001 /* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.collect; 018 019 import static com.google.common.base.Preconditions.checkArgument; 020 import static com.google.common.base.Preconditions.checkNotNull; 021 022 import com.google.common.annotations.Beta; 023 import com.google.common.annotations.GwtCompatible; 024 import com.google.common.annotations.VisibleForTesting; 025 import com.google.common.base.Function; 026 027 import java.util.Arrays; 028 import java.util.Collections; 029 import java.util.Comparator; 030 import java.util.HashSet; 031 import java.util.Iterator; 032 import java.util.List; 033 import java.util.Map; 034 import java.util.NoSuchElementException; 035 import java.util.SortedMap; 036 import java.util.SortedSet; 037 import java.util.concurrent.atomic.AtomicInteger; 038 039 import javax.annotation.Nullable; 040 041 /** 042 * A comparator with added methods to support common functions. For example: 043 * <pre> {@code 044 * 045 * if (Ordering.from(comparator).reverse().isOrdered(list)) { ... }}</pre> 046 * 047 * The {@link #from(Comparator)} method returns the equivalent {@code Ordering} 048 * instance for a pre-existing comparator. You can also skip the comparator step 049 * and extend {@code Ordering} directly: <pre> {@code 050 * 051 * Ordering<String> byLengthOrdering = new Ordering<String>() { 052 * public int compare(String left, String right) { 053 * return Ints.compare(left.length(), right.length()); 054 * } 055 * };}</pre> 056 * 057 * Except as noted, the orderings returned by the factory methods of this 058 * class are serializable if and only if the provided instances that back them 059 * are. For example, if {@code ordering} and {@code function} can themselves be 060 * serialized, then {@code ordering.onResultOf(function)} can as well. 061 * 062 * @author Jesse Wilson 063 * @author Kevin Bourrillion 064 * @since 2.0 (imported from Google Collections Library) 065 */ 066 @GwtCompatible 067 public abstract class Ordering<T> implements Comparator<T> { 068 // Static factories 069 070 /** 071 * Returns a serializable ordering that uses the natural order of the values. 072 * The ordering throws a {@link NullPointerException} when passed a null 073 * parameter. 074 * 075 * <p>The type specification is {@code <C extends Comparable>}, instead of 076 * the technically correct {@code <C extends Comparable<? super C>>}, to 077 * support legacy types from before Java 5. 078 */ 079 @GwtCompatible(serializable = true) 080 @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this?? 081 public static <C extends Comparable> Ordering<C> natural() { 082 return (Ordering<C>) NaturalOrdering.INSTANCE; 083 } 084 085 /** 086 * Returns an ordering for a pre-existing {@code comparator}. Note 087 * that if the comparator is not pre-existing, and you don't require 088 * serialization, you can subclass {@code Ordering} and implement its 089 * {@link #compare(Object, Object) compare} method instead. 090 * 091 * @param comparator the comparator that defines the order 092 */ 093 @GwtCompatible(serializable = true) 094 public static <T> Ordering<T> from(Comparator<T> comparator) { 095 return (comparator instanceof Ordering) 096 ? (Ordering<T>) comparator 097 : new ComparatorOrdering<T>(comparator); 098 } 099 100 /** 101 * Simply returns its argument. 102 * 103 * @deprecated no need to use this 104 */ 105 @GwtCompatible(serializable = true) 106 @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) { 107 return checkNotNull(ordering); 108 } 109 110 /** 111 * Returns an ordering that compares objects according to the order in 112 * which they appear in the given list. Only objects present in the list 113 * (according to {@link Object#equals}) may be compared. This comparator 114 * imposes a "partial ordering" over the type {@code T}. Subsequent changes 115 * to the {@code valuesInOrder} list will have no effect on the returned 116 * comparator. Null values in the list are not supported. 117 * 118 * <p>The returned comparator throws an {@link ClassCastException} when it 119 * receives an input parameter that isn't among the provided values. 120 * 121 * <p>The generated comparator is serializable if all the provided values are 122 * serializable. 