001    /*
002     * Copyright (C) 2011 The Guava Authors
003     *
004     * Licensed under the Apache License, Version 2.0 (the "License");
005     * you may not use this file except in compliance with the License.
006     * You may obtain a copy of the License at
007     *
008     * http://www.apache.org/licenses/LICENSE-2.0
009     *
010     * Unless required by applicable law or agreed to in writing, software
011     * distributed under the License is distributed on an "AS IS" BASIS,
012     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013     * See the License for the specific language governing permissions and
014     * limitations under the License.
015     */
016    
017    package com.google.common.math;
018    
019    import static com.google.common.base.Preconditions.checkArgument;
020    import static com.google.common.base.Preconditions.checkNotNull;
021    import static com.google.common.math.MathPreconditions.checkNonNegative;
022    import static com.google.common.math.MathPreconditions.checkPositive;
023    import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
024    import static java.math.RoundingMode.CEILING;
025    import static java.math.RoundingMode.FLOOR;
026    import static java.math.RoundingMode.HALF_EVEN;
027    
028    import com.google.common.annotations.Beta;
029    import com.google.common.annotations.GwtCompatible;
030    import com.google.common.annotations.GwtIncompatible;
031    import com.google.common.annotations.VisibleForTesting;
032    
033    import java.math.BigDecimal;
034    import java.math.BigInteger;
035    import java.math.RoundingMode;
036    import java.util.ArrayList;
037    import java.util.List;
038    
039    /**
040     * A class for arithmetic on values of type {@code BigInteger}.
041     *
042     * <p>The implementations of many methods in this class are based on material from Henry S. Warren,
043     * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
044     *
045     * <p>Similar functionality for {@code int} and for {@code long} can be found in
046     * {@link IntMath} and {@link LongMath} respectively.
047     *
048     * @author Louis Wasserman
049     * @since 11.0
050     */
051    @Beta
052    @GwtCompatible(emulated = true)
053    public final class BigIntegerMath {
054      /**
055       * Returns {@code true} if {@code x} represents a power of two.
056       */
057      public static boolean isPowerOfTwo(BigInteger x) {
058        checkNotNull(x);
059        return x.signum() > 0 && x.getLowestSetBit() == x.bitLength() - 1;
060      }
061    
062      /**
063       * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
064       *
065       * @throws IllegalArgumentException if {@code x <= 0}
066       * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
067       *         is not a power of two
068       */
069      @SuppressWarnings("fallthrough")
070      public static int log2(BigInteger x, RoundingMode mode) {
071        checkPositive("x", checkNotNull(x));
072        int logFloor = x.bitLength() - 1;
073        switch (mode) {
074          case UNNECESSARY:
075            checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through
076          case DOWN:
077          case FLOOR:
078            return logFloor;
079    
080          case UP:
081          case CEILING:
082            return isPowerOfTwo(x) ? logFloor : logFloor + 1;
083    
084          case HALF_DOWN:
085          case HALF_UP:
086          case HALF_EVEN:
087            if (logFloor < SQRT2_PRECOMPUTE_THRESHOLD) {
088              BigInteger halfPower = SQRT2_PRECOMPUTED_BITS.shiftRight(
089                  SQRT2_PRECOMPUTE_THRESHOLD - logFloor);
090              if (x.compareTo(halfPower) <= 0) {
091                return logFloor;
092              } else {
093                return logFloor + 1;
094              }
095            }
096            /*
097             * Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
098             *
099             * To determine which side of logFloor.5 the logarithm is, we compare x^2 to 2^(2 *
100             * logFloor + 1).
101             */
102            BigInteger x2 = x.pow(2);
103            int logX2Floor = x2.bitLength() - 1;
104            return (logX2Floor < 2 * logFloor + 1) ? logFloor : logFloor + 1;
105    
106          default:
107            throw new AssertionError();
108        }
109      }
110    
111      /*
112       * The maximum number of bits in a square root for which we'll precompute an explicit half power
113       * of two. This can be any value, but higher values incur more class load time and linearly
114       * increasing memory consumption.
