001 /* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.cache; 018 019 import static com.google.common.base.Objects.firstNonNull; 020 import static com.google.common.base.Preconditions.checkArgument; 021 import static com.google.common.base.Preconditions.checkNotNull; 022 import static com.google.common.base.Preconditions.checkState; 023 024 import com.google.common.annotations.Beta; 025 import com.google.common.annotations.GwtCompatible; 026 import com.google.common.annotations.GwtIncompatible; 027 import com.google.common.base.Ascii; 028 import com.google.common.base.Equivalence; 029 import com.google.common.base.Equivalences; 030 import com.google.common.base.Objects; 031 import com.google.common.base.Supplier; 032 import com.google.common.base.Suppliers; 033 import com.google.common.base.Ticker; 034 import com.google.common.cache.AbstractCache.SimpleStatsCounter; 035 import com.google.common.cache.AbstractCache.StatsCounter; 036 import com.google.common.cache.LocalCache.Strength; 037 038 import java.lang.ref.SoftReference; 039 import java.lang.ref.WeakReference; 040 import java.util.ConcurrentModificationException; 041 import java.util.concurrent.ConcurrentHashMap; 042 import java.util.concurrent.TimeUnit; 043 import java.util.logging.Level; 044 import java.util.logging.Logger; 045 046 import javax.annotation.CheckReturnValue; 047 048 /** 049 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 050 * following features: 051 * 052 * <ul> 053 * <li>automatic loading of entries into the cache 054 * <li>least-recently-used eviction when a maximum size is exceeded 055 * <li>time-based expiration of entries, measured since last access or last write 056 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references 057 * <li>values automatically wrapped in {@linkplain WeakReference weak} or 058 * {@linkplain SoftReference soft} references 059 * <li>notification of evicted (or otherwise removed) entries 060 * </ul> 061 * 062 * <p>Usage example: <pre> {@code 063 * 064 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 065 * .maximumSize(10000) 066 * .expireAfterWrite(10, TimeUnit.MINUTES) 067 * .removalListener(MY_LISTENER) 068 * .build( 069 * new CacheLoader<Key, Graph>() { 070 * public Graph load(Key key) throws AnyException { 071 * return createExpensiveGraph(key); 072 * } 073 * });}</pre> 074 * 075 * 076 * These features are all optional. 077 * 078 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 079 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 080 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 081 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 082 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 083 * are reflected in that iterator. These iterators never throw {@link 084 * ConcurrentModificationException}. 085 * 086 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the 087 * {@link Object#equals equals} method) to determine equality for keys or values. However, if 088 * {@link #weakKeys} was specified, the cache uses identity ({@code ==}) 089 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was 090 * specified, the cache uses identity comparisons for values. 091 * 092 * <p>Entries are automatically evicted from the cache when any of 093 * {@linkplain #maximumSize maximumSize}, {@linkplain #maximumWeight maximumWeight}, 094 * {@linkplain #expireAfterWrite expireAfterWrite}, 095 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 096 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested. 097 * 098 * <p>If {@linkplain #maximumSize maximumSize} or {@linkplain #maximumWeight maximumWeight} is 099 * requested entries may be evicted on each cache modification. 100 * 101 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or 102 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each 103 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired 104 * entries may be counted in {@link Cache#size}, but will never be visible to read or write 105 * operations. 106 * 107 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or 108 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in 109 * the cache to be reclaimed by the garbage collector. Reclaimed entries may be removed from the 110 * cache on each cache modification, on occasional cache accesses, or on calls to 111 * {@link Cache#cleanUp}. Reclaimed entries may be counted in {@link Cache#size}, but will never be 112 * visible to read or write operations. 113 * 114 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 115 * will be performed during write operations, or during occasional read operations in the absense of 116 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 117 * calling it should not be necessary with a high throughput cache. Only caches built with 118 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 119 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 120 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic 121 * maintenance. 122 * 123 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 124 * retain all the configuration properties of the original cache. Note that the serialized form does 125 * <i>not</i> include cache contents, but only configuration. 