123 * 124 * @param valuesInOrder the values that the returned comparator will be able 125 * to compare, in the order the comparator should induce 126 * @return the comparator described above 127 * @throws NullPointerException if any of the provided values is null 128 * @throws IllegalArgumentException if {@code valuesInOrder} contains any 129 * duplicate values (according to {@link Object#equals}) 130 */ 131 @GwtCompatible(serializable = true) 132 public static <T> Ordering<T> explicit(List<T> valuesInOrder) { 133 return new ExplicitOrdering<T>(valuesInOrder); 134 } 135 136 /** 137 * Returns an ordering that compares objects according to the order in 138 * which they are given to this method. Only objects present in the argument 139 * list (according to {@link Object#equals}) may be compared. This comparator 140 * imposes a "partial ordering" over the type {@code T}. Null values in the 141 * argument list are not supported. 142 * 143 * <p>The returned comparator throws a {@link ClassCastException} when it 144 * receives an input parameter that isn't among the provided values. 145 * 146 * <p>The generated comparator is serializable if all the provided values are 147 * serializable. 148 * 149 * @param leastValue the value which the returned comparator should consider 150 * the "least" of all values 151 * @param remainingValuesInOrder the rest of the values that the returned 152 * comparator will be able to compare, in the order the comparator should 153 * follow 154 * @return the comparator described above 155 * @throws NullPointerException if any of the provided values is null 156 * @throws IllegalArgumentException if any duplicate values (according to 157 * {@link Object#equals(Object)}) are present among the method arguments 158 */ 159 @GwtCompatible(serializable = true) 160 public static <T> Ordering<T> explicit( 161 T leastValue, T... remainingValuesInOrder) { 162 return explicit(Lists.asList(leastValue, remainingValuesInOrder)); 163 } 164 165 /** 166 * Exception thrown by a {@link Ordering#explicit(List)} or {@link 167 * Ordering#explicit(Object, Object[])} comparator when comparing a value 168 * outside the set of values it can compare. Extending {@link 169 * ClassCastException} may seem odd, but it is required. 170 */ 171 // TODO(kevinb): make this public, document it right 172 @VisibleForTesting 173 static class IncomparableValueException extends ClassCastException { 174 final Object value; 175 176 IncomparableValueException(Object value) { 177 super("Cannot compare value: " + value); 178 this.value = value; 179 } 180 181 private static final long serialVersionUID = 0; 182 } 183 184 /** 185 * Returns an arbitrary ordering over all objects, for which {@code compare(a, 186 * b) == 0} implies {@code a == b} (identity equality). There is no meaning 187 * whatsoever to the order imposed, but it is constant for the life of the VM. 188 * 189 * <p>Because the ordering is identity-based, it is not "consistent with 190 * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use 191 * caution when building a {@link SortedSet} or {@link SortedMap} from it, as 192 * the resulting collection will not behave exactly according to spec. 193 * 194 * <p>This ordering is not serializable, as its implementation relies on 195 * {@link System#identityHashCode(Object)}, so its behavior cannot be 196 * preserved across serialization. 197 * 198 * @since 2.0 199 */ 200 public static Ordering<Object> arbitrary() { 201 return ArbitraryOrderingHolder.ARBITRARY_ORDERING; 202 } 203 204 private static class ArbitraryOrderingHolder { 205 static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering(); 206 } 207 208 @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> { 209 @SuppressWarnings("deprecation") // TODO(kevinb): ? 210 private Map<Object, Integer> uids = 211 Platform.tryWeakKeys(new MapMaker()).makeComputingMap( 212 new Function<Object, Integer>() { 213 final AtomicInteger counter = new AtomicInteger(0); 214 @Override 215 public Integer apply(Object from) { 216 return counter.getAndIncrement(); 217 } 218 }); 219 220 @Override public int compare(Object left, Object right) { 221 if (left == right) { 222 return 0; 223 } 224 int leftCode = identityHashCode(left); 225 int rightCode = identityHashCode(right); 226 if (leftCode != rightCode) { 227 return leftCode < rightCode ? -1 : 1; 228 } 229 230 // identityHashCode collision (rare, but not as rare as you'd think) 231 int result = uids.get(left).compareTo(uids.get(right)); 232 if (result == 0) { 233 throw new AssertionError(); // extremely, extremely unlikely. 234 } 235 return result; 236 } 237 238 @Override public String toString() { 239 return "Ordering.arbitrary()"; 240 } 241 242 /* 243 * We need to be able to mock identityHashCode() calls for tests, because it 244 * can take 1-10 seconds to find colliding objects. Mocking frameworks that 245 * can do magic to mock static method calls still can't do so for a system 246 * class, so we need the indirection. In production, Hotspot should still 247 * recognize that the call is 1-morphic and should still be willing to 248 * inline it if necessary. 