001 /* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.collect; 018 019 import static com.google.common.base.Preconditions.checkNotNull; 020 import static com.google.common.collect.Ranges.create; 021 022 import com.google.common.annotations.Beta; 023 import com.google.common.annotations.GwtCompatible; 024 import com.google.common.base.Predicate; 025 026 import java.io.Serializable; 027 import java.util.Collections; 028 import java.util.Comparator; 029 import java.util.NoSuchElementException; 030 import java.util.Set; 031 import java.util.SortedSet; 032 033 import javax.annotation.Nullable; 034 035 /** 036 * A range, sometimes known as an <i>interval</i>, is a <i>convex</i> 037 * (informally, "contiguous" or "unbroken") portion of a particular domain. 038 * Formally, convexity means that for any {@code a <= b <= c}, 039 * {@code range.contains(a) && range.contains(c)} implies that {@code 040 * range.contains(b)}. 041 * 042 * <p>A range is characterized by its lower and upper <i>bounds</i> (extremes), 043 * each of which can <i>open</i> (exclusive of its endpoint), <i>closed</i> 044 * (inclusive of its endpoint), or <i>unbounded</i>. This yields nine basic 045 * types of ranges: 046 * 047 * <ul> 048 * <li>{@code (a..b) = {x | a < x < b}} 049 * <li>{@code [a..b] = {x | a <= x <= b}} 050 * <li>{@code [a..b) = {x | a <= x < b}} 051 * <li>{@code (a..b] = {x | a < x <= b}} 052 * <li>{@code (a..+∞) = {x | x > a}} 053 * <li>{@code [a..+∞) = {x | x >= a}} 054 * <li>{@code (-∞..b) = {x | x < b}} 055 * <li>{@code (-∞..b] = {x | x <= b}} 056 * <li>{@code (-∞..+∞) = all values} 057 * </ul> 058 * 059 * (The notation {@code {x | statement}} is read "the set of all <i>x</i> such 060 * that <i>statement</i>.") 061 * 062 * <p>Notice that we use a square bracket ({@code [ ]}) to denote that an range 063 * is closed on that end, and a parenthesis ({@code ( )}) when it is open or 064 * unbounded. 065 * 066 * <p>The values {@code a} and {@code b} used above are called <i>endpoints</i>. 067 * The upper endpoint may not be less than the lower endpoint. The endpoints may 068 * be equal only if at least one of the bounds is closed: 069 * 070 * <ul> 071 * <li>{@code [a..a]} : singleton range 072 * <li>{@code [a..a); (a..a]} : {@linkplain #isEmpty empty}, but valid 073 * <li>{@code (a..a)} : <b>invalid</b> 074 * </ul> 075 * 076 * <p>Instances of this type can be obtained using the static factory methods in 077 * the {@link Ranges} class. 078 * 079 * <p>Instances of {@code Range} are immutable. It is strongly encouraged to 080 * use this class only with immutable data types. When creating a range over a 081 * mutable type, take great care not to allow the value objects to mutate after 082 * the range is created. 083 * 084 * <p>In this and other range-related specifications, concepts like "equal", 085 * "same", "unique" and so on are based on {@link Comparable#compareTo} 086 * returning zero, not on {@link Object#equals} returning {@code true}. Of 087 * course, when these methods are kept <i>consistent</i> (as defined in {@link 088 * Comparable}), this is not an issue. 089 * 090 * <p>A range {@code a} is said to be the <i>maximal</i> range having property 091 * <i>P</i> if, for all ranges {@code b} also having property <i>P</i>, {@code 092 * a.encloses(b)}. Likewise, {@code a} is <i>minimal</i> when {@code 093 * b.encloses(a)} for all {@code b} having property <i>P</i>. See, for example, 094 * the definition of {@link #intersection}. 095 * 096 * <p>This class can be used with any type which implements {@code Comparable}; 097 * it does not require {@code Comparable<? super C>} because this would be 098 * incompatible with pre-Java 5 types. If this class is used with a perverse 099 * {@code Comparable} type ({@code Foo implements Comparable<Bar>} where {@code 100 * Bar} is not a supertype of {@code Foo}), any of its methods may throw {@link 101 * ClassCastException}. (There is no good reason for such a type to exist.) 