001 /* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.cache; 018 019 import static com.google.common.base.Objects.firstNonNull; 020 import static com.google.common.base.Preconditions.checkArgument; 021 import static com.google.common.base.Preconditions.checkNotNull; 022 import static com.google.common.base.Preconditions.checkState; 023 024 import com.google.common.annotations.Beta; 025 import com.google.common.annotations.GwtCompatible; 026 import com.google.common.annotations.GwtIncompatible; 027 import com.google.common.base.Ascii; 028 import com.google.common.base.Equivalence; 029 import com.google.common.base.Equivalences; 030 import com.google.common.base.Objects; 031 import com.google.common.base.Supplier; 032 import com.google.common.base.Suppliers; 033 import com.google.common.base.Ticker; 034 import com.google.common.cache.AbstractCache.SimpleStatsCounter; 035 import com.google.common.cache.AbstractCache.StatsCounter; 036 import com.google.common.cache.LocalCache.Strength; 037 038 import java.lang.ref.SoftReference; 039 import java.lang.ref.WeakReference; 040 import java.util.ConcurrentModificationException; 041 import java.util.concurrent.ConcurrentHashMap; 042 import java.util.concurrent.TimeUnit; 043 import java.util.logging.Level; 044 import java.util.logging.Logger; 045 046 import javax.annotation.CheckReturnValue; 047 048 /** 049 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 050 * following features: 051 * 052 * <ul> 053 * <li>automatic loading of entries into the cache 054 * <li>least-recently-used eviction when a maximum size is exceeded 055 * <li>time-based expiration of entries, measured since last access or last write 056 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references 057 * <li>values automatically wrapped in {@linkplain WeakReference weak} or 058 * {@linkplain SoftReference soft} references 059 * <li>notification of evicted (or otherwise removed) entries 060 * <li>accumulation of cache access statistics 061 * </ul> 062 * 063 * These features are all optional; caches can be created using all or none of them. By default 064 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 065 * 066 * <p>Usage example: <pre> {@code 067 * 068 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 069 * .maximumSize(10000) 070 * .expireAfterWrite(10, TimeUnit.MINUTES) 071 * .removalListener(MY_LISTENER) 072 * .build( 073 * new CacheLoader<Key, Graph>() { 074 * public Graph load(Key key) throws AnyException { 075 * return createExpensiveGraph(key); 076 * } 077 * });}</pre> 078 * 079 * Or equivalently, <pre> {@code 080 * 081 * // In real life this would come from a command-line flag or config file 082 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 083 * 084 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 085 * .removalListener(MY_LISTENER) 086 * .build( 087 * new CacheLoader<Key, Graph>() { 088 * public Graph load(Key key) throws AnyException { 089 * return createExpensiveGraph(key); 090 * } 091 * });}</pre> 092 * 093 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 094 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 095 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 096 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 097 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 098 * are reflected in that iterator. These iterators never throw {@link 099 * ConcurrentModificationException}. 100 * 101 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the 102 * {@link Object#equals equals} method) to determine equality for keys or values. However, if 103 * {@link #weakKeys} was specified, the cache uses identity ({@code ==}) 104 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was 105 * specified, the cache uses identity comparisons for values. 106 * 107 * <p>Entries are automatically evicted from the cache when any of 108 * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, 109 * {@linkplain #expireAfterWrite expireAfterWrite}, 110 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 111 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested. 112 * 113 * <p>If {@linkplain #maximumSize(long) maximumSize} or 114 * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache 115 * modification. 116 * 117 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or 118 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each 119 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired 120 * entries may be counted in {@link Cache#size}, but will never be visible to read or write 121 * operations. 122 * 123 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or 124 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in 125 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be 126 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to 127 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be 128 * visible to read or write operations. 129 * 130 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 131 * will be performed during write operations, or during occasional read operations in the absense of 132 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 133 * calling it should not be necessary with a high throughput cache. Only caches built with 134 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 135 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 136 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic 137 * maintenance. 138 * 139 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 140 * retain all the configuration properties of the original cache. Note that the serialized form does 141 * <i>not</i> include cache contents, but only configuration. 