249 */ 250 int identityHashCode(Object object) { 251 return System.identityHashCode(object); 252 } 253 } 254 255 /** 256 * Returns an ordering that compares objects by the natural ordering of their 257 * string representations as returned by {@code toString()}. It does not 258 * support null values. 259 * 260 * <p>The comparator is serializable. 261 */ 262 @GwtCompatible(serializable = true) 263 public static Ordering<Object> usingToString() { 264 return UsingToStringOrdering.INSTANCE; 265 } 266 267 /** 268 * Returns an ordering which tries each given comparator in order until a 269 * non-zero result is found, returning that result, and returning zero only if 270 * all comparators return zero. The returned ordering is based on the state of 271 * the {@code comparators} iterable at the time it was provided to this 272 * method. 273 * 274 * <p>The returned ordering is equivalent to that produced using {@code 275 * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}. 276 * 277 * <p><b>Warning:</b> Supplying an argument with undefined iteration order, 278 * such as a {@link HashSet}, will produce non-deterministic results. 279 * 280 * @param comparators the comparators to try in order 281 */ 282 @GwtCompatible(serializable = true) 283 public static <T> Ordering<T> compound( 284 Iterable<? extends Comparator<? super T>> comparators) { 285 return new CompoundOrdering<T>(comparators); 286 } 287 288 /** 289 * Constructs a new instance of this class (only invokable by the subclass 290 * constructor, typically implicit). 291 */ 292 protected Ordering() {} 293 294 // Non-static factories 295 296 /** 297 * Returns an ordering which first uses the ordering {@code this}, but which 298 * in the event of a "tie", then delegates to {@code secondaryComparator}. 299 * For example, to sort a bug list first by status and second by priority, you 300 * might use {@code byStatus.compound(byPriority)}. For a compound ordering 301 * with three or more components, simply chain multiple calls to this method. 302 * 303 * <p>An ordering produced by this method, or a chain of calls to this method, 304 * is equivalent to one created using {@link Ordering#compound(Iterable)} on 305 * the same component comparators. 306 */ 307 @GwtCompatible(serializable = true) 308 public <U extends T> Ordering<U> compound( 309 Comparator<? super U> secondaryComparator) { 310 return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator)); 311 } 312 313 /** 314 * Returns the reverse of this ordering; the {@code Ordering} equivalent to 315 * {@link Collections#reverseOrder(Comparator)}. 316 */ 317 // type parameter <S> lets us avoid the extra <String> in statements like: 318 // Ordering<String> o = Ordering.<String>natural().reverse(); 319 @GwtCompatible(serializable = true) 320 public <S extends T> Ordering<S> reverse() { 321 return new ReverseOrdering<S>(this); 322 } 323 324 /** 325 * Returns a new ordering on {@code F} which orders elements by first applying 326 * a function to them, then comparing those results using {@code this}. For 327 * example, to compare objects by their string forms, in a case-insensitive 328 * manner, use: <pre> {@code 329 * 330 * Ordering.from(String.CASE_INSENSITIVE_ORDER) 331 * .onResultOf(Functions.toStringFunction())}</pre> 332 */ 333 @GwtCompatible(serializable = true) 334 public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) { 335 return new ByFunctionOrdering<F, T>(function, this); 336 } 337 338 /** 339 * Returns a new ordering which sorts iterables by comparing corresponding 340 * elements pairwise until a nonzero result is found; imposes "dictionary 341 * order". If the end of one iterable is reached, but not the other, the 342 * shorter iterable is considered to be less than the longer one. For example, 343 * a lexicographical natural ordering over integers considers {@code 344 * [] < [1] < [1, 1] < [1, 2] < [2]}. 345 * 346 * <p>Note that {@code ordering.lexicographical().reverse()} is not 347 * equivalent to {@code ordering.reverse().lexicographical()} (consider how 348 * each would order {@code [1]} and {@code [1, 1]}). 349 * 350 * @since 2.0 351 */ 352 @GwtCompatible(serializable = true) 353 // type parameter <S> lets us avoid the extra <String> in statements like: 354 // Ordering<Iterable<String>> o = 355 // Ordering.