102 * 103 * <p>When evaluated as a {@link Predicate}, a range yields the same result as 104 * invoking {@link #contains}. 105 * 106 * @author Kevin Bourrillion 107 * @author Gregory Kick 108 * @since 10.0 109 */ 110 @GwtCompatible 111 @Beta 112 public final class Range<C extends Comparable> 113 implements Predicate<C>, Serializable { 114 final Cut<C> lowerBound; 115 final Cut<C> upperBound; 116 117 Range(Cut<C> lowerBound, Cut<C> upperBound) { 118 if (lowerBound.compareTo(upperBound) > 0) { 119 throw new IllegalArgumentException( 120 "Invalid range: " + toString(lowerBound, upperBound)); 121 } 122 this.lowerBound = lowerBound; 123 this.upperBound = upperBound; 124 } 125 126 /** 127 * Returns {@code true} if this range has a lower endpoint. 128 */ 129 public boolean hasLowerBound() { 130 return lowerBound != Cut.belowAll(); 131 } 132 133 /** 134 * Returns the lower endpoint of this range. 135 * 136 * @throws IllegalStateException if this range is unbounded below (that is, 137 * {@link #hasLowerBound()} returns {@code false}) 138 */ 139 public C lowerEndpoint() { 140 return lowerBound.endpoint(); 141 } 142 143 /** 144 * Returns the type of this range's lower bound: {@link BoundType#CLOSED} if 145 * the range includes its lower endpoint, {@link BoundType#OPEN} if it does 146 * not. 147 * 148 * @throws IllegalStateException if this range is unbounded below (that is, 149 * {@link #hasLowerBound()} returns {@code false}) 150 */ 151 public BoundType lowerBoundType() { 152 return lowerBound.typeAsLowerBound(); 153 } 154 155 /** 156 * Returns {@code true} if this range has an upper endpoint. 157 */ 158 public boolean hasUpperBound() { 159 return upperBound != Cut.aboveAll(); 160 } 161 162 /** 163 * Returns the upper endpoint of this range. 164 * 165 * @throws IllegalStateException if this range is unbounded above (that is, 166 * {@link #hasUpperBound()} returns {@code false}) 167 */ 168 public C upperEndpoint() { 169 return upperBound.endpoint(); 170 } 171 172 /** 173 * Returns the type of this range's upper bound: {@link BoundType#CLOSED} if 174 * the range includes its upper endpoint, {@link BoundType#OPEN} if it does 175 * not. 176 * 177 * @throws IllegalStateException if this range is unbounded above (that is, 178 * {@link #hasUpperBound()} returns {@code false}) 179 */ 180 public BoundType upperBoundType() { 181 return upperBound.typeAsUpperBound(); 182 } 183 184 /** 185 * Returns {@code true} if this range is of the form {@code [v..v)} or {@code 186 * (v..v]}. (This does not encompass ranges of the form {@code (v..v)}, 187 * because such ranges are <i>invalid</i> and can't be constructed at all.) 188 * 189 * <p>Note that certain discrete ranges such as the integer range {@code 190 * (3..4)} are <b>not</b> considered empty, even though they contain no actual 191 * values. 192 */ 193 public boolean isEmpty() { 194 return lowerBound.equals(upperBound); 195 } 196 197 /** 198 * Returns {@code true} if {@code value} is within the bounds of this 199 * range. For example, on the range {@code [0..2)}, {@code contains(1)} 200 * returns {@code true}, while {@code contains(2)} returns {@code false}. 201 */ 202 public boolean contains(C value) { 203 checkNotNull(value); 204 // let this throw CCE if there is some trickery going on 205 return lowerBound.isLessThan(value) && !upperBound.isLessThan(value); 206 } 207 208 /** 209 * Equivalent to {@link #contains}; provided only to satisfy the {@link 210 * Predicate} interface. When using a reference of type {@code Range}, always 211 * invoke {@link #contains} directly instead. 