126 * 127 * @param <K> the base key type for all caches created by this builder 128 * @param <V> the base value type for all caches created by this builder 129 * @author Charles Fry 130 * @author Kevin Bourrillion 131 * @since 10.0 132 */ 133 @Beta 134 @GwtCompatible(emulated = true) 135 public final class CacheBuilder<K, V> { 136 private static final int DEFAULT_INITIAL_CAPACITY = 16; 137 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 138 private static final int DEFAULT_EXPIRATION_NANOS = 0; 139 private static final int DEFAULT_REFRESH_NANOS = 0; 140 141 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance( 142 new StatsCounter() { 143 @Override 144 public void recordHits(int count) {} 145 146 @Override 147 public void recordMisses(int count) {} 148 149 @Override 150 public void recordLoadSuccess(long loadTime) {} 151 152 @Override 153 public void recordLoadException(long loadTime) {} 154 155 @Override 156 public void recordEviction() {} 157 158 @Override 159 public CacheStats snapshot() { 160 return EMPTY_STATS; 161 } 162 }); 163 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 164 165 static final Supplier<SimpleStatsCounter> CACHE_STATS_COUNTER = 166 new Supplier<SimpleStatsCounter>() { 167 @Override 168 public SimpleStatsCounter get() { 169 return new SimpleStatsCounter(); 170 } 171 }; 172 173 enum NullListener implements RemovalListener<Object, Object> { 174 INSTANCE; 175 176 @Override 177 public void onRemoval(RemovalNotification<Object, Object> notification) {} 178 } 179 180 enum OneWeigher implements Weigher<Object, Object> { 181 INSTANCE; 182 183 @Override 184 public int weigh(Object key, Object value) { 185 return 1; 186 } 187 } 188 189 static final Ticker NULL_TICKER = new Ticker() { 190 @Override 191 public long read() { 192 return 0; 193 } 194 }; 195 196 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 197 198 static final int UNSET_INT = -1; 199 200 boolean strictParsing = true; 201 202 int initialCapacity = UNSET_INT; 203 int concurrencyLevel = UNSET_INT; 204 long maximumSize = UNSET_INT; 205 long maximumWeight = UNSET_INT; 206 Weigher<? super K, ? super V> weigher; 207 208 Strength keyStrength; 209 Strength valueStrength; 210 211 long expireAfterWriteNanos = UNSET_INT; 212 long expireAfterAccessNanos = UNSET_INT; 213 long refreshNanos = UNSET_INT; 214 215 Equivalence<Object> keyEquivalence; 216 Equivalence<Object> valueEquivalence; 217 218 RemovalListener<? super K, ? super V> removalListener; 219 Ticker ticker; 220 221 Supplier<? extends StatsCounter> statsCounterSupplier = CACHE_STATS_COUNTER; 222 223 // TODO(fry): make constructor private and update tests to use newBuilder 224 CacheBuilder() {} 225 226 /** 227 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 228 * strong values, and no automatic eviction of any kind. 229 */ 230 public static CacheBuilder<Object, Object> newBuilder() { 231 return new CacheBuilder<Object, Object>(); 232 } 233 234 /** 235 * Enables lenient parsing. Useful for tests and spec parsing. 236 */ 237 CacheBuilder<K, V> lenientParsing() { 238 strictParsing = false; 239 return this; 240 } 241 242 /** 243 * Sets a custom {@code Equivalence} strategy for comparing keys. 244 * 245 * <p>By default, the cache uses {@link Equivalences#identity} to determine key equality when 246 * {@link #weakKeys} is specified, and {@link Equivalences#equals()} otherwise. 247 */ 248 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 249 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 250 keyEquivalence = checkNotNull(equivalence); 251 return this; 252 } 253 254 Equivalence<Object> getKeyEquivalence() { 255 return firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 256 } 257 258 /** 259 * Sets a custom {@code Equivalence} strategy for comparing values. 260 * 261 * <p>By default, the cache uses {@link Equivalences#identity} to determine value equality when 262 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalences#equals()} 263 * otherwise. 264 */ 265 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 266 checkState(valueEquivalence == null, 267 "value equivalence was already set to %s", valueEquivalence); 268 this.valueEquivalence = checkNotNull(equivalence); 269 return this; 270 } 271 272 Equivalence<Object> getValueEquivalence() { 273 return firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 274 } 275 276 /** 277 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 278 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 279 * having a hash table of size eight. Providing a large enough estimate at construction time 280 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 281 * high wastes memory. 282 * 283 * @throws IllegalArgumentException if {@code initialCapacity} is negative 284 * @throws IllegalStateException if an initial capacity was already set 285 */ 286 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 287 checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s", 288 this.initialCapacity); 289 checkArgument(initialCapacity >= 0); 290 this.initialCapacity = initialCapacity; 291 return this; 292 } 293 294 int getInitialCapacity() { 295 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 296 } 297 298 /** 299 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 300 * table is internally partitioned to try to permit the indicated number of concurrent updates 301 * without contention. Because assignment of entries to these partitions is not necessarily 302 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 303 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 304 * higher value than you need can waste space and time, and a significantly lower value can lead 305 * to thread contention. But overestimates and underestimates within an order of magnitude do not 306 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 307 * at a time, but since read operations can proceed concurrently, this still yields higher 308 * concurrency than full synchronization. Defaults to 4. 