001 /* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.math; 018 019 import static com.google.common.base.Preconditions.checkArgument; 020 import static com.google.common.math.DoubleUtils.IMPLICIT_BIT; 021 import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS; 022 import static com.google.common.math.DoubleUtils.getSignificand; 023 import static com.google.common.math.DoubleUtils.isFinite; 024 import static com.google.common.math.DoubleUtils.isNormal; 025 import static com.google.common.math.DoubleUtils.scaleNormalize; 026 import static com.google.common.math.MathPreconditions.checkInRange; 027 import static com.google.common.math.MathPreconditions.checkNonNegative; 028 import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 029 030 import com.google.common.annotations.Beta; 031 import com.google.common.annotations.VisibleForTesting; 032 033 import java.math.BigInteger; 034 import java.math.RoundingMode; 035 036 /** 037 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}. 038 * 039 * @author Louis Wasserman 040 * @since 11.0 041 */ 042 @Beta 043 public final class DoubleMath { 044 /* 045 * This method returns a value y such that rounding y DOWN (towards zero) gives the same result 046 * as rounding x according to the specified mode. 047 */ 048 static double roundIntermediate(double x, RoundingMode mode) { 049 if (!isFinite(x)) { 050 throw new ArithmeticException("input is infinite or NaN"); 051 } 052 switch (mode) { 053 case UNNECESSARY: 054 checkRoundingUnnecessary(isMathematicalInteger(x)); 055 return x; 056 057 case FLOOR: 058 return (x >= 0.0) ? x : Math.floor(x); 059 060 case CEILING: 061 return (x >= 0.0) ? Math.ceil(x) : x; 062 063 case DOWN: 064 return x; 065 066 case UP: 067 return (x >= 0.0) ? Math.ceil(x) : Math.floor(x); 068 069 case HALF_EVEN: 070 return Math.rint(x); 071 072 case HALF_UP: 073 if (isMathematicalInteger(x)) { 074 return x; 075 } else { 076 return (x >= 0.0) ? x + 0.5 : x - 0.5; 077 } 078 079 case HALF_DOWN: 080 if (isMathematicalInteger(x)) { 081 return x; 082 } else if (x >= 0.0) { 083 double z = x + 0.5; 084 return (z == x) ? x : DoubleUtils.nextDown(z); // x + 0.5 - epsilon 085 } else { 086 double z = x - 0.5; 087 return (z == x) ? x : Math.nextUp(z); // x - 0.5 + epsilon 088 } 089 090 default: 091 throw new AssertionError(); 092 } 093 } 094 095 /** 096 * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding 097 * mode, if possible. 098 * 099 * @throws ArithmeticException if 100 * <ul> 101 * <li>{@code x} is infinite or NaN 102 * <li>{@code x}, after being rounded to a mathematical integer using the specified 103 * rounding mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code 104 * Integer.MAX_VALUE} 105 * <li>{@code x} is not a mathematical integer and {@code mode} is 106 * {@link RoundingMode#UNNECESSARY} 107 * </ul> 108 */ 109 public static int roundToInt(double x, RoundingMode mode) { 110 double z = roundIntermediate(x, mode); 111 checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0); 112 return (int) z; 113 } 114 115 private static final double MIN_INT_AS_DOUBLE = -0x1p31; 116 private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0; 117 118 /** 119 * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding 120 * mode, if possible. 121 * 122 * @throws ArithmeticException if 123 * <ul> 124 * <li>{@code x} is infinite or NaN 125 * <li>{@code x}, after being rounded to a mathematical integer using the specified 126 * rounding mode, is either less than {@code Long.MIN_VALUE} or greater than {@code 127 * Long.MAX_VALUE} 128 * <li>{@code x} is not a mathematical integer and {@code mode} is 129 * {@link RoundingMode#UNNECESSARY} 130 * </ul> 131 */ 132 public static long roundToLong(double x, RoundingMode mode) { 133 double z = roundIntermediate(x, mode); 134 checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE); 135 return (long) z; 136 } 137 138 private static final double MIN_LONG_AS_DOUBLE = -0x1p63; 139 /* 140 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store 141 * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1. 142 */ 143 private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63; 144 145 /** 146 * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified 147 * rounding mode, if possible. 