001 /* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.math; 018 019 import static com.google.common.base.Preconditions.checkArgument; 020 import static com.google.common.base.Preconditions.checkNotNull; 021 import static com.google.common.math.MathPreconditions.checkNonNegative; 022 import static com.google.common.math.MathPreconditions.checkPositive; 023 import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 024 import static java.math.RoundingMode.CEILING; 025 import static java.math.RoundingMode.FLOOR; 026 import static java.math.RoundingMode.HALF_EVEN; 027 028 import com.google.common.annotations.Beta; 029 import com.google.common.annotations.GwtCompatible; 030 import com.google.common.annotations.GwtIncompatible; 031 import com.google.common.annotations.VisibleForTesting; 032 033 import java.math.BigDecimal; 034 import java.math.BigInteger; 035 import java.math.RoundingMode; 036 import java.util.ArrayList; 037 import java.util.List; 038 039 /** 040 * A class for arithmetic on values of type {@code BigInteger}. 041 * 042 * <p>The implementations of many methods in this class are based on material from Henry S. Warren, 043 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002). 044 * 045 * <p>Similar functionality for {@code int} and for {@code long} can be found in 046 * {@link IntMath} and {@link LongMath} respectively. 047 * 048 * @author Louis Wasserman 049 * @since 11.0 050 */ 051 @Beta 052 @GwtCompatible(emulated = true) 053 public final class BigIntegerMath { 054 /** 055 * Returns {@code true} if {@code x} represents a power of two. 056 */ 057 public static boolean isPowerOfTwo(BigInteger x) { 058 checkNotNull(x); 059 return x.signum() > 0 && x.getLowestSetBit() == x.bitLength() - 1; 060 } 061 062 /** 063 * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. 064 * 065 * @throws IllegalArgumentException if {@code x <= 0} 066 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 067 * is not a power of two 068 */ 069 @SuppressWarnings("fallthrough") 070 public static int log2(BigInteger x, RoundingMode mode) { 071 checkPositive("x", checkNotNull(x)); 072 int logFloor = x.bitLength() - 1; 073 switch (mode) { 074 case UNNECESSARY: 075 checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through 076 case DOWN: 077 case FLOOR: 078 return logFloor; 079 080 case UP: 081 case CEILING: 082 return isPowerOfTwo(x) ? logFloor : logFloor + 1; 083 084 case HALF_DOWN: 085 case HALF_UP: 086 case HALF_EVEN: 087 if (logFloor < SQRT2_PRECOMPUTE_THRESHOLD) { 088 BigInteger halfPower = SQRT2_PRECOMPUTED_BITS.shiftRight( 089 SQRT2_PRECOMPUTE_THRESHOLD - logFloor); 090 if (x.compareTo(halfPower) <= 0) { 091 return logFloor; 092 } else { 093 return logFloor + 1; 094 } 095 } 096 /* 097 * Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 098 * 099 * To determine which side of logFloor.5 the logarithm is, we compare x^2 to 2^(2 * 100 * logFloor + 1). 101 */ 102 BigInteger x2 = x.pow(2); 103 int logX2Floor = x2.bitLength() - 1; 104 return (logX2Floor < 2 * logFloor + 1) ? logFloor : logFloor + 1; 105 106 default: 107 throw new AssertionError(); 108 } 109 } 110 111 /* 112 * The maximum number of bits in a square root for which we'll precompute an explicit half power 113 * of two. This can be any value, but higher values incur more class load time and linearly 114 * increasing memory consumption. 115 */ 116 @VisibleForTesting static final int SQRT2_PRECOMPUTE_THRESHOLD = 256; 117 118 @VisibleForTesting static final BigInteger SQRT2_PRECOMPUTED_BITS = 119 new BigInteger("16a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b0667322a", 16); 120 121 /** 122 * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. 123 * 124 * @throws IllegalArgumentException if {@code x <= 0} 125 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 126 * is not a power of ten 127 */ 128 @GwtIncompatible("TODO") 129 @SuppressWarnings("fallthrough") 130 public static int log10(BigInteger x, RoundingMode mode) { 131 checkPositive("x", x); 132 if (fitsInLong(x)) { 133 return LongMath.log10(x.longValue(), mode); 134 } 135 136 // capacity of 10 suffices for all x <= 10^(2^10). 