001 /* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015 package com.google.common.collect; 016 017 import com.google.common.annotations.Beta; 018 import com.google.common.base.Preconditions; 019 020 import java.util.ArrayDeque; 021 import java.util.Collection; 022 import java.util.PriorityQueue; 023 import java.util.Queue; 024 import java.util.concurrent.ArrayBlockingQueue; 025 import java.util.concurrent.BlockingQueue; 026 import java.util.concurrent.ConcurrentLinkedQueue; 027 import java.util.concurrent.LinkedBlockingDeque; 028 import java.util.concurrent.LinkedBlockingQueue; 029 import java.util.concurrent.PriorityBlockingQueue; 030 import java.util.concurrent.SynchronousQueue; 031 import java.util.concurrent.TimeUnit; 032 033 /** 034 * Static utility methods pertaining to {@link Queue} 035 * instances. Also see this class's counterparts 036 * {@link Lists}, {@link Sets}, and {@link Maps}. 037 * 038 * @author Kurt Alfred Kluever 039 * @since 11.0 040 */ 041 @Beta 042 public final class Queues { 043 private Queues() {} 044 045 // ArrayBlockingQueue 046 047 /** 048 * Creates an empty {@code ArrayBlockingQueue} instance. 049 * 050 * @return a new, empty {@code ArrayBlockingQueue} 051 */ 052 public static <E> ArrayBlockingQueue<E> newArrayBlockingQueue(int capacity) { 053 return new ArrayBlockingQueue<E>(capacity); 054 } 055 056 // ArrayDeque 057 058 // ConcurrentLinkedQueue 059 060 /** 061 * Creates an empty {@code ConcurrentLinkedQueue} instance. 062 * 063 * @return a new, empty {@code ConcurrentLinkedQueue} 064 */ 065 public static <E> ConcurrentLinkedQueue<E> newConcurrentLinkedQueue() { 066 return new ConcurrentLinkedQueue<E>(); 067 } 068 069 /** 070 * Creates an {@code ConcurrentLinkedQueue} instance containing the given elements. 071 * 072 * @param elements the elements that the queue should contain, in order 073 * @return a new {@code ConcurrentLinkedQueue} containing those elements 074 */ 075 public static <E> ConcurrentLinkedQueue<E> newConcurrentLinkedQueue( 076 Iterable<? extends E> elements) { 077 if (elements instanceof Collection) { 078 return new ConcurrentLinkedQueue<E>(Collections2.cast(elements)); 079 } 080 ConcurrentLinkedQueue<E> queue = new ConcurrentLinkedQueue<E>(); 081 Iterables.addAll(queue, elements); 082 return queue; 083 } 084 085 // LinkedBlockingDeque 086 087 // LinkedBlockingQueue 088 089 /** 090 * Creates an empty {@code LinkedBlockingQueue} instance. 091 * 092 * @return a new, empty {@code LinkedBlockingQueue} 093 */ 094 public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue() { 095 return new LinkedBlockingQueue<E>(); 096 } 097 098 /** 099 * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity. 100 * 101 * @param capacity the capacity of this queue 102 * @return a new, empty {@code LinkedBlockingQueue} 103 * @throws IllegalArgumentException if {@code capacity} is less than 1 104 */ 105 public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue(int capacity) { 106 return new LinkedBlockingQueue<E>(capacity); 107 } 108 109 /** 110 * Creates an {@code LinkedBlockingQueue} instance containing the given elements. 111 * 112 * @param elements the elements that the queue should contain, in order 113 * @return a new {@code LinkedBlockingQueue} containing those elements 114 */ 115 public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue(Iterable<? extends E> elements) { 116 if (elements instanceof Collection) { 117 return new LinkedBlockingQueue<E>(Collections2.cast(elements)); 118 } 119 LinkedBlockingQueue<E> queue = new LinkedBlockingQueue<E>(); 120 Iterables.addAll(queue, elements); 121 return queue; 122 } 123 124 // LinkedList: see {@link com.google.common.collect.Lists} 125 126 // PriorityBlockingQueue 127 128 /** 129 * Creates an empty {@code PriorityBlockingQueue} instance. 130 * 131 * @return a new, empty {@code PriorityBlockingQueue} 132 */ 133 public static <E> PriorityBlockingQueue<E> newPriorityBlockingQueue() { 134 return new PriorityBlockingQueue<E>(); 135 } 136 137 /** 138 * Creates an {@code PriorityBlockingQueue} instance containing the given elements. 139 * 140 * @param elements the elements that the queue should contain, in order 141 * @return a new {@code PriorityBlockingQueue} containing those elements 142 */ 143 public static <E> PriorityBlockingQueue<E> newPriorityBlockingQueue( 144 Iterable<? extends E> elements) { 145 if (elements instanceof Collection) { 146 return new PriorityBlockingQueue<E>(Collections2.cast(elements)); 147 } 148 PriorityBlockingQueue<E> queue = new PriorityBlockingQueue<E>(); 149 Iterables.addAll(queue, elements); 150 return queue; 151 } 152 153 // PriorityQueue 154 155 /** 156 * Creates an empty {@code PriorityQueue} instance. 