142 * 143 * <p>See the Guava User Guide article on <a href= 144 * "http://code.google.com/p/guava-libraries/wiki/CachesExplained">caching</a> for a higher-level 145 * explanation. 146 * 147 * @param <K> the base key type for all caches created by this builder 148 * @param <V> the base value type for all caches created by this builder 149 * @author Charles Fry 150 * @author Kevin Bourrillion 151 * @since 10.0 152 */ 153 @GwtCompatible(emulated = true) 154 public final class CacheBuilder<K, V> { 155 private static final int DEFAULT_INITIAL_CAPACITY = 16; 156 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 157 private static final int DEFAULT_EXPIRATION_NANOS = 0; 158 private static final int DEFAULT_REFRESH_NANOS = 0; 159 160 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance( 161 new StatsCounter() { 162 @Override 163 public void recordHits(int count) {} 164 165 @Override 166 public void recordMisses(int count) {} 167 168 @Override 169 public void recordLoadSuccess(long loadTime) {} 170 171 @Override 172 public void recordLoadException(long loadTime) {} 173 174 @Override 175 public void recordEviction() {} 176 177 @Override 178 public CacheStats snapshot() { 179 return EMPTY_STATS; 180 } 181 }); 182 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 183 184 static final Supplier<SimpleStatsCounter> CACHE_STATS_COUNTER = 185 new Supplier<SimpleStatsCounter>() { 186 @Override 187 public SimpleStatsCounter get() { 188 return new SimpleStatsCounter(); 189 } 190 }; 191 192 enum NullListener implements RemovalListener<Object, Object> { 193 INSTANCE; 194 195 @Override 196 public void onRemoval(RemovalNotification<Object, Object> notification) {} 197 } 198 199 enum OneWeigher implements Weigher<Object, Object> { 200 INSTANCE; 201 202 @Override 203 public int weigh(Object key, Object value) { 204 return 1; 205 } 206 } 207 208 static final Ticker NULL_TICKER = new Ticker() { 209 @Override 210 public long read() { 211 return 0; 212 } 213 }; 214 215 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 216 217 static final int UNSET_INT = -1; 218 219 boolean strictParsing = true; 220 221 int initialCapacity = UNSET_INT; 222 int concurrencyLevel = UNSET_INT; 223 long maximumSize = UNSET_INT; 224 long maximumWeight = UNSET_INT; 225 Weigher<? super K, ? super V> weigher; 226 227 Strength keyStrength; 228 Strength valueStrength; 229 230 long expireAfterWriteNanos = UNSET_INT; 231 long expireAfterAccessNanos = UNSET_INT; 232 long refreshNanos = UNSET_INT; 233 234 Equivalence<Object> keyEquivalence; 235 Equivalence<Object> valueEquivalence; 236 237 RemovalListener<? super K, ? super V> removalListener; 238 Ticker ticker; 239 240 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 241 242 // TODO(fry): make constructor private and update tests to use newBuilder 243 CacheBuilder() {} 244 245 /** 246 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 247 * strong values, and no automatic eviction of any kind. 248 */ 249 public static CacheBuilder<Object, Object> newBuilder() { 250 return new CacheBuilder<Object, Object>(); 251 } 252 253 /** 254 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 255 * 256 * @since 12.0 257 */ 258 @Beta 259 @GwtIncompatible("To be supported") 260 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 261 return spec.toCacheBuilder() 262 .lenientParsing(); 263 } 264 265 /** 266 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 267 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 268 * 269 * @param spec a String in the format specified by {@link CacheBuilderSpec} 270 * @since 12.0 271 */ 272 @Beta 273 @GwtIncompatible("To be supported") 274 public static CacheBuilder<Object, Object> from(String spec) { 275 return from(CacheBuilderSpec.parse(spec)); 276 } 277 278 /** 279 * Enables lenient parsing. Useful for tests and spec parsing. 280 */ 281 CacheBuilder<K, V> lenientParsing() { 282 strictParsing = false; 283 return this; 284 } 285 286 /** 287 * Sets a custom {@code Equivalence} strategy for comparing keys. 288 * 289 * <p>By default, the cache uses {@link Equivalences#identity} to determine key equality when 290 * {@link #weakKeys} is specified, and {@link Equivalences#equals()} otherwise. 291 */ 292 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 293 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 294 keyEquivalence = checkNotNull(equivalence); 295 return this; 296 } 297 298 Equivalence<Object> getKeyEquivalence() { 299 return firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 300 } 301 302 /** 303 * Sets a custom {@code Equivalence} strategy for comparing values. 304 * 305 * <p>By default, the cache uses {@link Equivalences#identity} to determine value equality when 306 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalences#equals()} 307 * otherwise. 308 */ 309 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 310 checkState(valueEquivalence == null, 311 "value equivalence was already set to %s", valueEquivalence); 312 this.valueEquivalence = checkNotNull(equivalence); 313 return this; 314 } 315 316 Equivalence<Object> getValueEquivalence() { 317 return firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 318 } 319 320 /** 321 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 322 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 323 * having a hash table of size eight. Providing a large enough estimate at construction time 324 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 325 * high wastes memory. 