<String>natural().lexicographical(); 356 public <S extends T> Ordering<Iterable<S>> lexicographical() { 357 /* 358 * Note that technically the returned ordering should be capable of 359 * handling not just {@code Iterable<S>} instances, but also any {@code 360 * Iterable<? extends S>}. However, the need for this comes up so rarely 361 * that it doesn't justify making everyone else deal with the very ugly 362 * wildcard. 363 */ 364 return new LexicographicalOrdering<S>(this); 365 } 366 367 /** 368 * Returns an ordering that treats {@code null} as less than all other values 369 * and uses {@code this} to compare non-null values. 370 */ 371 // type parameter <S> lets us avoid the extra <String> in statements like: 372 // Ordering<String> o = Ordering.<String>natural().nullsFirst(); 373 @GwtCompatible(serializable = true) 374 public <S extends T> Ordering<S> nullsFirst() { 375 return new NullsFirstOrdering<S>(this); 376 } 377 378 /** 379 * Returns an ordering that treats {@code null} as greater than all other 380 * values and uses this ordering to compare non-null values. 381 */ 382 // type parameter <S> lets us avoid the extra <String> in statements like: 383 // Ordering<String> o = Ordering.<String>natural().nullsLast(); 384 @GwtCompatible(serializable = true) 385 public <S extends T> Ordering<S> nullsLast() { 386 return new NullsLastOrdering<S>(this); 387 } 388 389 // Regular instance methods 390 391 // Override to add @Nullable 392 @Override public abstract int compare(@Nullable T left, @Nullable T right); 393 394 /** 395 * Returns the {@code k} least elements of the given iterable according to 396 * this ordering, in order from least to greatest. If there are fewer than 397 * {@code k} elements present, all will be included. 398 * 399 * <p>The implementation does not necessarily use a <i>stable</i> sorting 400 * algorithm; when multiple elements are equivalent, it is undefined which 401 * will come first. 402 * 403 * @return an immutable {@code RandomAccess} list of the {@code k} least 404 * elements in ascending order 405 * @throws IllegalArgumentException if {@code k} is negative 406 * @since 8.0 407 */ 408 @Beta 409 public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) { 410 checkArgument(k >= 0, "%d is negative", k); 411 412 // values is not an E[], but we use it as such for readability. Hack. 413 @SuppressWarnings("unchecked") 414 E[] values = (E[]) Iterables.toArray(iterable); 415 416 // TODO(nshupe): also sort whole list if k is *near* values.length? 417 // TODO(kevinb): benchmark this impl against hand-coded heap 418 E[] resultArray; 419 if (values.length <= k) { 420 Arrays.sort(values, this); 421 resultArray = values; 422 } else { 423 quicksortLeastK(values, 0, values.length - 1, k); 424 425 // this is not an E[], but we use it as such for readability. Hack. 426 @SuppressWarnings("unchecked") 427 E[] tmp = (E[]) new Object[k]; 428 resultArray = tmp; 429 System.arraycopy(values, 0, resultArray, 0, k); 430 } 431 432 return Collections.unmodifiableList(Arrays.asList(resultArray)); 433 } 434 435 /** 436 * Returns the {@code k} greatest elements of the given iterable according to 437 * this ordering, in order from greatest to least. If there are fewer than 438 * {@code k} elements present, all will be included. 439 * 440 * <p>The implementation does not necessarily use a <i>stable</i> sorting 441 * algorithm; when multiple elements are equivalent, it is undefined which 442 * will come first. 443 * 444 * @return an immutable {@code RandomAccess} list of the {@code k} greatest 445 * elements in <i>descending order</i> 446 * @throws IllegalArgumentException if {@code k} is negative 447 * @since 8.0 448 */ 449 @Beta 450 public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) { 451 // TODO(kevinb): see if delegation is hurting performance noticeably 452 // TODO(kevinb): if we change this implementation, add full unit tests. 453 return reverse().leastOf(iterable, k); 454 } 455 456 private <E extends T> void quicksortLeastK( 457 E[] values, int left, int right, int k) { 458 if (right > left) { 459 int pivotIndex = (left + right) >>> 1; // left + ((right - left) / 2) 460 int pivotNewIndex = partition(values, left, right, pivotIndex); 461 quicksortLeastK(values, left, pivotNewIndex - 1, k); 462 if (pivotNewIndex < k) { 463 quicksortLeastK(values, pivotNewIndex + 1, right, k); 464 } 465 } 466 } 467 468 private <E extends T> int partition( 469 E[] values, int left, int right, int pivotIndex) { 470 E pivotValue = values[pivotIndex]; 471 472 values[pivotIndex] = values[right]; 473 values[right] = pivotValue; 474 475 int storeIndex = left; 476 for (int i = left; i < right; i++) { 477 if (compare(values[i], pivotValue) < 0) { 478 ObjectArrays.swap(values, storeIndex, i); 479 storeIndex++; 480 } 481 } 482 ObjectArrays.swap(values, right, storeIndex); 483 return storeIndex; 484 } 485 486 /** 487 * {@link Collections#binarySearch(List, Object, Comparator) Searches} 488 * {@code sortedList} for {@code key} using the binary search algorithm. The 489 * list must be sorted using this ordering. 