115       */
116      @VisibleForTesting static final int SQRT2_PRECOMPUTE_THRESHOLD = 256;
117    
118      @VisibleForTesting static final BigInteger SQRT2_PRECOMPUTED_BITS =
119          new BigInteger("16a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b0667322a", 16);
120    
121      /**
122       * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
123       *
124       * @throws IllegalArgumentException if {@code x <= 0}
125       * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
126       *         is not a power of ten
127       */
128      @GwtIncompatible("TODO")
129      @SuppressWarnings("fallthrough")
130      public static int log10(BigInteger x, RoundingMode mode) {
131        checkPositive("x", x);
132        if (fitsInLong(x)) {
133          return LongMath.log10(x.longValue(), mode);
134        }
135    
136        // capacity of 10 suffices for all x <= 10^(2^10).
137        List<BigInteger> powersOf10 = new ArrayList<BigInteger>(10);
138        BigInteger powerOf10 = BigInteger.TEN;
139        while (x.compareTo(powerOf10) >= 0) {
140          powersOf10.add(powerOf10);
141          powerOf10 = powerOf10.pow(2);
142        }
143        BigInteger floorPow = BigInteger.ONE;
144        int floorLog = 0;
145        for (int i = powersOf10.size() - 1; i >= 0; i--) {
146          BigInteger powOf10 = powersOf10.get(i);
147          floorLog *= 2;
148          BigInteger tenPow = powOf10.multiply(floorPow);
149          if (x.compareTo(tenPow) >= 0) {
150            floorPow = tenPow;
151            floorLog++;
152          }
153        }
154        switch (mode) {
155          case UNNECESSARY:
156            checkRoundingUnnecessary(floorPow.equals(x));
157            // fall through
158          case FLOOR:
159          case DOWN:
160            return floorLog;
161    
162          case CEILING:
163          case UP:
164            return floorPow.equals(x) ? floorLog : floorLog + 1;
165    
166          case HALF_DOWN:
167          case HALF_UP:
168          case HALF_EVEN:
169            // Since sqrt(10) is irrational, log10(x) - floorLog can never be exactly 0.5
170            BigInteger x2 = x.pow(2);
171            BigInteger halfPowerSquared = floorPow.pow(2).multiply(BigInteger.TEN);
172            return (x2.compareTo(halfPowerSquared) <= 0) ? floorLog : floorLog + 1;
173          default:
174            throw new AssertionError();
175        }
176      }
177    
178      /**
179       * Returns the square root of {@code x}, rounded with the specified rounding mode.
180       *
181       * @throws IllegalArgumentException if {@code x < 0}
182       * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and
183       *         {@code sqrt(x)} is not an integer
184       */
185      @GwtIncompatible("TODO")
186      @SuppressWarnings("fallthrough")
187      public static BigInteger sqrt(BigInteger x, RoundingMode mode) {
188        checkNonNegative("x", x);
189        if (fitsInLong(x)) {
190          return BigInteger.valueOf(LongMath.sqrt(x.longValue(), mode));
191        }
192        BigInteger sqrtFloor = sqrtFloor(x);
193        switch (mode) {
194          case UNNECESSARY:
195            checkRoundingUnnecessary(sqrtFloor.pow(2).equals(x)); // fall through
196          case FLOOR:
197          case DOWN:
198            return sqrtFloor;
199          case CEILING:
200          case UP:
201            return sqrtFloor.pow(2).equals(x) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
202          case HALF_DOWN:
203          case HALF_UP:
204          case HALF_EVEN:
205            BigInteger halfSquare = sqrtFloor.pow(2).add(sqrtFloor);
206            /*
207             * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both
208             * x and halfSquare are integers, this is equivalent to testing whether or not x <=
209             * halfSquare.