309 * 310 * <p><b>Note:</b>The default may change in the future. If you care about this value, you should 311 * always choose it explicitly. 312 * 313 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 314 * @throws IllegalStateException if a concurrency level was already set 315 */ 316 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 317 checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s", 318 this.concurrencyLevel); 319 checkArgument(concurrencyLevel > 0); 320 this.concurrencyLevel = concurrencyLevel; 321 return this; 322 } 323 324 int getConcurrencyLevel() { 325 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 326 } 327 328 /** 329 * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict 330 * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the 331 * cache evicts entries that are less likely to be used again. For example, the cache may evict an 332 * entry because it hasn't been used recently or very often. 333 * 334 * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the 335 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 336 * 337 * @param size the maximum size of the cache 338 * @throws IllegalArgumentException if {@code size} is negative 339 * @throws IllegalStateException if a maximum size was already set 340 */ 341 public CacheBuilder<K, V> maximumSize(long size) { 342 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 343 this.maximumSize); 344 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 345 this.maximumWeight); 346 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 347 checkArgument(size >= 0, "maximum size must not be negative"); 348 this.maximumSize = size; 349 return this; 350 } 351 352 /** 353 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 354 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 355 * corresponding call to {@link #weigher} prior to calling {@link #build}. 356 * 357 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache 358 * size grows close to the maximum, the cache evicts entries that are less likely to be used 359 * again. For example, the cache may evict an entry because it hasn't been used recently or very 360 * often. 361 * 362 * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into 363 * cache. This can be useful in testing, or to disable caching temporarily without a code 364 * change. 365 * 366 * @param weight the maximum weight the cache may contain 367 * @param weigher the weigher to use in calculating the weight of cache entries 368 * @throws IllegalArgumentException if {@code size} is negative 369 * @throws IllegalStateException if a maximum size was already set 370 * @since 11.0 371 */ 372 public CacheBuilder<K, V> maximumWeight(long weight) { 373 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 374 this.maximumWeight); 375 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 376 this.maximumSize); 377 this.maximumWeight = weight; 378 checkArgument(weight >= 0, "maximum weight must not be negative"); 379 return this; 380 } 381 382 /** 383 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken 384 * into consideration by {@link #maximumWeight} when determining which entries to evict, and 385 * use of this method requires a corresponding call to {@link #maximumWeight} prior to calling 386 * {@link #build}. Weights are measured and recorded when entries are inserted into the 387 * cache, and are thus effectively static during the lifetime of a cache entry. 388 * 389 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 390 * (though it still may be evicted by other means). 391 * 392 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 393 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 394 * original reference or the returned reference may be used to complete configuration and build 395 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 396 * building caches whose key or value types are incompatible with the types accepted by the 397 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 398 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 399 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 400 * 401 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 402 * a cache whose key or value type is incompatible with the weigher, you will likely experience 403 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 404 * 405 * @param weight the maximum weight the cache may contain 406 * @param weigher the weigher to use in calculating the weight of cache entries 407 * @throws IllegalArgumentException if {@code size} is negative 408 * @throws IllegalStateException if a maximum size was already set 409 * @since 11.0 410 */ 411 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 412 Weigher<? super