490 * 491 * @param sortedList the list to be searched 492 * @param key the key to be searched for 493 */ 494 public int binarySearch(List<? extends T> sortedList, @Nullable T key) { 495 return Collections.binarySearch(sortedList, key, this); 496 } 497 498 /** 499 * Returns a copy of the given iterable sorted by this ordering. The input is 500 * not modified. The returned list is modifiable, serializable, and has random 501 * access. 502 * 503 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard 504 * elements that are duplicates according to the comparator. The sort 505 * performed is <i>stable</i>, meaning that such elements will appear in the 506 * resulting list in the same order they appeared in the input. 507 * 508 * @param iterable the elements to be copied and sorted 509 * @return a new list containing the given elements in sorted order 510 */ 511 public <E extends T> List<E> sortedCopy(Iterable<E> iterable) { 512 List<E> list = Lists.newArrayList(iterable); 513 Collections.sort(list, this); 514 return list; 515 } 516 517 /** 518 * Returns an <i>immutable</i> copy of the given iterable sorted by this 519 * ordering. The input is not modified. 520 * 521 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard 522 * elements that are duplicates according to the comparator. The sort 523 * performed is <i>stable</i>, meaning that such elements will appear in the 524 * resulting list in the same order they appeared in the input. 525 * 526 * @param iterable the elements to be copied and sorted 527 * @return a new immutable list containing the given elements in sorted order 528 * @throws NullPointerException if {@code iterable} or any of its elements is 529 * null 530 * @since 3.0 531 */ 532 public <E extends T> ImmutableList<E> immutableSortedCopy( 533 Iterable<E> iterable) { 534 return ImmutableList.copyOf(sortedCopy(iterable)); 535 } 536 537 /** 538 * Returns {@code true} if each element in {@code iterable} after the first is 539 * greater than or equal to the element that preceded it, according to this 540 * ordering. Note that this is always true when the iterable has fewer than 541 * two elements. 542 */ 543 public boolean isOrdered(Iterable<? extends T> iterable) { 544 Iterator<? extends T> it = iterable.iterator(); 545 if (it.hasNext()) { 546 T prev = it.next(); 547 while (it.hasNext()) { 548 T next = it.next(); 549 if (compare(prev, next) > 0) { 550 return false; 551 } 552 prev = next; 553 } 554 } 555 return true; 556 } 557 558 /** 559 * Returns {@code true} if each element in {@code iterable} after the first is 560 * <i>strictly</i> greater than the element that preceded it, according to 561 * this ordering. Note that this is always true when the iterable has fewer 562 * than two elements. 563 */ 564 public boolean isStrictlyOrdered(Iterable<? extends T> iterable) { 565 Iterator<? extends T> it = iterable.iterator(); 566 if (it.hasNext()) { 567 T prev = it.next(); 568 while (it.hasNext()) { 569 T next = it.next(); 570 if (compare(prev, next) >= 0) { 571 return false; 572 } 573 prev = next; 574 } 575 } 576 return true; 577 } 578 579 /** 580 * Returns the greatest of the specified values according to this ordering. If 581 * there are multiple greatest values, the first of those is returned. The 582 * iterator will be left exhausted: its {@code hasNext()} method will return 583 * {@code false}. 584 * 585 * @param iterator the iterator whose maximum element is to be determined 586 * @throws NoSuchElementException if {@code iterator} is empty 587 * @throws ClassCastException if the parameters are not <i>mutually 588 * comparable</i> under this ordering. 589 * 590 * @since 11.0 591 */ 592 @Beta 593 public <E extends T> E max(Iterator<E> iterator) { 594 // let this throw NoSuchElementException as necessary 595 E maxSoFar = iterator.next(); 596 597 while (iterator.hasNext()) { 598 maxSoFar = max(maxSoFar, iterator.next()); 599 } 600 601 return maxSoFar; 602 } 603 604 /** 605 * Returns the greatest of the specified values according to this ordering. If 606 * there are multiple greatest values, the first of those is returned. 