212 */ 213 @Override public boolean apply(C input) { 214 return contains(input); 215 } 216 217 /** 218 * Returns {@code true} if every element in {@code values} is {@linkplain 219 * #contains contained} in this range. 220 */ 221 public boolean containsAll(Iterable<? extends C> values) { 222 if (Iterables.isEmpty(values)) { 223 return true; 224 } 225 226 // this optimizes testing equality of two range-backed sets 227 if (values instanceof SortedSet) { 228 SortedSet<? extends C> set = cast(values); 229 Comparator<?> comparator = set.comparator(); 230 if (Ordering.natural().equals(comparator) || comparator == null) { 231 return contains(set.first()) && contains(set.last()); 232 } 233 } 234 235 for (C value : values) { 236 if (!contains(value)) { 237 return false; 238 } 239 } 240 return true; 241 } 242 243 /** 244 * Returns {@code true} if the bounds of {@code other} do not extend outside 245 * the bounds of this range. Examples: 246 * 247 * <ul> 248 * <li>{@code [3..6]} encloses {@code [4..5]} 249 * <li>{@code (3..6)} encloses {@code (3..6)} 250 * <li>{@code [3..6]} encloses {@code [4..4)} (even though the latter is 251 * empty) 252 * <li>{@code (3..6]} does not enclose {@code [3..6]} 253 * <li>{@code [4..5]} does not enclose {@code (3..6)} (even though it contains 254 * every value contained by the latter range) 255 * <li>{@code [3..6]} does not enclose {@code (1..1]} (even though it contains 256 * every value contained by the latter range) 257 * </ul> 258 * 259 * Note that if {@code a.encloses(b)}, then {@code b.contains(v)} implies 260 * {@code a.contains(v)}, but as the last two examples illustrate, the 261 * converse is not always true. 262 * 263 * <p>The encloses relation has the following properties: 264 * 265 * <ul> 266 * <li>reflexive: {@code a.encloses(a)} is always true 267 * <li>antisymmetric: {@code a.encloses(b) && b.encloses(a)} implies {@code 268 * a.equals(b)} 269 * <li>transitive: {@code a.encloses(b) && b.encloses(c)} implies {@code 270 * a.encloses(c)} 271 * <li>not a total ordering: {@code !a.encloses(b)} does not imply {@code 272 * b.encloses(a)} 273 * <li>there exists a {@linkplain Ranges#all maximal} range, for which 274 * {@code encloses} is always true 275 * <li>there also exist {@linkplain #isEmpty minimal} ranges, for 276 * which {@code encloses(b)} is always false when {@code !equals(b)} 277 * <li>if {@code a.encloses(b)}, then {@link #isConnected a.isConnected(b)} 278 * is {@code true}. 279 * </ul> 280 */ 281 public boolean encloses(Range<C> other) { 282 return lowerBound.compareTo(other.lowerBound) <= 0 283 && upperBound.compareTo(other.upperBound) >= 0; 284 } 285 286 /** 287 * Returns the maximal range {@linkplain #encloses enclosed} by both this 288 * range and {@code other}, if such a range exists. 289 * 290 * <p>For example, the intersection of {@code [1..5]} and {@code (3..7)} is 291 * {@code (3..5]}. The resulting range may be empty; for example, 292 * {@code [1..5)} intersected with {@code [5..7)} yields the empty range 293 * {@code [5..5)}. 294 * 295 * <p>Generally, the intersection exists if and only if this range and 296 * {@code other} are {@linkplain #isConnected connected}. 297 * 298 * <p>The intersection operation has the following properties: 299 * 300 * <ul> 301 * <li>commutative: {@code a.intersection(b)} produces the same result as 302 * {@code b.intersection(a)} 303 * <li>associative: {@code a.intersection(b).intersection(c)} produces the 304 * same result as {@code a.intersection(b.intersection(c))} 305 * <li>idempotent: {@code a.intersection(a)} equals {@code a} 306 * <li>identity ({@link Ranges#all}): {@code a.intersection(Ranges.all())} 307 * equals {@code a} 308 * </ul> 309 * 310 * @throws IllegalArgumentException if no range exists that is enclosed by 311 * both these ranges 312 */ 313 public Range<C> intersection(Range<C> other) { 314 Cut<C> newLower = Ordering.natural().max(lowerBound, other.lowerBound); 315 Cut<C> newUpper = Ordering.natural().min(upperBound, other.upperBound); 316 return create(newLower, newUpper); 317 } 318 319 /** 320 * Returns {@code true} if there exists a (possibly empty) range which is 321 * {@linkplain #encloses enclosed} by both this range and {@code other}. 