137 List<BigInteger> powersOf10 = new ArrayList<BigInteger>(10); 138 BigInteger powerOf10 = BigInteger.TEN; 139 while (x.compareTo(powerOf10) >= 0) { 140 powersOf10.add(powerOf10); 141 powerOf10 = powerOf10.pow(2); 142 } 143 BigInteger floorPow = BigInteger.ONE; 144 int floorLog = 0; 145 for (int i = powersOf10.size() - 1; i >= 0; i--) { 146 BigInteger powOf10 = powersOf10.get(i); 147 floorLog *= 2; 148 BigInteger tenPow = powOf10.multiply(floorPow); 149 if (x.compareTo(tenPow) >= 0) { 150 floorPow = tenPow; 151 floorLog++; 152 } 153 } 154 switch (mode) { 155 case UNNECESSARY: 156 checkRoundingUnnecessary(floorPow.equals(x)); 157 // fall through 158 case FLOOR: 159 case DOWN: 160 return floorLog; 161 162 case CEILING: 163 case UP: 164 return floorPow.equals(x) ? floorLog : floorLog + 1; 165 166 case HALF_DOWN: 167 case HALF_UP: 168 case HALF_EVEN: 169 // Since sqrt(10) is irrational, log10(x) - floorLog can never be exactly 0.5 170 BigInteger x2 = x.pow(2); 171 BigInteger halfPowerSquared = floorPow.pow(2).multiply(BigInteger.TEN); 172 return (x2.compareTo(halfPowerSquared) <= 0) ? floorLog : floorLog + 1; 173 default: 174 throw new AssertionError(); 175 } 176 } 177 178 /** 179 * Returns the square root of {@code x}, rounded with the specified rounding mode. 180 * 181 * @throws IllegalArgumentException if {@code x < 0} 182 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and 183 * {@code sqrt(x)} is not an integer 184 */ 185 @GwtIncompatible("TODO") 186 @SuppressWarnings("fallthrough") 187 public static BigInteger sqrt(BigInteger x, RoundingMode mode) { 188 checkNonNegative("x", x); 189 if (fitsInLong(x)) { 190 return BigInteger.valueOf(LongMath.sqrt(x.longValue(), mode)); 191 } 192 BigInteger sqrtFloor = sqrtFloor(x); 193 switch (mode) { 194 case UNNECESSARY: 195 checkRoundingUnnecessary(sqrtFloor.pow(2).equals(x)); // fall through 196 case FLOOR: 197 case DOWN: 198 return sqrtFloor; 199 case CEILING: 200 case UP: 201 return sqrtFloor.pow(2).equals(x) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE); 202 case HALF_DOWN: 203 case HALF_UP: 204 case HALF_EVEN: 205 BigInteger halfSquare = sqrtFloor.pow(2).add(sqrtFloor); 206 /* 207 * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both 208 * x and halfSquare are integers, this is equivalent to testing whether or not x <= 209 * halfSquare. 210 */ 211 return (halfSquare.compareTo(x) >= 0) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE); 212 default: 213 throw new AssertionError(); 214 } 215 } 216 217 @GwtIncompatible("TODO") 218 private static BigInteger sqrtFloor(BigInteger x) { 219 /* 220 * Adapted from Hacker's Delight, Figure 11-1. 221 * 222 * Using DoubleUtils.bigToDouble, getting a double approximation of x is extremely fast, and 223 * then we can get a double approximation of the square root. Then, we iteratively improve this 224 * guess with an application of Newton's method, which sets guess := (guess + (x / guess)) / 2. 225 * This iteration has the following two properties: 226 * 227 * a) every iteration (except potentially the first) has guess >= floor(sqrt(x)). This is 228 * because guess' is the arithmetic mean of guess and x / guess, sqrt(x) is the geometric mean, 229 * and the arithmetic mean is always higher than the geometric mean. 230 * 231 * b) this iteration converges to floor(sqrt(x)). In fact, the number of correct digits doubles 232 * with each iteration, so this algorithm takes O(log(digits)) iterations. 233 * 234 * We start out with a double-precision approximation, which may be higher or lower than the 235 * true value. Therefore, we perform at least one Newton iteration to get a guess that's 236 * definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point. 237 */ 238 BigInteger sqrt0; 239 int log2 = log2(x, FLOOR); 240 if(log2 < Double.MAX_EXPONENT) { 241 sqrt0 = sqrtApproxWithDoubles(x); 242 } else { 243 int shift = (log2 - DoubleUtils.SIGNIFICAND_BITS) & ~1; // even! 244 /* 245 * We have that x / 2^shift < 2^54. Our initial approximation to sqrtFloor(x) will be 246 * 2^(shift/2) * sqrtApproxWithDoubles(x / 2^shift). 247 */ 248 sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1); 249 } 250 BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1); 251 if (sqrt0.equals(sqrt1)) { 252 return sqrt0; 253 } 254 do { 255 sqrt0 = sqrt1; 256 sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1); 257 } while (sqrt1.compareTo(sqrt0) < 0); 258 return sqrt0; 259 } 260 261 @GwtIncompatible("TODO") 262 private static BigInteger sqrtApproxWithDoubles(BigInteger x) { 263 return DoubleMath.roundToBigInteger(Math.sqrt(DoubleUtils.bigToDouble(x)), HALF_EVEN); 264 } 265 266 /** 267 * Returns the result of dividing {@code p} by {@code q}, rounding using the specified 268 * {@code RoundingMode}. 269 * 270 * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} 271 * is not an integer multiple of {@code b} 272 */ 273 @GwtIncompatible("TODO") 274 public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode){ 275 BigDecimal pDec = new BigDecimal(p); 276 BigDecimal qDec = new BigDecimal(q); 277 return pDec.divide(qDec, 0, mode).toBigIntegerExact(); 278 } 279 280 /** 281 * Returns {@code n!