K1, ? super V1> weigher) { 413 checkState(this.weigher == null); 414 if (strictParsing) { 415 checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size", 416 this.maximumSize); 417 } 418 419 // safely limiting the kinds of caches this can produce 420 @SuppressWarnings("unchecked") 421 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 422 me.weigher = checkNotNull(weigher); 423 return me; 424 } 425 426 long getMaximumWeight() { 427 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 428 return 0; 429 } 430 return (weigher == null) ? maximumSize : maximumWeight; 431 } 432 433 // Make a safe contravariant cast now so we don't have to do it over and over. 434 @SuppressWarnings("unchecked") 435 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 436 return (Weigher<K1, V1>) Objects.firstNonNull(weigher, OneWeigher.INSTANCE); 437 } 438 439 /** 440 * Specifies that each key (not value) stored in the cache should be strongly referenced. 441 * 442 * @throws IllegalStateException if the key strength was already set 443 */ 444 CacheBuilder<K, V> strongKeys() { 445 return setKeyStrength(Strength.STRONG); 446 } 447 448 /** 449 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 450 * WeakReference} (by default, strong references are used). 451 * 452 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 453 * comparison to determine equality of keys. 454 * 455 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, 456 * but will never be visible to read or write operations. Entries with garbage collected keys are 457 * cleaned up as part of the routine maintenance described in the class javadoc. 458 * 459 * @throws IllegalStateException if the key strength was already set 460 */ 461 @GwtIncompatible("java.lang.ref.WeakReference") 462 public CacheBuilder<K, V> weakKeys() { 463 return setKeyStrength(Strength.WEAK); 464 } 465 466 CacheBuilder<K, V> setKeyStrength(Strength strength) { 467 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 468 keyStrength = checkNotNull(strength); 469 return this; 470 } 471 472 Strength getKeyStrength() { 473 return firstNonNull(keyStrength, Strength.STRONG); 474 } 475 476 /** 477 * Specifies that each value (not key) stored in the cache should be strongly referenced. 478 * 479 * @throws IllegalStateException if the value strength was already set 480 */ 481 CacheBuilder<K, V> strongValues() { 482 return setValueStrength(Strength.STRONG); 483 } 484 485 /** 486 * Specifies that each value (not key) stored in the cache should be wrapped in a 487 * {@link WeakReference} (by default, strong references are used). 488 * 489 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 490 * candidate for caching; consider {@link #softValues} instead. 491 * 492 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 493 * comparison to determine equality of values. 494 * 495 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 496 * but will never be visible to read or write operations. Entries with garbage collected keys are 497 * cleaned up as part of the routine maintenance described in the class javadoc. 498 * 499 * @throws IllegalStateException if the value strength was already set 500 */ 501 @GwtIncompatible("java.lang.ref.WeakReference") 502 public CacheBuilder<K, V> weakValues() { 503 return setValueStrength(Strength.WEAK); 504 } 505 506 /** 507 * Specifies that each value (not key) stored in the cache should be wrapped in a 508 * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will 509 * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 510 * demand. 511 * 512 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 513 * #maximumSize maximum size} instead of using soft references. You should only use this method if 514 * you are well familiar with the practical consequences of soft references. 515 * 516 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 517 * comparison to determine equality of values. 518 * 519 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 520 * but will never be visible to read or write operations. Entries with garbage collected values 521 * are cleaned up as part of the routine maintenance described in the class javadoc. 522 * 523 * @throws IllegalStateException if the value strength was already set 524 */ 525 @GwtIncompatible("java.lang.ref.SoftReference") 526 public CacheBuilder<K, V> softValues() { 527 return setValueStrength(Strength.SOFT); 528 } 529 530 CacheBuilder<K, V> setValueStrength(Strength strength) { 531 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 532 valueStrength = checkNotNull(strength); 533 return this; 534 } 535 536 Strength getValueStrength() { 537 return firstNonNull(valueStrength, Strength.STRONG); 538 } 539 540 /** 541 * Specifies that each entry should be automatically removed from the cache once a fixed duration 542 * has elapsed after the entry's creation, or the most recent replacement of its value. 543 * 544 * <p>When {@code duration} is zero, this method hands off to 545 * {@link #maximumSize maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum size or 546 * weight. This can be useful in testing, or to disable caching temporarily without a code change. 547 * 548 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 549 * write operations. Expired entries are cleaned up as part of the routine maintenance described 550 * in the class javadoc. 