210             */
211            return (halfSquare.compareTo(x) >= 0) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
212          default:
213            throw new AssertionError();
214        }
215      }
216    
217      @GwtIncompatible("TODO")
218      private static BigInteger sqrtFloor(BigInteger x) {
219        /*
220         * Adapted from Hacker's Delight, Figure 11-1.
221         *
222         * Using DoubleUtils.bigToDouble, getting a double approximation of x is extremely fast, and
223         * then we can get a double approximation of the square root. Then, we iteratively improve this
224         * guess with an application of Newton's method, which sets guess := (guess + (x / guess)) / 2.
225         * This iteration has the following two properties:
226         *
227         * a) every iteration (except potentially the first) has guess >= floor(sqrt(x)). This is
228         * because guess' is the arithmetic mean of guess and x / guess, sqrt(x) is the geometric mean,
229         * and the arithmetic mean is always higher than the geometric mean.
230         *
231         * b) this iteration converges to floor(sqrt(x)). In fact, the number of correct digits doubles
232         * with each iteration, so this algorithm takes O(log(digits)) iterations.
233         *
234         * We start out with a double-precision approximation, which may be higher or lower than the
235         * true value. Therefore, we perform at least one Newton iteration to get a guess that's
236         * definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point.
237         */
238        BigInteger sqrt0;
239        int log2 = log2(x, FLOOR);
240        if(log2 < Double.MAX_EXPONENT) {
241          sqrt0 = sqrtApproxWithDoubles(x);
242        } else {
243          int shift = (log2 - DoubleUtils.SIGNIFICAND_BITS) & ~1; // even!
244          /*
245           * We have that x / 2^shift < 2^54. Our initial approximation to sqrtFloor(x) will be
246           * 2^(shift/2) * sqrtApproxWithDoubles(x / 2^shift).
247           */
248          sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1);
249        }
250        BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
251        if (sqrt0.equals(sqrt1)) {
252          return sqrt0;
253        }
254        do {
255          sqrt0 = sqrt1;
256          sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
257        } while (sqrt1.compareTo(sqrt0) < 0);
258        return sqrt0;
259      }
260    
261      @GwtIncompatible("TODO")
262      private static BigInteger sqrtApproxWithDoubles(BigInteger x) {
263        return DoubleMath.roundToBigInteger(Math.sqrt(DoubleUtils.bigToDouble(x)), HALF_EVEN);
264      }
265    
266      /**
267       * Returns the result of dividing {@code p} by {@code q}, rounding using the specified
268       * {@code RoundingMode}.
269       *
270       * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
271       *         is not an integer multiple of {@code b}
272       */
273      @GwtIncompatible("TODO")
274      public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode){
275        BigDecimal pDec = new BigDecimal(p);
276        BigDecimal qDec = new BigDecimal(q);
277        return pDec.divide(qDec, 0, mode).toBigIntegerExact();
278      }
279    
280      /**
281       * Returns {@code n!}, that is, the product of the first {@code n} positive
282       * integers, or {@code 1} if {@code n == 0}.
283       *
284       * <p><b>Warning</b>: the result takes <i>O(n log n)</i> space, so use cautiously.
285       *
286       * <p>This uses an efficient binary recursive algorithm to compute the factorial
287       * with balanced multiplies.  It also removes all the 2s from the intermediate
288       * products (shifting them back in at the end).
289       *
290       * @throws IllegalArgumentException if {@code n < 0}
291       */
292      public static BigInteger factorial(int n) {
293        checkNonNegative("n", n);
294    
295        // If the factorial is small enough, just use LongMath to do it.
296        if (n < LongMath.FACTORIALS.length) {
297          return BigInteger.valueOf(LongMath.FACTORIALS[n]);
298        }
299    
300        // Pre-allocate space for our list of intermediate BigIntegers.
301        int approxSize = IntMath.divide(n * IntMath.log2(n, CEILING), Long.SIZE, CEILING);
302        ArrayList<BigInteger> bignums = new ArrayList<BigInteger>(approxSize);
303    
304        // Start from the pre-computed maximum long factorial.