326 * 327 * @throws IllegalArgumentException if {@code initialCapacity} is negative 328 * @throws IllegalStateException if an initial capacity was already set 329 */ 330 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 331 checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s", 332 this.initialCapacity); 333 checkArgument(initialCapacity >= 0); 334 this.initialCapacity = initialCapacity; 335 return this; 336 } 337 338 int getInitialCapacity() { 339 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 340 } 341 342 /** 343 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 344 * table is internally partitioned to try to permit the indicated number of concurrent updates 345 * without contention. Because assignment of entries to these partitions is not necessarily 346 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 347 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 348 * higher value than you need can waste space and time, and a significantly lower value can lead 349 * to thread contention. But overestimates and underestimates within an order of magnitude do not 350 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 351 * at a time, but since read operations and cache loading computations can proceed concurrently, 352 * this still yields higher concurrency than full synchronization. 353 * 354 * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 355 * value, you should always choose it explicitly. 356 * 357 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 358 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 359 * write, and twice for each cache loading computation (once prior to loading the new value, 360 * and once after loading completes). Much internal cache management is performed at the segment 361 * granularity. For example, access queues and write queues are kept per segment when they are 362 * required by the selected eviction algorithm. As such, when writing unit tests it is not 363 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 364 * behavior. 365 * 366 * <p>Note that future implementations may abandon segment locking in favor of more advanced 367 * concurrency controls. 368 * 369 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 370 * @throws IllegalStateException if a concurrency level was already set 371 */ 372 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 373 checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s", 374 this.concurrencyLevel); 375 checkArgument(concurrencyLevel > 0); 376 this.concurrencyLevel = concurrencyLevel; 377 return this; 378 } 379 380 int getConcurrencyLevel() { 381 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 382 } 383 384 /** 385 * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict 386 * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the 387 * cache evicts entries that are less likely to be used again. For example, the cache may evict an 388 * entry because it hasn't been used recently or very often. 389 * 390 * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the 391 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 392 * 393 * @param size the maximum size of the cache 394 * @throws IllegalArgumentException if {@code size} is negative 395 * @throws IllegalStateException if a maximum size was already set 396 */ 397 public CacheBuilder<K, V> maximumSize(long size) { 398 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 399 this.maximumSize); 400 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 401 this.maximumWeight); 402 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 403 checkArgument(size >= 0, "maximum size must not be negative"); 404 this.maximumSize = size; 405 return this; 406 } 407 408 /** 409 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 410 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 411 * corresponding call to {@link #weigher} prior to calling {@link #build}. 412 * 413 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache 414 * size grows close to the maximum, the cache evicts entries that are less likely to be used 415 * again. For example, the cache may evict an entry because it hasn't been used recently or very 416 * often. 417 * 418 * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into 419 * cache. This can be useful in testing, or to disable caching temporarily without a code 420 * change. 421 * 422 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 423 * effect on selecting which entry should be evicted next. 424 * 425 * @param weight the maximum weight the cache may contain 426 * @throws IllegalArgumentException if {@code size} is negative 427 * @throws IllegalStateException if a maximum size was already set 428 * @since 11.0 429 */ 430 public CacheBuilder<K, V> maximumWeight(long weight) { 431 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 432 this.maximumWeight); 433 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 434 this.maximumSize); 435 this.maximumWeight = weight; 436 checkArgument(weight >= 0, "maximum weight must not be negative"); 437 return this; 438 } 439 440 /** 441 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken 442 * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and 443 * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to 444 * calling {@link #build}. Weights are measured and recorded when entries are inserted into the 445 * cache, and are thus effectively static during the lifetime of a cache entry. 446 * 447 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 448 * (though it still may be evicted by other means). 