551 * 552 * @param duration the length of time after an entry is created that it should be automatically 553 * removed 554 * @param unit the unit that {@code duration} is expressed in 555 * @throws IllegalArgumentException if {@code duration} is negative 556 * @throws IllegalStateException if the time to live or time to idle was already set 557 */ 558 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 559 checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns", 560 expireAfterWriteNanos); 561 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 562 this.expireAfterWriteNanos = unit.toNanos(duration); 563 return this; 564 } 565 566 long getExpireAfterWriteNanos() { 567 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 568 } 569 570 /** 571 * Specifies that each entry should be automatically removed from the cache once a fixed duration 572 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 573 * access. Access time is reset by all cache read and write operations (including 574 * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations 575 * on the collection-views of {@link Cache#asMap}. 576 * 577 * <p>When {@code duration} is zero, this method hands off to 578 * {@link #maximumSize maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum size or 579 * weight. This can be useful in testing, or to disable caching temporarily without a code change. 580 * 581 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 582 * write operations. Expired entries are cleaned up as part of the routine maintenance described 583 * in the class javadoc. 584 * 585 * @param duration the length of time after an entry is last accessed that it should be 586 * automatically removed 587 * @param unit the unit that {@code duration} is expressed in 588 * @throws IllegalArgumentException if {@code duration} is negative 589 * @throws IllegalStateException if the time to idle or time to live was already set 590 */ 591 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 592 checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns", 593 expireAfterAccessNanos); 594 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 595 this.expireAfterAccessNanos = unit.toNanos(duration); 596 return this; 597 } 598 599 long getExpireAfterAccessNanos() { 600 return (expireAfterAccessNanos == UNSET_INT) 601 ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos; 602 } 603 604 /** 605 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 606 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 607 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling 608 * {@link CacheLoader#reload}. 609 * 610 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 611 * recommended that users of this method override {@link CacheLoader#reload} with an asynchrnous 612 * implementation; otherwise refreshes will block other cache operations. 613 * 614 * <p>Currently automatic refreshes are performed when the first stale request for an entry 615 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 616 * and immediately return the new value if the returned future is complete, and the old value 617 * otherwise. 618 * 619 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 620 * 621 * @param duration the length of time after an entry is created that it should be considered 622 * stale, and thus eligible for refresh 623 * @param unit the unit that {@code duration} is expressed in 624 * @throws IllegalArgumentException if {@code duration} is negative 625 * @throws IllegalStateException if the refresh interval was already set 626 * @since 11.0 627 */ 628 @GwtIncompatible("To be supported") 629 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 630 checkNotNull(unit); 631 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 632 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 633 this.refreshNanos = unit.toNanos(duration); 634 return this; 635 } 636 637 long getRefreshNanos() { 638 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 639 } 640 641 /** 642 * Specifies a nanosecond-precision time source for use in determining when entries should be 643 * expired. By default, {@link System#nanoTime} is used. 644 * 645 * <p>The primary intent of this method is to facilitate testing of caches which have been 646 * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}. 647 * 648 * @throws IllegalStateException if a ticker was already set 649 */ 650 @GwtIncompatible("To be supported") 651 public CacheBuilder<K, V> ticker(Ticker ticker) { 652 checkState(this.ticker == null); 653 this.ticker = checkNotNull(ticker); 654 return this; 655 } 656 657 Ticker getTicker(boolean recordsTime) { 658 if (ticker != null) { 659 return ticker; 660 } 661 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 662 } 663 664 /** 665 * Specifies a listener instance, which all caches built using this {@code CacheBuilder} will 666 * notify each time an entry is removed from the cache by any means. 667 * 668 * <p>Each cache built by this {@code CacheBuilder} after this method is called invokes the 669 * supplied listener after removing an element for any reason (see removal causes in {@link 670 * RemovalCause}). It will invoke the listener as part of the routine maintenance described 671 * in the class javadoc. 