001 /* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.primitives; 018 019 import static com.google.common.base.Preconditions.checkArgument; 020 import static com.google.common.base.Preconditions.checkNotNull; 021 022 import com.google.common.annotations.VisibleForTesting; 023 024 import sun.misc.Unsafe; 025 026 import java.lang.reflect.Field; 027 import java.nio.ByteOrder; 028 import java.security.AccessController; 029 import java.security.PrivilegedAction; 030 import java.util.Comparator; 031 032 /** 033 * Static utility methods pertaining to {@code byte} primitives that interpret 034 * values as <i>unsigned</i> (that is, any negative value {@code b} is treated 035 * as the positive value {@code 256 + b}). The corresponding methods that treat 036 * the values as signed are found in {@link SignedBytes}, and the methods for 037 * which signedness is not an issue are in {@link Bytes}. 038 * 039 * <p>See the Guava User Guide article on <a href= 040 * "http://code.google.com/p/guava-libraries/wiki/PrimitivesExplained"> 041 * primitive utilities</a>. 042 * 043 * @author Kevin Bourrillion 044 * @author Martin Buchholz 045 * @author Hiroshi Yamauchi 046 * @since 1.0 047 */ 048 public final class UnsignedBytes { 049 private UnsignedBytes() {} 050 051 /** 052 * The largest power of two that can be represented as an unsigned {@code byte}. 053 * 054 * @since 10.0 055 */ 056 public static final byte MAX_POWER_OF_TWO = (byte) (1 << 7); 057 058 /** 059 * Returns the value of the given byte as an integer, when treated as 060 * unsigned. That is, returns {@code value + 256} if {@code value} is 061 * negative; {@code value} itself otherwise. 062 * 063 * @since 6.0 064 */ 065 public static int toInt(byte value) { 066 return value & 0xFF; 067 } 068 069 /** 070 * Returns the {@code byte} value that, when treated as unsigned, is equal to 071 * {@code value}, if possible. 072 * 073 * @param value a value between 0 and 255 inclusive 074 * @return the {@code byte} value that, when treated as unsigned, equals 075 * {@code value} 076 * @throws IllegalArgumentException if {@code value} is negative or greater 077 * than 255 078 */ 079 public static byte checkedCast(long value) { 080 checkArgument(value >> 8 == 0, "out of range: %s", value); 081 return (byte) value; 082 } 083 084 /** 085 * Returns the {@code byte} value that, when treated as unsigned, is nearest 086 * in value to {@code value}. 087 * 088 * @param value any {@code long} value 089 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if 090 * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise 091 */ 092 public static byte saturatedCast(long value) { 093 if (value > 255) { 094 return (byte) 255; // -1 095 } 096 if (value < 0) { 097 return (byte) 0; 098 } 099 return (byte) value; 100 } 101 102 /** 103 * Compares the two specified {@code byte} values, treating them as unsigned 104 * values between 0 and 255 inclusive. For example, {@code (byte) -127} is 105 * considered greater than {@code (byte) 127} because it is seen as having 106 * the value of positive {@code 129}. 107 * 108 * @param a the first {@code byte} to compare 109 * @param b the second {@code byte} to compare 110 * @return a negative value if {@code a} is less than {@code b}; a positive 111 * value if {@code a} is greater than {@code b}; or zero if they are equal 112 */ 113 public static int compare(byte a, byte b) { 114 return toInt(a) - toInt(b); 115 } 116 117 /** 118 * Returns the least value present in {@code array}. 119 * 120 * @param array a <i>nonempty</i> array of {@code byte} values 121 * @return the value present in {@code array} that is less than or equal to 122 * every other value in the array 123 * @throws IllegalArgumentException if {@code array} is empty 124 */ 125 public static byte min(byte... array) { 126 checkArgument(array.length > 0); 127 int min = toInt(array[0]); 128 for (int i = 1; i < array.length; i++) { 129 int next = toInt(array[i]); 130 if (next < min) { 131 min = next; 132 } 133 } 134 return (byte) min; 135 } 136 137 /** 138 * Returns the greatest value present in {@code array}. 139 * 140 * @param array a <i>nonempty</i> array of {@code byte} values 141 * @return the value present in {@code array} that is greater than or equal 142 * to every other value in the array 143 * @throws IllegalArgumentException if {@code array} is empty 144 */ 145 public static byte max(byte... array) { 146 checkArgument(array.length > 0); 147 int max = toInt(array[0]); 148 for (int i = 1; i < array.length; i++) { 149 int next = toInt(array[i]); 150 if (next > max) { 151 max = next; 152 } 153 } 154 return (byte) max; 155 } 156 157 /** 158 * Returns a string containing the supplied {@code byte} values separated by 159 * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2, 160 * (byte) 255)} returns the string {@code "1:2:255"}. 161 * 162 * @param separator the text that should appear between consecutive values in 163 * the resulting string (but not at the start or end) 164 * @param array an array of {@code byte} values, possibly empty 165 */ 166 public static String join(String separator, byte... array) { 167 checkNotNull(separator); 168 if (array.length == 0) { 169 return ""; 170 } 171 172 // For pre-sizing a builder, just get the right order of magnitude 173 StringBuilder builder = new StringBuilder(array.length * 5); 174 builder.append(toInt(array[0])); 175 for (int i = 1; i < array.length; i++) { 176 builder.append(separator).append(toInt(array[i])); 177 } 178 return builder.toString(); 179 } 180 181 /** 182 * Returns a comparator that compares two {@code byte} arrays 183 * lexicographically. That is, it compares, using {@link 184 * #compare(byte, byte)}), the first pair of values that follow any common 185 * prefix, or when one array is a prefix of the other, treats the shorter 186 * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] < 187 * [0x01, 0x80] < [0x02]}. Values are treated as unsigned. 