449 * 450 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 451 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 452 * original reference or the returned reference may be used to complete configuration and build 453 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 454 * building caches whose key or value types are incompatible with the types accepted by the 455 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 456 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 457 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 458 * 459 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 460 * a cache whose key or value type is incompatible with the weigher, you will likely experience 461 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 462 * 463 * @param weigher the weigher to use in calculating the weight of cache entries 464 * @throws IllegalArgumentException if {@code size} is negative 465 * @throws IllegalStateException if a maximum size was already set 466 * @since 11.0 467 */ 468 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 469 Weigher<? super K1, ? super V1> weigher) { 470 checkState(this.weigher == null); 471 if (strictParsing) { 472 checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size", 473 this.maximumSize); 474 } 475 476 // safely limiting the kinds of caches this can produce 477 @SuppressWarnings("unchecked") 478 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 479 me.weigher = checkNotNull(weigher); 480 return me; 481 } 482 483 long getMaximumWeight() { 484 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 485 return 0; 486 } 487 return (weigher == null) ? maximumSize : maximumWeight; 488 } 489 490 // Make a safe contravariant cast now so we don't have to do it over and over. 491 @SuppressWarnings("unchecked") 492 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 493 return (Weigher<K1, V1>) Objects.firstNonNull(weigher, OneWeigher.INSTANCE); 494 } 495 496 /** 497 * Specifies that each key (not value) stored in the cache should be strongly referenced. 498 * 499 * @throws IllegalStateException if the key strength was already set 500 */ 501 CacheBuilder<K, V> strongKeys() { 502 return setKeyStrength(Strength.STRONG); 503 } 504 505 /** 506 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 507 * WeakReference} (by default, strong references are used). 508 * 509 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 510 * comparison to determine equality of keys. 511 * 512 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, 513 * but will never be visible to read or write operations; such entries are cleaned up as part of 514 * the routine maintenance described in the class javadoc. 515 * 516 * @throws IllegalStateException if the key strength was already set 517 */ 518 @GwtIncompatible("java.lang.ref.WeakReference") 519 public CacheBuilder<K, V> weakKeys() { 520 return setKeyStrength(Strength.WEAK); 521 } 522 523 CacheBuilder<K, V> setKeyStrength(Strength strength) { 524 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 525 keyStrength = checkNotNull(strength); 526 return this; 527 } 528 529 Strength getKeyStrength() { 530 return firstNonNull(keyStrength, Strength.STRONG); 531 } 532 533 /** 534 * Specifies that each value (not key) stored in the cache should be strongly referenced. 535 * 536 * @throws IllegalStateException if the value strength was already set 537 */ 538 CacheBuilder<K, V> strongValues() { 539 return setValueStrength(Strength.STRONG); 540 } 541 542 /** 543 * Specifies that each value (not key) stored in the cache should be wrapped in a 544 * {@link WeakReference} (by default, strong references are used). 545 * 546 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 547 * candidate for caching; consider {@link #softValues} instead. 548 * 549 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 550 * comparison to determine equality of values. 551 * 552 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 553 * but will never be visible to read or write operations; such entries are cleaned up as part of 554 * the routine maintenance described in the class javadoc. 555 * 556 * @throws IllegalStateException if the value strength was already set 557 */ 558 @GwtIncompatible("java.lang.ref.WeakReference") 559 public CacheBuilder<K, V> weakValues() { 560 return setValueStrength(Strength.WEAK); 561 } 562 563 /** 564 * Specifies that each value (not key) stored in the cache should be wrapped in a 565 * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will 566 * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 567 * demand. 568 * 569 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 570 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 571 * method if you are well familiar with the practical consequences of soft references. 572 * 573 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 574 * comparison to determine equality of values. 575 * 576 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 577 * but will never be visible to read or write operations; such entries are cleaned up as part of 578 * the routine maintenance described in the class javadoc. 579 * 580 * @throws IllegalStateException if the value strength was already set 581 */ 582 @GwtIncompatible("java.lang.ref.SoftReference") 583 public CacheBuilder<K, V> softValues() { 584 return setValueStrength(Strength.SOFT); 585 } 586 587 CacheBuilder<K, V> setValueStrength(Strength strength) { 588 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 589 valueStrength = checkNotNull(strength); 590 return this; 591 } 592 593 Strength getValueStrength() { 594 return firstNonNull(valueStrength, Strength.STRONG); 595 } 596 597 /** 598 * Specifies that each entry should be automatically removed from the cache once a fixed duration 599 * has elapsed after the entry's creation, or the most recent replacement of its value. 