607 * 608 * @param iterable the iterable whose maximum element is to be determined 609 * @throws NoSuchElementException if {@code iterable} is empty 610 * @throws ClassCastException if the parameters are not <i>mutually 611 * comparable</i> under this ordering. 612 */ 613 public <E extends T> E max(Iterable<E> iterable) { 614 return max(iterable.iterator()); 615 } 616 617 /** 618 * Returns the greatest of the specified values according to this ordering. If 619 * there are multiple greatest values, the first of those is returned. 620 * 621 * @param a value to compare, returned if greater than or equal to the rest. 622 * @param b value to compare 623 * @param c value to compare 624 * @param rest values to compare 625 * @throws ClassCastException if the parameters are not <i>mutually 626 * comparable</i> under this ordering. 627 */ 628 public <E extends T> E max( 629 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 630 E maxSoFar = max(max(a, b), c); 631 632 for (E r : rest) { 633 maxSoFar = max(maxSoFar, r); 634 } 635 636 return maxSoFar; 637 } 638 639 /** 640 * Returns the greater of the two values according to this ordering. If the 641 * values compare as 0, the first is returned. 642 * 643 * <p><b>Implementation note:</b> this method is invoked by the default 644 * implementations of the other {@code max} overloads, so overriding it will 645 * affect their behavior. 646 * 647 * @param a value to compare, returned if greater than or equal to b. 648 * @param b value to compare. 649 * @throws ClassCastException if the parameters are not <i>mutually 650 * comparable</i> under this ordering. 651 */ 652 public <E extends T> E max(@Nullable E a, @Nullable E b) { 653 return compare(a, b) >= 0 ? a : b; 654 } 655 656 /** 657 * Returns the least of the specified values according to this ordering. If 658 * there are multiple least values, the first of those is returned. The 659 * iterator will be left exhausted: its {@code hasNext()} method will return 660 * {@code false}. 661 * 662 * @param iterator the iterator whose minimum element is to be determined 663 * @throws NoSuchElementException if {@code iterator} is empty 664 * @throws ClassCastException if the parameters are not <i>mutually 665 * comparable</i> under this ordering. 666 * 667 * @since 11.0 668 */ 669 @Beta 670 public <E extends T> E min(Iterator<E> iterator) { 671 // let this throw NoSuchElementException as necessary 672 E minSoFar = iterator.next(); 673 674 while (iterator.hasNext()) { 675 minSoFar = min(minSoFar, iterator.next()); 676 } 677 678 return minSoFar; 679 } 680 681 /** 682 * Returns the least of the specified values according to this ordering. If 683 * there are multiple least values, the first of those is returned. 684 * 685 * @param iterable the iterable whose minimum element is to be determined 686 * @throws NoSuchElementException if {@code iterable} is empty 687 * @throws ClassCastException if the parameters are not <i>mutually 688 * comparable</i> under this ordering. 689 */ 690 public <E extends T> E min(Iterable<E> iterable) { 691 return min(iterable.iterator()); 692 } 693 694 /** 695 * Returns the least of the specified values according to this ordering. If 696 * there are multiple least values, the first of those is returned. 697 * 698 * @param a value to compare, returned if less than or equal to the rest. 699 * @param b value to compare 700 * @param c value to compare 701 * @param rest values to compare 702 * @throws ClassCastException if the parameters are not <i>mutually 703 * comparable</i> under this ordering. 704 */ 705 public <E extends T> E min( 706 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 707 E minSoFar = min(min(a, b), c); 708 709 for (E r : rest) { 710 minSoFar = min(minSoFar, r); 711 } 712 713 return minSoFar; 714 } 715 716 /** 717 * Returns the lesser of the two values according to this ordering. If the 718 * values compare as 0, the first is returned. 719 * 720 * <p><b>Implementation note:</b> this method is invoked by the default 721 * implementations of the other {@code min} overloads, so overriding it will 722 * affect their behavior. 723 * 724 * @param a value to compare, returned if less than or equal to b. 725 * @param b value to compare. 726 * @throws ClassCastException if the parameters are not <i>mutually 727 * comparable</i> under this ordering. 728 */ 729 public <E extends T> E min(@Nullable E a, @Nullable E b) { 730 return compare(a, b) <= 0 ? a : b; 731 } 732 733 // Never make these public 734 static final int LEFT_IS_GREATER = 1; 735 static final int RIGHT_IS_GREATER = -1; 736 }