}, that is, the product of the first {@code n} positive 282 * integers, or {@code 1} if {@code n == 0}. 283 * 284 * <p><b>Warning</b>: the result takes <i>O(n log n)</i> space, so use cautiously. 285 * 286 * <p>This uses an efficient binary recursive algorithm to compute the factorial 287 * with balanced multiplies. It also removes all the 2s from the intermediate 288 * products (shifting them back in at the end). 289 * 290 * @throws IllegalArgumentException if {@code n < 0} 291 */ 292 public static BigInteger factorial(int n) { 293 checkNonNegative("n", n); 294 295 // If the factorial is small enough, just use LongMath to do it. 296 if (n < LongMath.FACTORIALS.length) { 297 return BigInteger.valueOf(LongMath.FACTORIALS[n]); 298 } 299 300 // Pre-allocate space for our list of intermediate BigIntegers. 301 int approxSize = IntMath.divide(n * IntMath.log2(n, CEILING), Long.SIZE, CEILING); 302 ArrayList<BigInteger> bignums = new ArrayList<BigInteger>(approxSize); 303 304 // Start from the pre-computed maximum long factorial. 305 int startingNumber = LongMath.FACTORIALS.length; 306 long product = LongMath.FACTORIALS[startingNumber - 1]; 307 // Strip off 2s from this value. 308 int shift = Long.numberOfTrailingZeros(product); 309 product >>= shift; 310 311 // Use floor(log2(num)) + 1 to prevent overflow of multiplication. 312 int productBits = LongMath.log2(product, FLOOR) + 1; 313 int bits = LongMath.log2(startingNumber, FLOOR) + 1; 314 // Check for the next power of two boundary, to save us a CLZ operation. 315 int nextPowerOfTwo = 1 << (bits - 1); 316 317 // Iteratively multiply the longs as big as they can go. 318 for (long num = startingNumber; num <= n; num++) { 319 // Check to see if the floor(log2(num)) + 1 has changed. 320 if ((num & nextPowerOfTwo) != 0) { 321 nextPowerOfTwo <<= 1; 322 bits++; 323 } 324 // Get rid of the 2s in num. 325 int tz = Long.numberOfTrailingZeros(num); 326 long normalizedNum = num >> tz; 327 shift += tz; 328 // Adjust floor(log2(num)) + 1. 329 int normalizedBits = bits - tz; 330 // If it won't fit in a long, then we store off the intermediate product. 331 if (normalizedBits + productBits >= Long.SIZE) { 332 bignums.add(BigInteger.valueOf(product)); 333 product = 1; 334 productBits = 0; 335 } 336 product *= normalizedNum; 337 productBits = LongMath.log2(product, FLOOR) + 1; 338 } 339 // Check for leftovers. 340 if (product > 1) { 341 bignums.add(BigInteger.valueOf(product)); 342 } 343 // Efficiently multiply all the intermediate products together. 344 return listProduct(bignums).shiftLeft(shift); 345 } 346 347 static BigInteger listProduct(List<BigInteger> nums) { 348 return listProduct(nums, 0, nums.size()); 349 } 350 351 static BigInteger listProduct(List<BigInteger> nums, int start, int end) { 352 switch (end - start) { 353 case 0: 354 return BigInteger.ONE; 355 case 1: 356 return nums.get(start); 357 case 2: 358 return nums.get(start).multiply(nums.get(start + 1)); 359 case 3: 360 return nums.get(start).multiply(nums.get(start + 1)).multiply(nums.get(start + 2)); 361 default: 362 // Otherwise, split the list in half and recursively do this. 363 int m = (end + start) >>> 1; 364 return listProduct(nums, start, m).multiply(listProduct(nums, m, end)); 365 } 366 } 367 368 /** 369 * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and 370 * {@code k}, that is, {@code n! / (k! (n - k)!)}. 371 * 372 * <p><b>Warning</b>: the result can take as much as <i>O(k log n)</i> space. 373 * 374 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n} 375 */ 376 public static BigInteger binomial(int n, int k) { 377 checkNonNegative("n", n); 378 checkNonNegative("k", k); 379 checkArgument(k <= n, "k (%s) > n (%s)", k, n); 380 if (k > (n >> 1)) { 381 k = n - k; 382 } 383 if (k < LongMath.BIGGEST_BINOMIALS.length && n <= LongMath.BIGGEST_BINOMIALS[k]) { 384 return BigInteger.valueOf(LongMath.binomial(n, k)); 385 } 386 BigInteger result = BigInteger.ONE; 387 for (int i = 0; i < k; i++) { 388 result = result.multiply(BigInteger.valueOf(n - i)); 389 result = result.divide(BigInteger.valueOf(i + 1)); 390 } 391 return result; 392 } 393 394 // Returns true if BigInteger.valueOf(x.longValue()).equals(x). 395 @GwtIncompatible("TODO") 396 static boolean fitsInLong(BigInteger x) { 397 return x.bitLength() <= Long.SIZE - 1; 398 } 399 400 private BigIntegerMath() {} 401 }