148 * 149 * @throws ArithmeticException if 150 * <ul> 151 * <li>{@code x} is infinite or NaN 152 * <li>{@code x} is not a mathematical integer and {@code mode} is 153 * {@link RoundingMode#UNNECESSARY} 154 * </ul> 155 */ 156 public static BigInteger roundToBigInteger(double x, RoundingMode mode) { 157 x = roundIntermediate(x, mode); 158 if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { 159 return BigInteger.valueOf((long) x); 160 } 161 int exponent = Math.getExponent(x); 162 if (exponent < 0) { 163 return BigInteger.ZERO; 164 } 165 long significand = getSignificand(x); 166 BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); 167 return (x < 0) ? result.negate() : result; 168 } 169 170 /** 171 * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer 172 * {@code k}. 173 */ 174 public static boolean isPowerOfTwo(double x) { 175 return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x)); 176 } 177 178 /** 179 * Returns the base 2 logarithm of a double value. 180 * 181 * <p>Special cases: 182 * <ul> 183 * <li>If {@code x} is NaN or less than zero, the result is NaN. 184 * <li>If {@code x} is positive infinity, the result is positive infinity. 185 * <li>If {@code x} is positive or negative zero, the result is negative infinity. 186 * </ul> 187 * 188 * <p>The computed result must be within 1 ulp of the exact result. 189 * 190 * <p>If the result of this method will be immediately rounded to an {@code int}, 191 * {@link #log2(double, RoundingMode)} is faster. 192 */ 193 public static double log2(double x) { 194 return Math.log(x) / LN_2; // surprisingly within 1 ulp according to tests 195 } 196 197 private static final double LN_2 = Math.log(2); 198 199 /** 200 * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an 201 * {@code int}. 202 * 203 * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. 204 * 205 * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is 206 * infinite 207 */ 208 @SuppressWarnings("fallthrough") 209 public static int log2(double x, RoundingMode mode) { 210 checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); 211 int exponent = Math.getExponent(x); 212 if (!isNormal(x)) { 213 return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; 214 // Do the calculation on a normal value. 215 } 216 // x is positive, finite, and normal 217 boolean increment; 218 switch (mode) { 219 case UNNECESSARY: 220 checkRoundingUnnecessary(isPowerOfTwo(x)); 221 // fall through 222 case FLOOR: 223 increment = false; 224 break; 225 case CEILING: 226 increment = !isPowerOfTwo(x); 227 break; 228 case DOWN: 229 increment = exponent < 0 & !isPowerOfTwo(x); 230 break; 231 case UP: 232 increment = exponent >= 0 & !isPowerOfTwo(x); 233 break; 234 case HALF_DOWN: 235 case HALF_EVEN: 236 case HALF_UP: 237 double xScaled = scaleNormalize(x); 238 // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," 239 // so log2(x) is never exactly exponent + 0.5. 240 increment = (xScaled * xScaled) > 2.0; 241 break; 242 default: 243 throw new AssertionError(); 244 } 245 return increment ? exponent + 1 : exponent; 246 } 247 248 /** 249 * Returns {@code true} if {@code x} represents a mathematical integer. 250 * 251 * <p>This is equivalent to, but not necessarily implemented as, the expression {@code 252 * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. 253 */ 254 public static boolean isMathematicalInteger(double x) { 255 return isFinite(x) 256 && (x == 0.0 || SIGNIFICAND_BITS 257 - Long.numberOfTrailingZeros(getSignificand(x)) <= Math.getExponent(x)); 258 } 259 260 /** 261 * Returns {@code n!}, that is, the product of the first {@code n} positive 262 * integers, {@code 1} if {@code n == 0}, or e n!}, or 263 * {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}. 264 * 265 * <p>The result is within 1 ulp of the true value. 266 * 267 * @throws IllegalArgumentException if {@code n < 0} 268 */ 269 public static double factorial(int n) { 270 checkNonNegative("n", n); 271 if (n > MAX_FACTORIAL) { 272 return Double.POSITIVE_INFINITY; 273 } else { 274 // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate 275 // result than multiplying by EVERY_SIXTEENTH_FACTORIAL[n >> 4] directly. 276 double accum = 1.0; 277 for (int i = 1 + (n & ~0xf); i <= n; i++) { 278 accum *= i; 279 } 280 return accum * EVERY_SIXTEENTH_FACTORIAL[n >> 4]; 281 } 282 } 283 284 @VisibleForTesting 285 static final int MAX_FACTORIAL = 170; 286 287 @VisibleForTesting 288 static final double[] EVERY_SIXTEENTH_FACTORIAL = { 289 0x1.0p0, 290 0x1.30777758p44, 291 0x1.956ad0aae33a4p117, 292 0x1.ee69a78d72cb6p202, 293 0x1.fe478ee34844ap295, 294 0x1.c619094edabffp394, 295 0x1.3638dd7bd6347p498, 296 0x1.7cac197cfe503p605, 297 0x1.1e5dfc140e1e5p716, 298 0x1.8ce85fadb707ep829, 299 0x1.95d5f3d928edep945}; 300 301 private DoubleMath() {} 302 }