687 * @throws IllegalArgumentException if {@code duration} is negative 688 * @throws IllegalStateException if the refresh interval was already set 689 * @since 11.0 690 */ 691 @Beta 692 @GwtIncompatible("To be supported") 693 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 694 checkNotNull(unit); 695 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 696 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 697 this.refreshNanos = unit.toNanos(duration); 698 return this; 699 } 700 701 long getRefreshNanos() { 702 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 703 } 704 705 /** 706 * Specifies a nanosecond-precision time source for use in determining when entries should be 707 * expired. By default, {@link System#nanoTime} is used. 708 * 709 * <p>The primary intent of this method is to facilitate testing of caches which have been 710 * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}. 711 * 712 * @throws IllegalStateException if a ticker was already set 713 */ 714 @GwtIncompatible("To be supported") 715 public CacheBuilder<K, V> ticker(Ticker ticker) { 716 checkState(this.ticker == null); 717 this.ticker = checkNotNull(ticker); 718 return this; 719 } 720 721 Ticker getTicker(boolean recordsTime) { 722 if (ticker != null) { 723 return ticker; 724 } 725 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 726 } 727 728 /** 729 * Specifies a listener instance, which all caches built using this {@code CacheBuilder} will 730 * notify each time an entry is removed from the cache by any means. 731 * 732 * <p>Each cache built by this {@code CacheBuilder} after this method is called invokes the 733 * supplied listener after removing an element for any reason (see removal causes in {@link 734 * RemovalCause}). It will invoke the listener as part of the routine maintenance described 735 * in the class javadoc. 736 * 737 * <p><b>Note:</b> <i>all exceptions thrown by {@code listener} will be logged (using 738 * {@link java.util.logging.Logger})and then swallowed</i>. 739 * 740 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 741 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 742 * original reference or the returned reference may be used to complete configuration and build 743 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 744 * building caches whose key or value types are incompatible with the types accepted by the 745 * listener already provided; the {@code CacheBuilder} type cannot do this. For best results, 746 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 747 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 748 * 749 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 750 * a cache whose key or value type is incompatible with the listener, you will likely experience 751 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 752 * 753 * @throws IllegalStateException if a removal listener was already set 754 */ 755 @CheckReturnValue 756 @GwtIncompatible("To be supported") 757 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 758 RemovalListener<? super K1, ? super V1> listener) { 759 checkState(this.removalListener == null); 760 761 // safely limiting the kinds of caches this can produce 762 @SuppressWarnings("unchecked") 763 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 764 me.removalListener = checkNotNull(listener); 765 return me; 766 } 767 768 // Make a safe contravariant cast now so we don't have to do it over and over. 769 @SuppressWarnings("unchecked") 770 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 771 return (RemovalListener<K1, V1>) Objects.firstNonNull(removalListener, NullListener.INSTANCE); 772 } 773 774 /** 775 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 776 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 777 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 778 * cache operation. 779 * 780 * @since 12.0 (previously, stats collection was automatic) 781 */ 782 public CacheBuilder<K, V> recordStats() { 783 statsCounterSupplier = CACHE_STATS_COUNTER; 784 return this; 785 } 786 787 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 788 return statsCounterSupplier; 789 } 790 791 /** 792 * Builds a cache, which either returns an already-loaded value for a given key or atomically 793 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 794 * loading the value for this key, simply waits for that thread to finish and returns its 795 * loaded value. Note that multiple threads can concurrently load values for distinct keys. 796 * 797 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 798 * invoked again to create multiple independent caches. 799 * 800 * @param loader the cache loader used to obtain new values 801 * @return a cache having the requested features 802 */ 803 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 804 CacheLoader<? super K1, V1> loader) { 805 checkWeightWithWeigher(); 806 return new LocalCache.LocalLoadingCache<K1, V1>(this, loader); 807 } 808 809 /** 810 * Builds a cache which does not automatically load values when keys are requested. 811 * 812 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a 813 * {@code CacheLoader}. 814 * 815 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 816 * invoked again to create multiple independent caches. 817 * 818 * @return a cache having the requested features 819 * @since 11.0 820 */ 821 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 822 checkWeightWithWeigher(); 823 checkNonLoadingCache(); 824 return new LocalCache.LocalManualCache<K1, V1>(this); 825 } 826 827 private void checkNonLoadingCache() { 828 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 829 } 830 831 private void checkWeightWithWeigher() { 832 if (weigher == null) { 833 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 834 } else { 835 if (strictParsing) { 836 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 837 } else { 838 if (maximumWeight == UNSET_INT) { 839 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 840 } 841 } 842 } 843 } 844 845 /** 846 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 847 * string is not specified. 848 */ 849 @Override 850 public String toString() { 851 Objects.ToStringHelper s = Objects.toStringHelper(this); 852 if (initialCapacity != UNSET_INT) { 853 s.add("initialCapacity", initialCapacity); 854 } 855 if (concurrencyLevel != UNSET_INT) { 856 s.add("concurrencyLevel", concurrencyLevel); 857 } 858 if (maximumWeight != UNSET_INT) { 859 if (weigher == null) { 860 s.add("maximumSize", maximumWeight); 861 } else { 862 s.add("maximumWeight", maximumWeight); 863 } 864 } 865 if (expireAfterWriteNanos != UNSET_INT) { 866 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 867 } 868 if (expireAfterAccessNanos != UNSET_INT) { 869 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 870 } 871 if (keyStrength != null) { 872 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 873 } 874 if (valueStrength != null) { 875 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 876 } 877 if (keyEquivalence != null) { 878 s.addValue("keyEquivalence"); 879 } 880 if (valueEquivalence != null) { 881 s.addValue("valueEquivalence"); 882 } 883 if (removalListener != null) { 884 s.addValue("removalListener"); 885 } 886 return s.toString(); 887 } 888 }