672 * 673 * <p><b>Note:</b> <i>all exceptions thrown by {@code listener} will be logged (using 674 * {@link java.util.logging.Logger})and then swallowed</i>. 675 * 676 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 677 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 678 * original reference or the returned reference may be used to complete configuration and build 679 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 680 * building caches whose key or value types are incompatible with the types accepted by the 681 * listener already provided; the {@code CacheBuilder} type cannot do this. For best results, 682 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 683 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 684 * 685 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 686 * a cache whose key or value type is incompatible with the listener, you will likely experience 687 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 688 * 689 * @throws IllegalStateException if a removal listener was already set 690 */ 691 @CheckReturnValue 692 @GwtIncompatible("To be supported") 693 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 694 RemovalListener<? super K1, ? super V1> listener) { 695 checkState(this.removalListener == null); 696 697 // safely limiting the kinds of caches this can produce 698 @SuppressWarnings("unchecked") 699 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 700 me.removalListener = checkNotNull(listener); 701 return me; 702 } 703 704 // Make a safe contravariant cast now so we don't have to do it over and over. 705 @SuppressWarnings("unchecked") 706 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 707 return (RemovalListener<K1, V1>) Objects.firstNonNull(removalListener, NullListener.INSTANCE); 708 } 709 710 /** 711 * Disable the accumulation of {@link CacheStats} during the operation of the cache. 712 */ 713 CacheBuilder<K, V> disableStats() { 714 checkState(statsCounterSupplier == CACHE_STATS_COUNTER); 715 statsCounterSupplier = NULL_STATS_COUNTER; 716 return this; 717 } 718 719 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 720 return statsCounterSupplier; 721 } 722 723 /** 724 * Builds a cache, which either returns an already-loaded value for a given key or atomically 725 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 726 * loading the value for this key, simply waits for that thread to finish and returns its 727 * loaded value. Note that multiple threads can concurrently load values for distinct keys. 728 * 729 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 730 * invoked again to create multiple independent caches. 731 * 732 * @param loader the cache loader used to obtain new values 733 * @return a cache having the requested features 734 */ 735 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 736 CacheLoader<? super K1, V1> loader) { 737 checkWeightWithWeigher(); 738 return new LocalCache.LocalLoadingCache<K1, V1>(this, loader); 739 } 740 741 /** 742 * Builds a cache which does not automatically load values when keys are requested. 743 * 744 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a 745 * {@code CacheLoader}. 746 * 747 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 748 * invoked again to create multiple independent caches. 749 * 750 * @return a cache having the requested features 751 * @since 11.0 752 */ 753 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 754 checkWeightWithWeigher(); 755 checkNonLoadingCache(); 756 return new LocalCache.LocalManualCache<K1, V1>(this); 757 } 758 759 private void checkNonLoadingCache() { 760 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 761 } 762 763 private void checkWeightWithWeigher() { 764 if (weigher == null) { 765 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 766 } else { 767 if (strictParsing) { 768 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 769 } else { 770 if (maximumWeight == UNSET_INT) { 771 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 772 } 773 } 774 } 775 } 776 777 /** 778 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 779 * string is not specified. 780 */ 781 @Override 782 public String toString() { 783 Objects.ToStringHelper s = Objects.toStringHelper(this); 784 if (initialCapacity != UNSET_INT) { 785 s.add("initialCapacity", initialCapacity); 786 } 787 if (concurrencyLevel != UNSET_INT) { 788 s.add("concurrencyLevel", concurrencyLevel); 789 } 790 if (maximumWeight != UNSET_INT) { 791 if (weigher == null) { 792 s.add("maximumSize", maximumWeight); 793 } else { 794 s.add("maximumWeight", maximumWeight); 795 } 796 } 797 if (expireAfterWriteNanos != UNSET_INT) { 798 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 799 } 800 if (expireAfterAccessNanos != UNSET_INT) { 801 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 802 } 803 if (keyStrength != null) { 804 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 805 } 806 if (valueStrength != null) { 807 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 808 } 809 if (keyEquivalence != null) { 810 s.addValue("keyEquivalence"); 811 } 812 if (valueEquivalence != null) { 813 s.addValue("valueEquivalence"); 814 } 815 if (removalListener != null) { 816 s.addValue("removalListener"); 817 } 818 return s.toString(); 819 } 820 }