157 * 158 * @return a new, empty {@code PriorityQueue} 159 */ 160 public static <E> PriorityQueue<E> newPriorityQueue() { 161 return new PriorityQueue<E>(); 162 } 163 164 /** 165 * Creates an {@code PriorityQueue} instance containing the given elements. 166 * 167 * @param elements the elements that the queue should contain, in order 168 * @return a new {@code PriorityQueue} containing those elements 169 */ 170 public static <E> PriorityQueue<E> newPriorityQueue(Iterable<? extends E> elements) { 171 if (elements instanceof Collection) { 172 return new PriorityQueue<E>(Collections2.cast(elements)); 173 } 174 PriorityQueue<E> queue = new PriorityQueue<E>(); 175 Iterables.addAll(queue, elements); 176 return queue; 177 } 178 179 // SynchronousQueue 180 181 /** 182 * Creates an empty {@code SynchronousQueue} instance. 183 * 184 * @return a new, empty {@code SynchronousQueue} 185 */ 186 public static <E> SynchronousQueue<E> newSynchronousQueue() { 187 return new SynchronousQueue<E>(); 188 } 189 190 /** 191 * Drains the queue as {@link BlockingQueue#drainTo(Collection, int)}, but if the requested 192 * {@code numElements} elements are not available, it will wait for them up to the specified 193 * timeout. 194 * 195 * @param q the blocking queue to be drained 196 * @param buffer where to add the transferred elements 197 * @param numElements the number of elements to be waited for 198 * @param timeout how long to wait before giving up, in units of {@code unit} 199 * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter 200 * @return the number of elements transferred 201 * @throws InterruptedException if interrupted while waiting 202 */ 203 public static <E> int drain(BlockingQueue<E> q, Collection<? super E> buffer, int numElements, 204 long timeout, TimeUnit unit) throws InterruptedException { 205 Preconditions.checkNotNull(buffer); 206 /* 207 * This code performs one System.nanoTime() more than necessary, and in return, the time to 208 * execute Queue#drainTo is not added *on top* of waiting for the timeout (which could make 209 * the timeout arbitrarily inaccurate, given a queue that is slow to drain). 210 */ 211 long deadline = System.nanoTime() + unit.toNanos(timeout); 212 int added = 0; 213 while (added < numElements) { 214 // we could rely solely on #poll, but #drainTo might be more efficient when there are multiple 215 // elements already available (e.g. LinkedBlockingQueue#drainTo locks only once) 216 added += q.drainTo(buffer, numElements - added); 217 if (added < numElements) { // not enough elements immediately available; will have to poll 218 E e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS); 219 if (e == null) { 220 break; // we already waited enough, and there are no more elements in sight 221 } 222 buffer.add(e); 223 added++; 224 } 225 } 226 return added; 227 } 228 229 /** 230 * Drains the queue as {@linkplain #drain(BlockingQueue, Collection, int, long, TimeUnit)}, 231 * but with a different behavior in case it is interrupted while waiting. In that case, the 232 * operation will continue as usual, and in the end the thread's interruption status will be set 233 * (no {@code InterruptedException} is thrown). 234 * 235 * @param q the blocking queue to be drained 236 * @param buffer where to add the transferred elements 237 * @param numElements the number of elements to be waited for 238 * @param timeout how long to wait before giving up, in units of {@code unit} 239 * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter 240 * @return the number of elements transferred 241 */ 242 public static <E> int drainUninterruptibly(BlockingQueue<E> q, Collection<? super E> buffer, 243 int numElements, long timeout, TimeUnit unit) { 244 Preconditions.checkNotNull(buffer); 245 long deadline = System.nanoTime() + unit.toNanos(timeout); 246 int added = 0; 247 boolean interrupted = false; 248 try { 249 while (added < numElements) { 250 // we could rely solely on #poll, but #drainTo might be more efficient when there are 251 // multiple elements already available (e.g. LinkedBlockingQueue#drainTo locks only once) 252 added += q.drainTo(buffer, numElements - added); 253 if (added < numElements) { // not enough elements immediately available; will have to poll 254 E e; // written exactly once, by a successful (uninterrupted) invocation of #poll 255 while (true) { 256 try { 257 e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS); 258 break; 259 } catch (InterruptedException ex) { 260 interrupted = true; // note interruption and retry 261 } 262 } 263 if (e == null) { 264 break; // we already waited enough, and there are no more elements in sight 265 } 266 buffer.add(e); 267 added++; 268 } 269 } 270 } finally { 271 if (interrupted) { 272 Thread.currentThread().interrupt(); 273 } 274 } 275 return added; 276 } 277 }