188 * 189 * <p>The returned comparator is inconsistent with {@link 190 * Object#equals(Object)} (since arrays support only identity equality), but 191 * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. 192 * 193 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order"> 194 * Lexicographical order article at Wikipedia</a> 195 * @since 2.0 196 */ 197 public static Comparator<byte[]> lexicographicalComparator() { 198 return LexicographicalComparatorHolder.BEST_COMPARATOR; 199 } 200 201 @VisibleForTesting 202 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 203 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 204 } 205 206 /** 207 * Provides a lexicographical comparator implementation; either a Java 208 * implementation or a faster implementation based on {@link Unsafe}. 209 * 210 * <p>Uses reflection to gracefully fall back to the Java implementation if 211 * {@code Unsafe} isn't available. 212 */ 213 @VisibleForTesting 214 static class LexicographicalComparatorHolder { 215 static final String UNSAFE_COMPARATOR_NAME = 216 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 217 218 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 219 220 @VisibleForTesting 221 enum UnsafeComparator implements Comparator<byte[]> { 222 INSTANCE; 223 224 static final boolean littleEndian = 225 ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN); 226 227 /* 228 * The following static final fields exist for performance reasons. 229 * 230 * In UnsignedBytesBenchmark, accessing the following objects via static 231 * final fields is the fastest (more than twice as fast as the Java 232 * implementation, vs ~1.5x with non-final static fields, on x86_32) 233 * under the Hotspot server compiler. The reason is obviously that the 234 * non-final fields need to be reloaded inside the loop. 235 * 236 * And, no, defining (final or not) local variables out of the loop still 237 * isn't as good because the null check on the theUnsafe object remains 238 * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get 239 * constant-folded. 240 * 241 * The compiler can treat static final fields as compile-time constants 242 * and can constant-fold them while (final or not) local variables are 243 * run time values. 244 */ 245 246 static final Unsafe theUnsafe; 247 248 /** The offset to the first element in a byte array. */ 249 static final int BYTE_ARRAY_BASE_OFFSET; 250 251 static { 252 theUnsafe = (Unsafe) AccessController.doPrivileged( 253 new PrivilegedAction<Object>() { 254 @Override 255 public Object run() { 256 try { 257 Field f = Unsafe.class.getDeclaredField("theUnsafe"); 258 f.setAccessible(true); 259 return f.get(null); 260 } catch (NoSuchFieldException e) { 261 // It doesn't matter what we throw; 262 // it's swallowed in getBestComparator(). 263 throw new Error(); 264 } catch (IllegalAccessException e) { 265 throw new Error(); 266 } 267 } 268 }); 269 270 BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 271 272 // sanity check - this should never fail 273 if (theUnsafe.arrayIndexScale(byte[].class) != 1) { 274 throw new AssertionError(); 275 } 276 } 277 278 @Override public int compare(byte[] left, byte[] right) { 279 int minLength = Math.min(left.length, right.length); 280 int minWords = minLength / Longs.BYTES; 281 282 /* 283 * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a 284 * time is no slower than comparing 4 bytes at a time even on 32-bit. 285 * On the other hand, it is substantially faster on 64-bit. 286 */ 287 for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { 288 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 289 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 290 long diff = lw ^ rw; 291 292 if (diff != 0) { 293 if (!littleEndian) { 294 return UnsignedLongs.compare(lw, rw); 295 } 296 297 // Use binary search 298 int n = 0; 299 int y; 300 int x = (int) diff; 301 if (x == 0) { 302 x = (int) (diff >>> 32); 303 n = 32; 304 } 305 306 y = x << 16; 307 if (y == 0) { 308 n += 16; 309 } else { 310 x = y; 311 } 312 313 y = x << 8; 314 if (y == 0) { 315 n += 8; 316 } 317 return (int) (((lw >>> n) & 0xFFL) - ((rw >>> n) & 0xFFL)); 318 } 319 } 320 321 // The epilogue to cover the last (minLength % 8) elements. 322 for (int i = minWords * Longs.BYTES; i < minLength; i++) { 323 int result = UnsignedBytes.compare(left[i], right[i]); 324 if (result != 0) { 325 return result; 326 } 327 } 328 return left.length - right.length; 329 } 330 } 331 332 enum PureJavaComparator implements Comparator<byte[]> { 333 INSTANCE; 334 335 @Override public int compare(byte[] left, byte[] right) { 336 int minLength = Math.min(left.length, right.length); 337 for (int i = 0; i < minLength; i++) { 338 int result = UnsignedBytes.compare(left[i], right[i]); 339 if (result != 0) { 340 return result; 341 } 342 } 343 return left.length - right.length; 344 } 345 } 346 347 /** 348 * Returns the Unsafe-using Comparator, or falls back to the pure-Java 349 * implementation if unable to do so. 350 */ 351 static Comparator<byte[]> getBestComparator() { 352 try { 353 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 354 355 // yes, UnsafeComparator does implement Comparator<byte[]> 356 @SuppressWarnings("unchecked") 357 Comparator<byte[]> comparator = 358 (Comparator<byte[]>) theClass.getEnumConstants()[0]; 359 return comparator; 360 } catch (Throwable t) { // ensure we really catch *everything* 361 return lexicographicalComparatorJavaImpl(); 362 } 363 } 364 } 365 } 366