600 * 601 * <p>When {@code duration} is zero, this method hands off to 602 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 603 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 604 * change. 605 * 606 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 607 * write operations. Expired entries are cleaned up as part of the routine maintenance described 608 * in the class javadoc. 609 * 610 * @param duration the length of time after an entry is created that it should be automatically 611 * removed 612 * @param unit the unit that {@code duration} is expressed in 613 * @throws IllegalArgumentException if {@code duration} is negative 614 * @throws IllegalStateException if the time to live or time to idle was already set 615 */ 616 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 617 checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns", 618 expireAfterWriteNanos); 619 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 620 this.expireAfterWriteNanos = unit.toNanos(duration); 621 return this; 622 } 623 624 long getExpireAfterWriteNanos() { 625 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 626 } 627 628 /** 629 * Specifies that each entry should be automatically removed from the cache once a fixed duration 630 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 631 * access. Access time is reset by all cache read and write operations (including 632 * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations 633 * on the collection-views of {@link Cache#asMap}. 634 * 635 * <p>When {@code duration} is zero, this method hands off to 636 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 637 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 638 * change. 639 * 640 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 641 * write operations. Expired entries are cleaned up as part of the routine maintenance described 642 * in the class javadoc. 643 * 644 * @param duration the length of time after an entry is last accessed that it should be 645 * automatically removed 646 * @param unit the unit that {@code duration} is expressed in 647 * @throws IllegalArgumentException if {@code duration} is negative 648 * @throws IllegalStateException if the time to idle or time to live was already set 649 */ 650 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 651 checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns", 652 expireAfterAccessNanos); 653 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 654 this.expireAfterAccessNanos = unit.toNanos(duration); 655 return this; 656 } 657 658 long getExpireAfterAccessNanos() { 659 return (expireAfterAccessNanos == UNSET_INT) 660 ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos; 661 } 662 663 /** 664 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 665 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 666 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling 667 * {@link CacheLoader#reload}. 668 * 669 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 670 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 671 * implementation; otherwise refreshes will be performed during unrelated cache read and write 672 * operations. 673 * 674 * <p>Currently automatic refreshes are performed when the first stale request for an entry 675 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 676 * and immediately return the new value if the returned future is complete, and the old value 677 * otherwise. 678 * 679 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 680 * 681 * @param duration the length of time after an entry is created that it should be considered 682 * stale, and thus eligible for refresh 683 * @param unit the unit that {@code duration} is expressed in 684 * @throws IllegalArgumentException if {@code duration} is negative 685 * @throws IllegalStateException if the refresh interval was already set 686 * @since 11.0 687 */ 688 @Beta 689 @GwtIncompatible("To be supported") 690 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 691 checkNotNull(unit); 692 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 693 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 694 this.refreshNanos = unit.toNanos(duration); 695 return this; 696 } 697 698 long getRefreshNanos() { 699 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 700 } 701 702 /** 703 * Specifies a nanosecond-precision time source for use in determining when entries should be 704 * expired. By default, {@link System#nanoTime} is used. 705 * 706 * <p>The primary intent of this method is to facilitate testing of caches which have been 707 * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}. 708 * 709 * @throws IllegalStateException if a ticker was already set 710 */ 711 @GwtIncompatible("To be supported") 712 public CacheBuilder<K, V> ticker(Ticker ticker) { 713 checkState(this.ticker == null); 714 this.ticker = checkNotNull(ticker); 715 return this; 716 } 717 718 Ticker getTicker(boolean recordsTime) { 719 if (ticker != null) { 720 return ticker; 721 } 722 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 723 } 724 725 /** 726 * Specifies a listener instance, which all caches built using this {@code CacheBuilder} will 727 * notify each time an entry is removed from the cache by any means. 