322 * 323 * <p>For example, 324 * <ul> 325 * <li>{@code [2, 4)} and {@code [5, 7)} are not connected 326 * <li>{@code [2, 4)} and {@code [3, 5)} are connected, because both enclose 327 * {@code [3, 4)} 328 * <li>{@code [2, 4)} and {@code [4, 6)} are connected, because both enclose 329 * the empty range {@code [4, 4)} 330 * </ul> 331 * 332 * <p>Note that this range and {@code other} have a well-defined {@linkplain 333 * #span union} and {@linkplain #intersection intersection} (as a single, 334 * possibly-empty range) if and only if this method returns {@code true}. 335 * 336 * <p>The connectedness relation has the following properties: 337 * 338 * <ul> 339 * <li>symmetric: {@code a.isConnected(b)} produces the same result as 340 * {@code b.isConnected(a)} 341 * <li>reflexive: {@code a.isConnected(a)} returns {@code true} 342 * </ul> 343 */ 344 public boolean isConnected(Range<C> other) { 345 return lowerBound.compareTo(other.upperBound) <= 0 346 && other.lowerBound.compareTo(upperBound) <= 0; 347 } 348 349 /** 350 * Returns the minimal range that {@linkplain #encloses encloses} both this 351 * range and {@code other}. For example, the span of {@code [1..3]} and 352 * {@code (5..7)} is {@code [1..7)}. Note that the span may contain values 353 * that are not contained by either original range. 354 * 355 * <p>The span operation has the following properties: 356 * 357 * <ul> 358 * <li>closed: the range {@code a.span(b)} exists for all ranges {@code a} and 359 * {@code b} 360 * <li>commutative: {@code a.span(b)} equals {@code b.span(a)} 361 * <li>associative: {@code a.span(b).span(c)} equals {@code a.span(b.span(c))} 362 * <li>idempotent: {@code a.span(a)} equals {@code a} 363 * </ul> 364 * 365 * <p>Note that the returned range is also called the <i>union</i> of this 366 * range and {@code other} if and only if the ranges are 367 * {@linkplain #isConnected connected}. 368 */ 369 public Range<C> span(Range<C> other) { 370 Cut<C> newLower = Ordering.natural().min(lowerBound, other.lowerBound); 371 Cut<C> newUpper = Ordering.natural().max(upperBound, other.upperBound); 372 return create(newLower, newUpper); 373 } 374 375 /** 376 * Returns an {@link ImmutableSortedSet} containing the same values in the 377 * given domain {@linkplain Range#contains contained} by this range. 378 * 379 * <p><b>Note:</b> {@code a.asSet().equals(b.asSet())} does not imply {@code 380 * a.equals(b)}! For example, {@code a} and {@code b} could be {@code [2..4]} 381 * and {@code (1..5)}, or the empty ranges {@code [3..3)} and {@code [4..4)}. 382 * 383 * <p><b>Warning:</b> Be extremely careful what you do with the {@code asSet} 384 * view of a large range (such as {@code Ranges.greaterThan(0)}). Certain 385 * operations on such a set can be performed efficiently, but others (such as 386 * {@link Set#hashCode} or {@link Collections#frequency}) can cause major 387 * performance problems. 388 * 389 * <p>The returned set's {@link Object#toString} method returns a short-hand 390 * form of set's contents such as {@code "[1..100]}"}. 391 * 392 * @throws IllegalArgumentException if neither this range nor the domain has a 393 * lower bound, or if neither has an upper bound 394 */ 395 // TODO(kevinb): commit in spec to which methods are efficient? 