305        int startingNumber = LongMath.FACTORIALS.length;
306        long product = LongMath.FACTORIALS[startingNumber - 1];
307        // Strip off 2s from this value.
308        int shift = Long.numberOfTrailingZeros(product);
309        product >>= shift;
310    
311        // Use floor(log2(num)) + 1 to prevent overflow of multiplication.
312        int productBits = LongMath.log2(product, FLOOR) + 1;
313        int bits = LongMath.log2(startingNumber, FLOOR) + 1;
314        // Check for the next power of two boundary, to save us a CLZ operation.
315        int nextPowerOfTwo = 1 << (bits - 1);
316    
317        // Iteratively multiply the longs as big as they can go.
318        for (long num = startingNumber; num <= n; num++) {
319          // Check to see if the floor(log2(num)) + 1 has changed.
320          if ((num & nextPowerOfTwo) != 0) {
321            nextPowerOfTwo <<= 1;
322            bits++;
323          }
324          // Get rid of the 2s in num.
325          int tz = Long.numberOfTrailingZeros(num);
326          long normalizedNum = num >> tz;
327          shift += tz;
328          // Adjust floor(log2(num)) + 1.
329          int normalizedBits = bits - tz;
330          // If it won't fit in a long, then we store off the intermediate product.
331          if (normalizedBits + productBits >= Long.SIZE) {
332            bignums.add(BigInteger.valueOf(product));
333            product = 1;
334            productBits = 0;
335          }
336          product *= normalizedNum;
337          productBits = LongMath.log2(product, FLOOR) + 1;
338        }
339        // Check for leftovers.
340        if (product > 1) {
341          bignums.add(BigInteger.valueOf(product));
342        }
343        // Efficiently multiply all the intermediate products together.
344        return listProduct(bignums).shiftLeft(shift);
345      }
346    
347      static BigInteger listProduct(List<BigInteger> nums) {
348        return listProduct(nums, 0, nums.size());
349      }
350    
351      static BigInteger listProduct(List<BigInteger> nums, int start, int end) {
352        switch (end - start) {
353          case 0:
354            return BigInteger.ONE;
355          case 1:
356            return nums.get(start);
357          case 2:
358            return nums.get(start).multiply(nums.get(start + 1));
359          case 3:
360            return nums.get(start).multiply(nums.get(start + 1)).multiply(nums.get(start + 2));
361          default:
362            // Otherwise, split the list in half and recursively do this.
363            int m = (end + start) >>> 1;
364            return listProduct(nums, start, m).multiply(listProduct(nums, m, end));
365        }
366      }
367    
368     /**
369       * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
370       * {@code k}, that is, {@code n! / (k! (n - k)!)}.
371       *
372       * <p><b>Warning</b>: the result can take as much as <i>O(k log n)</i> space.
373       *
374       * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n}
375       */
376      public static BigInteger binomial(int n, int k) {
377        checkNonNegative("n", n);
378        checkNonNegative("k", k);
379        checkArgument(k <= n, "k (%s) > n (%s)", k, n);
380        if (k > (n >> 1)) {
381          k = n - k;
382        }
383        if (k < LongMath.BIGGEST_BINOMIALS.length && n <= LongMath.BIGGEST_BINOMIALS[k]) {
384          return BigInteger.valueOf(LongMath.binomial(n, k));
385        }
386        BigInteger result = BigInteger.ONE;
387        for (int i = 0; i < k; i++) {
388          result = result.multiply(BigInteger.valueOf(n - i));
389          result = result.divide(BigInteger.valueOf(i + 1));
390        }
391        return result;
392      }
393    
394      // Returns true if BigInteger.valueOf(x.longValue()).equals(x).
395      @GwtIncompatible("TODO")
396      static boolean fitsInLong(BigInteger x) {
397        return x.bitLength() <= Long.SIZE - 1;
398      }
399    
400      private BigIntegerMath() {}
401    }