728 * 729 * <p>Each cache built by this {@code CacheBuilder} after this method is called invokes the 730 * supplied listener after removing an element for any reason (see removal causes in {@link 731 * RemovalCause}). It will invoke the listener as part of the routine maintenance described 732 * in the class javadoc. 733 * 734 * <p><b>Note:</b> <i>all exceptions thrown by {@code listener} will be logged (using 735 * {@link java.util.logging.Logger})and then swallowed</i>. 736 * 737 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 738 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 739 * original reference or the returned reference may be used to complete configuration and build 740 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 741 * building caches whose key or value types are incompatible with the types accepted by the 742 * listener already provided; the {@code CacheBuilder} type cannot do this. For best results, 743 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 744 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 745 * 746 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 747 * a cache whose key or value type is incompatible with the listener, you will likely experience 748 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 749 * 750 * @throws IllegalStateException if a removal listener was already set 751 */ 752 @CheckReturnValue 753 @GwtIncompatible("To be supported") 754 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 755 RemovalListener<? super K1, ? super V1> listener) { 756 checkState(this.removalListener == null); 757 758 // safely limiting the kinds of caches this can produce 759 @SuppressWarnings("unchecked") 760 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 761 me.removalListener = checkNotNull(listener); 762 return me; 763 } 764 765 // Make a safe contravariant cast now so we don't have to do it over and over. 766 @SuppressWarnings("unchecked") 767 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 768 return (RemovalListener<K1, V1>) Objects.firstNonNull(removalListener, NullListener.INSTANCE); 769 } 770 771 /** 772 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 773 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 774 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 775 * cache operation. 776 * 777 * @since 12.0 (previously, stats collection was automatic) 778 */ 779 public CacheBuilder<K, V> recordStats() { 780 statsCounterSupplier = CACHE_STATS_COUNTER; 781 return this; 782 } 783 784 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 785 return statsCounterSupplier; 786 } 787 788 /** 789 * Builds a cache, which either returns an already-loaded value for a given key or atomically 790 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 791 * loading the value for this key, simply waits for that thread to finish and returns its 792 * loaded value. Note that multiple threads can concurrently load values for distinct keys. 793 * 794 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 795 * invoked again to create multiple independent caches. 796 * 797 * @param loader the cache loader used to obtain new values 798 * @return a cache having the requested features 799 */ 800 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 801 CacheLoader<? super K1, V1> loader) { 802 checkWeightWithWeigher(); 803 return new LocalCache.LocalLoadingCache<K1, V1>(this, loader); 804 } 805 806 /** 807 * Builds a cache which does not automatically load values when keys are requested. 808 * 809 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a 810 * {@code CacheLoader}. 811 * 812 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 813 * invoked again to create multiple independent caches. 814 * 815 * @return a cache having the requested features 816 * @since 11.0 817 */ 818 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 819 checkWeightWithWeigher(); 820 checkNonLoadingCache(); 821 return new LocalCache.LocalManualCache<K1, V1>(this); 822 } 823 824 private void checkNonLoadingCache() { 825 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 826 } 827 828 private void checkWeightWithWeigher() { 829 if (weigher == null) { 830 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 831 } else { 832 if (strictParsing) { 833 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 834 } else { 835 if (maximumWeight == UNSET_INT) { 836 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 837 } 838 } 839 } 840 } 841 842 /** 843 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 844 * string is not specified. 845 */ 846 @Override 847 public String toString() { 848 Objects.ToStringHelper s = Objects.toStringHelper(this); 849 if (initialCapacity != UNSET_INT) { 850 s.add("initialCapacity", initialCapacity); 851 } 852 if (concurrencyLevel != UNSET_INT) { 853 s.add("concurrencyLevel", concurrencyLevel); 854 } 855 if (maximumWeight != UNSET_INT) { 856 if (weigher == null) { 857 s.add("maximumSize", maximumWeight); 858 } else { 859 s.add("maximumWeight", maximumWeight); 860 } 861 } 862 if (expireAfterWriteNanos != UNSET_INT) { 863 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 864 } 865 if (expireAfterAccessNanos != UNSET_INT) { 866 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 867 } 868 if (keyStrength != null) { 869 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 870 } 871 if (valueStrength != null) { 872 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 873 } 874 if (keyEquivalence != null) { 875 s.addValue("keyEquivalence"); 876 } 877 if (valueEquivalence != null) { 878 s.addValue("valueEquivalence"); 879 } 880 if (removalListener != null) { 881 s.addValue("removalListener"); 882 } 883 return s.toString(); 884 } 885 }