396 @GwtCompatible(serializable = false) 397 public ContiguousSet<C> asSet(DiscreteDomain<C> domain) { 398 checkNotNull(domain); 399 Range<C> effectiveRange = this; 400 try { 401 if (!hasLowerBound()) { 402 effectiveRange = effectiveRange.intersection( 403 Ranges.atLeast(domain.minValue())); 404 } 405 if (!hasUpperBound()) { 406 effectiveRange = effectiveRange.intersection( 407 Ranges.atMost(domain.maxValue())); 408 } 409 } catch (NoSuchElementException e) { 410 throw new IllegalArgumentException(e); 411 } 412 413 // Per class spec, we are allowed to throw CCE if necessary 414 boolean empty = effectiveRange.isEmpty() 415 || compareOrThrow( 416 lowerBound.leastValueAbove(domain), 417 upperBound.greatestValueBelow(domain)) > 0; 418 419 return empty 420 ? new EmptyContiguousSet<C>(domain) 421 : new RegularContiguousSet<C>(effectiveRange, domain); 422 } 423 424 /** 425 * Returns the canonical form of this range in the given domain. The canonical 426 * form has the following properties: 427 * 428 * <ul> 429 * <li>equivalence: {@code a.canonical().contains(v) == a.contains(v)} for 430 * all {@code v} (in other words, {@code 431 * a.canonical(domain).asSet(domain).equals(a.asSet(domain))} 432 * <li>uniqueness: unless {@code a.isEmpty()}, 433 * {@code a.asSet(domain).equals(b.asSet(domain))} implies 434 * {@code a.canonical(domain).equals(b.canonical(domain))} 435 * <li>idempotence: {@code 436 * a.canonical(domain).canonical(domain).equals(a.canonical(domain))} 437 * </ul> 438 * 439 * Furthermore, this method guarantees that the range returned will be one 440 * of the following canonical forms: 441 * 442 * <ul> 443 * <li>[start..end) 444 * <li>[start..+∞) 445 * <li>(-∞..end) (only if type {@code C} is unbounded below) 446 * <li>(-∞..+∞) (only if type {@code C} is unbounded below) 447 * </ul> 448 */ 449 public Range<C> canonical(DiscreteDomain<C> domain) { 450 checkNotNull(domain); 451 Cut<C> lower = lowerBound.canonical(domain); 452 Cut<C> upper = upperBound.canonical(domain); 453 return (lower == lowerBound && upper == upperBound) 454 ? this : create(lower, upper); 455 } 456 457 /** 458 * Returns {@code true} if {@code object} is a range having the same 459 * endpoints and bound types as this range. Note that discrete ranges 460 * such as {@code (1..4)} and {@code [2..3]} are <b>not</b> equal to one 461 * another, despite the fact that they each contain precisely the same set of 462 * values. Similarly, empty ranges are not equal unless they have exactly 463 * the same representation, so {@code [3..3)}, {@code (3..3]}, {@code (4..4]} 464 * are all unequal. 465 */ 466 @Override public boolean equals(@Nullable Object object) { 467 if (object instanceof Range) { 468 Range<?> other = (Range<?>) object; 469 return lowerBound.equals(other.lowerBound) 470 && upperBound.equals(other.upperBound); 471 } 472 return false; 473 } 474 475 /** Returns a hash code for this range. */ 476 @Override public int hashCode() { 477 return lowerBound.hashCode() * 31 + upperBound.hashCode(); 478 } 479 480 /** 481 * Returns a string representation of this range, such as {@code "[3..5)"} 482 * (other examples are listed in the class documentation). 483 */ 484 @Override public String toString() { 485 return toString(lowerBound, upperBound); 486 } 487 488 private static String toString(Cut<?> lowerBound, Cut<?> upperBound) { 489 StringBuilder sb = new StringBuilder(16); 490 lowerBound.describeAsLowerBound(sb); 491 sb.append('\u2025'); 492 upperBound.describeAsUpperBound(sb); 493 return sb.toString(); 494 } 495 496 /** 497 * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 498 */ 499 private static <T> SortedSet<T> cast(Iterable<T> iterable) { 500 return (SortedSet<T>) iterable; 501 } 502 503 @SuppressWarnings("unchecked") // this method may throw CCE 504 static int compareOrThrow(Comparable left, Comparable right) { 505 return left.compareTo(right); 506 } 507 508 private static final long serialVersionUID = 0; 509 }